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Abstract

Statistic of natural images is a growing field of research both in vision and im-
age processing. On the vision research side, fine statistical details about object
distribution in real-world scenes help understanding the human visual system
behavior. On the image processing side, by using the information gathered from
statistics of natural scenes, we can obtain reliable priors and insights that can be
used in many models. In has been rigorously proven in [16] that, if second or-
der stationarity and commutativity of spatiochromatic covariance matrices hold
true for natural scenes, then the codification of spatial and chromatic informa-
tion by the human visual system can be separated through a tensor product.
Spatial features are coded via local and oriented Fourier basis elements, while
color features are coded via a triad given by an achromatic channel followed by
two color opponent channels. In this paper, we will show that, while stationarity
is guaranteed, commutativity is not. However, we shall see that commutativ-
ity of spatiochromatic covariance matrices can be approached if the database of
images used to model visual scenes is modified accordingly to a suitable transfor-
mation that describes the response of retinal photoreceptors to light absorption:
the Michaelis-Menten formula. A thorough investigation of the effects of a pa-
rameter of this formula will be performed and its influence on commutativity of
covariance matrices will be detailed.

1 Introduction

In [16] a mathematical result about the separability of spatial and chromatic features of natural
images has been established under two hypothesis: second order stationarity and commutativ-
ity of the so-called spatiochromatic covariance matrices. Among other consequences, this result
guarantees the well-posedness of several image codification models.

The closest representation of physical irradiance of a visual scene can be obtained through
multispectral and high dynamic range (HDR) techniques. Unfortunately, nowadays technology
permits the acquisition of artifact-free multispectral and HDR images only for still-life scenes,
thus constraining too much the available data-set that can be used for statistical purposes. For
this reason, knowing that we are considering a rough approximation of the true irradiance, we
were forced to build our datasets by using Raw images obtained via RGB cameras.

In [16] it has been shown that spatiochromatic covariance matrices of raw images do not com-
mute perfectly. However, the commutativity properties improve considerably if the information
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carried by raw images is modified according to an important transformation called Michaelis-
Menten formula that can be written like this: uµ(x) 7→ uγµ(x)/(uγµ(x) + mγ

µ), where u is the
RGB raw image function, x is the pixel location, µ is one of the RGB chromatic channel, so that
uµ(x) is the image intensity in the pixel x and in the chromatic channel µ and m represents the
average value. More specifically, we want to investigate the influence of the parameter γ on the
commutativity.

The reason why we consider this formula instead of others is that it has been empirically
discovered in [20] that it fits the behavior of retinal cones in the transduction processed from light
radiance to neuronal electric potential. Thus, the transformed images after the application of the
Michaelis-Menten formula can be considered as a good approximation of the first signal input for
the visual chain of events that characterize the human visual system.

We stress that the mathematical theory developed in this paper is aimed at formalizing and
extending the results of [16], with the hope that they may be useful for vision scientists to refine
their models.

The paper is structured as follows. In section 2, we recall the most important information
that we need from the state of the art about statistics of natural images in order to introduce
our work. In section 3, we discuss an estimation strategy of spatiochromatic covariance matrices
of images, followed by a measure of their commutativity. In section 4.1, we present the image
database that we used in our research. Most importantly, we introduce a crucial pre-processing
filtering tool in our procedure: the sky classifier. In section 5, we discuss some result about the
commutativity change after the application of the Michaelis-Menten transformation. Finally, in
section 6 we resume our contributions and put our work in perspective.

2 Spatiochromatic features of natural images

There is a general agreement about the fact that the Human Visual System (HVS from now
on) has evolved in order to optimize the elaboration of visual signals coming from scenes of the
natural world (which will be shorten with natural scenes from now on, following the traditional
nomenclature). Attneave [1], MacKay [11] and Barlow [2] pioneered the idea that the HVS may
optimize the processing of natural signals by performing a redundancy reduction, however they
did not quantify these ideas with a computational theory that can provide a coding for natural
images.

Two kind of redundancies can be distinguished in the interaction between humans and the nat-
ural environment: firstly, natural scenes have plenty of homogeneous areas and the light reflected
from spatial locations belonging to those areas will be interpreted as the same visual information,
this implies a strong spatial correlation. Secondly, light signals are absorbed by the three L,M,S-
type cones in the retina, whose sensitivity is not independent because they are highly overlapping.
This implies a strong chromatic correlation. When both effects are taken into account, one speaks
about spatiochromatic correlation.

The literature about natural image statistics is vast and its exhaustive presentation is far
beyond the scope of this paper. Here we will deal only with the statistical information gathered
by considering the spatial representation of the image and emphasizing the results from [4] and
[19], which are essential to understand the development of our paper.

Before describing the results of [4] and [19], let us recall that when principal component
analysis (PCA) is performed on small natural image patches, the basic features that result are
Fourier descriptors, see for instance [13]). This fact is a consequence of spatial stationarity.

2.1 Chromatic redundancy in natural images

The first statistical information about chromatic redundancy has been experimentally obtained
in [12] in the framework of color segmentation of RGB images. For each picture of a database of
8 RGB images, the authors computed the covariance matrix C of the distribution of the values
of R, G and B at each pixel. They found that the eigenvectors of the covariance matrix are

2



approximately the following ones for each image of the database: v1 =
(
1
3 ,

1
3 ,

1
3

)t
, v2 =

(
1
2 , 0,−

1
2

)t
,

v3 =
(
− 1

4 ,
1
2 ,−

1
4

)t
. These vectors correspond to the three following uncorrelated color features:

X1 = R+G+B
3 , X2 = R−B

2 , X3 = 2G−(R+B)
4 .

This shows that the feature related to the largest variance is the luminance X1 (or achromatic
channel) and the other two features are described by the opponent channels X2 (red-blue) and
X3 (green-violet).

Buchsbaum and Gottshalk approached in [4] the problem of finding uncorrelated color features
from a purely theoretical point of view. They considered the abstract ensemble of all possible
visual stimuli (radiances) S ≡ {S(λ), λ ∈ L}, where L is the spectrum of visible wavelengths.
From a given representative S(λ) ∈ S, a weighted integration of S(λ) over the visual spectrum,
with weights given by the Vos-Walraven spectral sensitivity functions L(λ),M(λ), S(λ), yields the
three cone activation values L =

∫
L S(λ)L(λ) dλ, M =

∫
L S(λ)M(λ) dλ, S =

∫
L S(λ)S(λ) dλ.

Assuming that the stimulus S(λ) (coming from a fixed point x̄ of a scene) is a random variable,
a covariance matrix can be build from the three random variables L,M,S. This matrix, called
the chromatic covariance matrix is defined as:

C =

CLL CLM CLS
CML CMM CMS

CSL CSM CSS

 , (2.1)

where CLL ≡ E[L · L] − (E[L])2, CLM ≡ E[L ·M ] − E[L]E[M ] = CML, and so on, E being the
expectation operator.

Let K(λ, µ) = E[S(λ)S(µ)]− E[S(λ)] · E[S(µ)] be the covariance function, then the entries of
the covariance matrix can be written as CLL =

∫∫
L2 K(λ, µ)L(λ)L(µ) dλdµ, and so on.

To be able to perform explicit calculations, the analytical form of the covariance function
K(λ, µ) must be specified. In the absence of a database of multispectral images, Buchsbaum
and Gottschalk used abstract non-realistic data, i.e. they chose the easiest covariance function
corresponding to visual stimuli maximally uncorrelated with respect to their energy at different
wavelengths, i.e. K(λ, µ) = δ(λ − µ), δ being the Dirac distribution. As the authors themselves
observe, this condition is satisfied only if the ensemble S is made of monochromatic signals.

With this choice, the entries of the covariance matrix C are all positives and they can be written
as CLL =

∫
L L

2(λ) dλ, CLM =
∫
L L(λ)M(λ) dλ, and so on. C is also real and symmetric, so it has

three positive eigenvalues λ1 ≥ λ2 ≥ λ3 with corresponding eigenvectors vi, i = 1, 2, 3. If W is the
matrix whose columns are the eigenvectors of C, i.e. W = [v1|v2|v3], then the diagonalization of
C is given by Λ = W tCW = diag(λ1, λ2, λ3).

The eigenvector transformation of the cone excitation values L,M,S, in the special case of
monochromatic stimuli, is then A(λ)

P (λ)
Q(λ)

 = W t

L(λ)
M(λ)
S(λ)

 . (2.2)

The transformed values A,P,Q are uncorrelated and their covariance matrix is Λ. A is the achro-
matic channel, while P and Q are associated to the opponent chromatic channels.

The key point in Buchsbaum and Gottschalk’s theory is the application of the Perron-Frobenius
theorem (see e.g. [3] for more details), which assures that positive matrices, i.e. matrices whose
entries are all strictly greater than zero, have one and only one eigenvector whose entries have
all the positive sign, and this eigenvector corresponds to the largest eigenvalue, i.e. λ1. So, only
the transformed A channel will be a linear combination of the cone activation values L,M,S
with positive coefficients, while the channels P and Q will show opponency. This is the theoretical
reason underlying the evidence of post-retinal chromatic opponent behavior, following Buchsbaum
and Gottschalk.

Using the data obtained above, Buchsbaum and Gottschalk could write explicitly the trans-
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formation from (L,M,S) to (A,P,Q) as follows:
A ' 0.887L+ 0.461M

P ' −0.46L+ 0.88M

Q = 0.004L− 0.01M + 0.99S.

(2.3)

More information about the relationship between Buchsbaum and Gottschalk’s theory and other
well-known color spaces can be found in [10].

2.2 Spatiochromatic redundancy in natural images

The most influential paper about spatiochromatic feature is [19], where Ruderman, Cronin and
Chiao proposed a patch-based spatiochromatic coding and tested Buchsbaum-Gottschalk’s theory
on a database of 12 multispectral natural images of foliage. The authors have shown that the
scatterplots in the LM and LS planes of the L,M,S cone activations values (corresponding to 1000
pixels randomly selected in the database) show a high degree of correlation but also asymmetry.
So, they decided to study these data by first reducing their asymmetry: they modified the LMS
values by taking their decimal logarithm and then they subtracted the average image value in
the logarithmic domain. They obtained the so-called Ruderman-Cronin-Chiao coordinates, i.e.
L̃ = LogL − 〈LogL〉, M̃ = LogM − 〈LogM〉 and S̃ = LogS − 〈LogS〉. Following [19], if L̃, M̃ ,
S̃ are the basis vectors in the logarithmically-transformed space, then the application of the PCA
gives the following three principal axes:

` = 1√
3
(L̃+ M̃ + S̃)

α = 1√
6
(L̃+ M̃ − 2S̃)

β = 1√
2
(L̃− M̃).

(2.4)

The color space spanned by these three principal axes is called `αβ space.
The key point of the paper is the idea to study spatiochromatic features by considering 3× 3

patches, with each pixel containing a 3-vector color information, so that every patch is converted in
a vector with 27 components that were analyzed with the PCA. The principal axes of these small
patches in the logarithmic space show that the first fluctuations are in the achromatic channel,
followed by blue-yellow fluctuations in the α direction and red-green ones in the β direction.

The spatial axes are largely symmetrical and can be represented by Fourier features, in line
with the translation-invariance of natural images, as argued in [5]. It is important to stress that no
pixel within the patches appear other than the primary gray, blue-yellow or red-green colors, i.e.
no mixing of `, α, β has been found in any 3× 3 patch. This means that not only the single-pixel
principal axes `, α, β, but also the spatially-dependent principal axes `(x), α(x), β(x), viewed as
functions of the spatial coordinate x inside the patches, are decorrelated. These results have been
confirmed by [14].

2.3 Second order stationarity

Let us now analyze the consequence of second order stationarity in natural images on their decor-
related spatiochromatic features. For the sake of clarity, we will first start with the simplest case
of gray-level images, where stationarity implies that the principal components are Fourier basis
functions. We will then extend this result to the color case and show that a supplementary hy-
pothesis on color covariance matrices yields principal components given by the tensor product
between Fourier basis functions on one side, and achromatic plus opponent color coordinates on
the other.
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2.4 The gray-level case

Let I be a gray-level natural image of dimension W×H. We denote the H rows of I as r0, . . . , rH−1

and the position of each pixel of I row-wise as follows1 :

I = {rjk; j = 0, . . . ,H − 1, k = 0, . . . ,W − 1}. (2.5)

Each row rj = (rj0, . . . , r
j
W−1) will be interpreted as a W -dimensional random vector and each

component rjk as a random variable.

Let us define the spatial covariance of the two random variables rjk, rj
′

k′ :

cov(rjk, r
j′

k′) ≡ c
j,j′

k,k′ = E[rjkr
j′

k′ ]− E[rjk]E[rj
′

k′ ]. (2.6)

Due to the symmetry of covariance we have cj,j
′

k,k′ = cj
′,j
k′,k. We write the spatial covariance matrix

of the two random vectors rj , rj
′

as cov(rj , rj
′
) ≡ Cj,j′ , where Cj,j

′
is the W ×W matrix:

Cj,j
′

=


cj,j

′

0,0 cj,j
′

0,1 · · · cj,j
′

0,W−1

cj,j
′

1,0 cj,j
′

1,1 · · · cj,j
′

1,W−1
...

...
. . .

...

cj,j
′

W−1,0 · · · · · · cj,j
′

W−1,W−1

 . (2.7)

Finally, the spatial covariance matrix C of the image I can be written as:

C =


C0,0 C0,1 · · · C0,H−1

C1,0 C1,1 · · · C1,H−1

...
...

. . .
...

CH−1,0 · · · · · · CH−1,H−1

 . (2.8)

Notice that C is a HW ×HW matrix because each sub-matrix Cj,j
′

is a W ×W matrix.

Hypothesis 1. From now on, the covariance of I is assumed to be invariant under translations

of the row and column index, i.e. cj,j
′

k,k′ = c
|j−j′|
|k−k′|.

Hypothesis 1 is weaker than the typical definition of second order stationarity because here
we do not assume the translation invariance of the mean. Alongside this hypothesis, we add a
technical requirement on the geometry of digital images which is implicitly assumed every time the
Fourier transform is considered, i.e. we will consider a symmetrized spatial domain with a toroidal

distance, which means that we will perform the identification rjk = rj
′

k′ when j ≡ j′ (mod H) and
k ≡ k′ (mod W ), i.e. every time there exist a, b ∈ Z such that j′ − j = aH and k′ − k = bW .

As a covariance matrix, C is real, symmetric and positive-definite. Now, as a consequence of
the previous hypotheses, the matrix C is also block-circulant with circulant blocks. Indeed, the
Cj,j

′
are circulant matrices, i.e. matrices where each row vector is rotated one element to the right

relative to the preceding row vector2, or, equivalently, each column vector is rotated one element
down with respect to the preceding column vector. If we use the convenient shorthand notation
‘circ( )’ to denote a circulant matrix, by specifying only the first row (or, equivalently, the first
column, due to symmetry) between the round brackets, then Cj,j

′
can be written as follows:

Cj,j
′

= circ
(
cj,j

′

0,0 , c
j,j′

0,1 , . . . , c
j,j′

0,W−1

)
. (2.9)

1To avoid cumbersome repetitions of the indexes variability, from now on, we will suppose that j, j′ ∈ {0, . . . H−
1} and k, k′ ∈ {0, . . .W − 1}, unless otherwise specified.

2This can be easily verified by noticing that cj,j
′

k,k′ = cj,j
′

k+1,k′+1
.
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Now, if we write Cj ≡ C0,j , j = 0, . . . ,H − 1 it is straightforward to see that the covariance
matrix C is block-circulant and can be explicitly written as:

C = circ
(
C0, C1, . . . , CH−1

)
. (2.10)

It is well known that an n × n circulant matrix has n eigenvalues corresponding to the com-
ponents of the DFT of the finite sequence given by the first row of the matrix itself, and its
eigenvectors are the Fourier basis functions, see e.g. [6] or [8].

Let us apply this general result to the W ×W circulant matrices Cj . The set of eigenvalue
equations Cjem = λjmem, λj ∈ C and e ∈ CW , m = 0, . . . ,W − 1, can be written as the following
matrix equation CjEW = ΛjEW , where3:

Λj =
√
Wdiag(ĉjm; m = 0, . . . ,W − 1), ĉjm =

1√
W

W−1∑
k=0

cjke
− 2πimk

W , (2.11)

and EW is the Vandermonde matrix which implements the DFT, i.e. the so-called Sylvester matrix
:

EW = [e0|e1| · · · |eW−1]

=

[
em =

1√
W

(
1, e−

2πim
W , . . . , e−

2πim(W−1)
W

)t]
m=0,...,W−1

=
1√
W


1 1 · · · 1

1 e−
2πi
W · · · e−

2πi(W−1)
W

...
...

. . .
...

1 e−
2πi(W−1)

W · · · e−
2πi(W−1)2

W

 .
(2.12)

The following remark will help us understanding how to extend the previous diagonalization
procedure to the whole matrix C.

Remark 1. Let M = circ(M0, . . . ,MH−1) be a block-circulant matrix and let us assume that
the blocks M j can be diagonalized on the same basis B. If we write EH = [e0|e1| · · · |eH−1], with
the vectors ej defined as in eq. (2.12) for all j = 0, . . . ,H − 1, then it can be verified by direct
computation that EH⊗B is a basis of eigenvectors of M , where ⊗ denotes the Kronecker product.

In the case of our spatial covariance matrix C, all the submatrices Cj have the same basis
of eigenvectors EW , thus the result stated in the previous remark can be directly applied on the
matric C to guarantee that

EH ⊗ EW =

[
em,l =

1√
HW

(
1, e−2πi(

m
W + l

H ), . . . , e−2πi(
m(W−1)

W +
l(H−1)
H )

)t]
m,l

, (2.13)

for m = 0, . . . ,W − 1, and l = 0, . . . ,H − 1 provides a basis of eigenvectors for the matrix C.
Actually, due to the symmetry of covariance matrices, the complex parts of the exponentials

cancel out (see [8]) and so the 2D cosine Fourier basis also constitutes a basis of eigenvectors of
C:

em,l =
1√
HW

(
1, cos

(
2π

(
m

W
+

l

H

))
, . . . , cos

(
2π

(
m(W − 1)

W
+
l(H − 1)

H

)))t
. (2.14)

3We have used the simplified notation cjm ≡ c0,j0,m to denote the matrix element of position m in the first row of

the matrix Cj ≡ C0,j , m = 0, . . . ,W − 1.
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2.5 The color case

Let us consider now an RGB image function u : Ω → [0, 255]3, where Ω is the spatial domain,
and, for all (j, k) ∈ Ω, u(j, k) = (R(j, k), G(j, k), B(j, k)) is the vector whose components are the
red, green and blue intensity values of the pixel defined by the coordinates (j, k).

We define the spatiochromatic covariance matrix among two pixels of position (j, k) and (j′, k′)
by extending eq. (2.6) as follows:

cj,j
′

k,k′ =

c
j,j′

k,k′(R,R) cj,j
′

k,k′(R,G) cj,j
′

k,k′(R,B)

cj,j
′

k,k′(G,R) cj,j
′

k,k′(G,G) cj,j
′

k,k′(G,B)

cj,j
′

k,k′(B,R) cj,j
′

k,k′(B,G) cj,j
′

k,k′(B,B)

 (2.15)

where we defined cj,j
′

k,k′(R,R) = E[R(j, k)R(j′, k′)]−E[R(j, k)]E[R(j′, k′)], cj,j
′

k,k′(R,G) = E[R(j, k)G(j′, k′)]−
E[R(j, k)]E[G(j′, k′)], and similarly for the remaining matrix elements. Of course the matrix cj,j

′

k,k′

is symmetric because cj,j
′

k,k′(G,R) = E[G(j, k)R(j′, k′)] − E[G(j, k)]E[R(j′, k′)] = cj,j
′

k,k′(R,G), and
similarly for all the other off-diagonal elements.

Naturally, we can extend Hypothesis 1 to RGB image case, as follows.

Hypothesis 1 (RGB case). The spatiochromatic covariance of u of the chromatic channels µ, ν is

assumed to be invariant under translations of row and column index, i.e. cj,j
′

k,k′(µ, ν) = c
|j−j′|
|k−k′|(µ, ν),

for all µ, ν ∈ R,G,B.

With the same technical requirements, we know that C(µ, ν) is also block-circulant with cir-
culant blocks.

In the particular case defined by j′ = j and k′ = k, we will call cj,j
′

k,k′ ‘chromatic autocovariance’

and denote it simply as c0. Notice that the matrix analyzed in [4] is the chromatic autocovariance
of the LMS values.

We then define the spatiochromatic covariance matrix Cj,j′ among the two random vectors rj,
rj
′

given by the j-th and j′-the rows of the spatial support of u by extending eq. (2.7) as follows:

Cj,j′ =


cj,j

′

0,0 cj,j
′

0,1 · · · cj,j
′

0,W−1

cj,j
′

1,0 cj,j
′

1,1 · · · cj,j
′

1,W−1
...

...
. . .

...

cj,j
′

W−1,0 · · · · · · cj,j
′

W−1,W−1

 . (2.16)

Finally, we define the spatiochromatic covariance matrix C of the RGB image u by extending eq.
(2.8) to the 3HW × 3HW matrix defined in this way:

C =


C0,0 C0,1 · · · C0,H−1

C1,0 C1,1 · · · C1,H−1

...
...

. . .
...

CH−1,0 · · · · · · CH−1,H−1

 . (2.17)

Now, supposing that all the elements of the matrices (2.15) are positive, thanks to the Perron-

Frobenius theorem we can assure that each of these cj,j
′

k,k′ matrices has a basis of eigenvectors
that can be written as a triad of achromatic plus opponent chromatic channels. If we further
assume that the matrices (2.15) can be diagonalized on the same basis of eigenvectors (A,P,Q),
then, thanks to Remark 1, we have that the eigenvectors of the spatiochromatic covariance matrix
C(R,G,B) can be written as the following Kronecker product:

(A,P,Q)⊗ em,l ∈ R3HW , (2.18)
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which is precisely the type of eigenvectors that have been exhibited experimentally in [18]. A
standard result of linear algebra guarantees that a set of matrices can be diagonalized on the
same basis of eigenvectors if and only if they commute4. Thanks to the hypothesis of translation

invariance of covariance, this is verified if and only if the generic covariance matrix cj,j
′

k,k′ commutes

with the chromatic autocovariance matrix c0.
The following proposition holds true [16].

Proposition 2.1 Let u : Ω → [0, 255]3 be an RGB image function, with a periodized spatial
domain Ω, and suppose that

1. All matrices cj,j
′

k,k′ are positive, i.e. their elements are strictly greater than 0;

2. The spatiochromatic covariance matrices cj,j
′

k,k′ defined in (2.15) depend only on the distances
|j − j′|, |k − k′|, i.e. the covariance of u is stationary;

3. The following commutation property holds:

[c0, cj,j
′

k,k′ ] = 0 ∀(j, k), (j′, k′) ∈ Ω. (2.19)

Then, the eigenvectors of the spatiochromatic covariance matrix C defined in (2.17) can be written
as the Kronecker product (A,P,Q) ⊗ em,l, where (A,P,Q) is the achromatic plus opponent color
channels triad and em,l is the 2D cosine Fourier basis defined in eq. (2.14).

Proposition 2.1 defines a mathematical framework where the empirical result of Ruderman et
al. can be formalized and understood in terms of statistical properties of natural images. In [16],
the hypotheses of the proposition above have been checked thanks to simulations performed on
databases of natural images: the first two hypotheses have been confirmed, while the third will be
discussed in detail in the following part of the paper.

2.6 Commutativity and exponential decay of covariance matrices

The experiments conducted in [16] empirically discovered a linear relationship in the semi-logarithmic

scale between spatiochromatic covariance cj,j
′

k,k′(µ, ν) and pixel distance d =
√

(j − j′)2 + (k − k′)2:

log(cdµν) = αµν + βµνd. (2.20)

This, of course, implies an exponential decay for spatiochromatic covariance that corrected the
power-law decay that was commonly supposed to hold true. These analytic expressions will allow
us performing a theoretical analysis of the covariance estimators ĉdµν , which will play an important
role in the discussion of commutativity.

It must be underlined that the exponential decay of cdµν holds true with a great amount of
precision only for an intermediate pixel distance range and it slightly deviates from it when d is
very small or very large. These deviations are to be expected, because of two different reasons.
When d is small, noise and the convolution kernel used by image sensors [15] introduce non linearity
between irradiance and pixel intensities; when d is large, the sensor response is altered by optical
phenomena as vignetting [7] or an incorrect camera aperture.

This is the reason why, in papers dealing with databases of natural images (see, e.g. [19]),
it is common to consider a reduced range of distances to compute statistical features. We will
follow the same convention while dealing with experiments. However, for the theoretical part of
the paper, we will allow the validity of the exponential decay for any distance d ≥ 0.

4We recall that, given two generic matrices A and B for which the products AB and BA is well defined,
[A,B] ≡ AB−BA is called the ‘commutator’ between them. Of course A and B commute if and only if [A,B] = 0.
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3 Estimation of spatiochromatic covariances

In this section, we will propose a reliable method to estimate the spatiochromatic covariances and
then we will analyze their properties.

3.1 Construction of covariance estimators

Let us start by introducing some notation and nomenclature. un : Ω → [0, 1]3, n = 1, 2, . . . , N ,
is the n-th RGB image function with spatial support Ω (common to all images). For each fixed
pixel location x ∈ Ω, un(x) = (Rn(x), Gn(x), Bn(x)) is the RGB value of x in the three chromatic
channels. The values {un(x), x ∈ Ω}n=1,...,N are i.i.d. image samples with finite population

mean and covariance. First of all, we compute the average image ū = 1
N

N∑
n=1

un = (R̄, Ḡ, B̄) and

subtract it from each image to get centered images ũn = un − ū = (Rn − R̄,Gn − Ḡ, Bn − B̄).
The µ-channel of the n-th centered image will be written as ũµ,n.

The main task that we must perform is to estimate the coefficients βµν in eq. (2.20). For this,
we decided to use the classical ordinary least squares (OLS) estimation [17], which requires the
samples in the regression model to be independent. However, in practice, we face the problem
that the number of raw images that we have at disposal in our database (and, in general, in the
databases publicly available) is not sufficient to provide enough independent samples.

To have a quantitative idea, the final image samples that we have for empirical studies of
covariance are 701, suppose that we build a regression model according to the exponential decay
and we fit it with the OLS estimation. Suppose also that the distance d ranges from 0 to 100 with
step 1 and µ, ν ∈ {R,G,B}, this implies the need of 909 covariance independent estimators given
by log(ĉdµν).

Let us describe how we have computed the estimators accordingly to the OLS prescriptions
and overcame this problem. In each centered image, we sample P location pairs given by a center
and its neighbor with a fixed step size s.

Centers are fixed in each image and their locations have coordinates{
(jp, kp), jp = 0, s, 2s, . . . ,

[
H − 1

s

]
s, kp = 0, s, 2s, . . . ,

[
W − 1

s

]
s, p = 1, . . . , P

}
,

where, P =
([
H−1
s

]
+ 1
) ([

W−1
s

]
+ 1
)
, and [] takes the floor. Neighbours are also fixed throughout

all images, while we do not restrict their locations as long as their distance from the centers remains
d, for each fixed value of d. We write their locations as (j′p, k

′
p), with the same range variability

as (jp, kp).
We notice that the set of centers can be identified with a downsampled version of the original

image, so that we can consider the stationary hypothesis and its consequences to hold true also
for the set of centers.

Finally, we estimate cdµν as follows:

ĉdµν =

N∑
n=1

P∑
p=1

ũµ,n(jp, kp)ũν,n(j′p, k
′
p)

(N − 1)P
. (3.1)

To simplify the notation, let us write xµnp = ũµ,n(jp, kp) for the centers and yνnp = ũν,n(j′p, k
′
p) for

the neighbors.
Finally, the estimators of spatiochromatic covariance matrices are:

ĉd =

ĉdRR ĉdRG ĉdRB
ĉdGR ĉdGG ĉdGB
ĉdBR ĉdBG ĉdBB

 . (3.2)

We resume this construction in the scheme visualized in Figure 1, 2.
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Figure 1: Sampling strategy.

Compute the average

image: ū = 1
N

N∑
n=1

un

Center all images:

ũn = un − ū

Sample P location pairs

{(jp, kp), (j′p, k
′
p)}p=1,...,P

for all centered

images ũn

Access corresponding

channel values xµnp, y
ν
np

Construct estimators:

ĉdµν =

N∑
n=1

P∑
p=1

xµnpy
ν
np

(N−1)P

Figure 2: Construction of spatiochromatic covariance estimators.

3.2 Properties of ĉdµν

Let us now discuss the properties of the estimators that we have built in the previous section.
First of all, ĉdµν are unbiased : in fact E(ũn) = 0, and cov(ũn) = N−1

N cov(un), thus E(ĉdµν) =∑N
n=1

∑P
p=1 E(xunpy

v
np)

(N−1)P = cdµν .

Then, we observe that, during the construction process to compute the estimators, we will
keep introducing covariance values. Nevertheless, thanks to the covariance exponential decay, this
accumulation will not cause a large variance of the estimators. In fact, we can prove that it exists
an upper bound for cov(cdµν , c

d′

µ′ν′), where µ, ν, d and µ′, ν′, d′ are two different set of parameters,
and that this quantity decreases with P , the number of samples.

In order to do that, we first notice that, by direct computation, it can be verified that if

C is a block-circulant matrix with circulant blocks, i.e. Cj,j
′

= circ(cj,j
′

0,0 , c
j,j′

0,1 , ..., c
j,j′

0,W−1) and

C = circ(C0, C1, ..., CH−1), then
H−1∑
j,j′=0

W−1∑
k,k′=0

cj,j
′

k,k′ = HW
H−1∑
j=0

W−1∑
k=0

c0,j0,k.

Since the centers {xµnp}p constitute a downsampled version of the image uµ,n, its spatiochro-
matic covariance is also endowed with properties mentioned in section 2, as well as the one above,
thus
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cov(ĉdµν , ĉ
d′

µ′ν′) = cov


N∑
n=1

P∑
p=1

xµnpy
ν
np

(N − 1)P
,

N∑
n′=1

P∑
p′=1

xµ
′

n′p′y
ν′

n′p′

(N − 1)P


=

1

(N − 1)2P 2

N∑
n=1

P∑
p=1

P∑
p′=1

E(xµnpy
ν
npx

µ′

np′y
ν′

np′)−
1

N
cdµνc

d′

µ′ν′ ,

(3.3)

thus

|cov(ĉdµν , ĉ
d′

µ′ν′)| ≤
1

(N − 1)2P 2

N∑
n=1

P∑
p=1

P∑
p′=1

|E(xµnpy
ν
npx

µ′

np′y
ν′

np′)|+
1

N
|cdµν ||cd

′

µ′ν′ |. (3.4)

Moreover, since yµnp ≤ 1 and yν
′

np′ ≤ 1, then |E(xµnpy
ν
npx

µ′

np′y
ν′

np′)| ≤ |E(xµnpx
µ′

np′)| =
N−1
N c

dist[(jp,kp),(jp′ ,kp′ )]

µµ′ .

Therefore
P∑
p=1

P∑
p′=1

|E(xµnpy
ν
npx

µ′

np′y
ν′

np′)| ≤ N−1
N

P∑
p=1

P∑
p′=1

c
dist[(jp,kp),(jp′ ,kp′ )]

µµ′ . From the remark

above about circulant block matrices and from Hypothesis 1 (RGB case), it follows that:

P∑
p=1

P∑
p′=1

c
dist[(jp,kp),(jp′ ,kp′ )]

µµ′ = P

P∑
p=1

c
dist[(j1,k1),(jp,kp)]
µµ′

= Peαµµ′
[H−1

s ]∑
l=0

[W−1
s ]∑

m=0

eβµµ′s
√
l2+m2

.

(3.5)

Since βµν < 0, then:

[H−1
s ]∑
l=0

[W−1
s ]∑

m=0

eβµµ′s
√
l2+m2 ≤

[H−1
s ]∑
l=0

[W−1
s ]∑

m=0

eβµµ′s
√
l2+0

=

[H−1
s ]∑
l=0

eβµµ′sl
([

W − 1

s

]
+ 1

)

=
1− eβµµ′s([

H−1
s ]+1)

1− eβµµ′s

([
W − 1

s

]
+ 1

)
.

(3.6)

Moreover, since P =
([
H−1
s

]
+ 1
) ([

W−1
s

]
+ 1
)
, we can get:

1

P

[H−1
s ]∑
l=0

[W−1
s ]∑

m=0

eβµµ′s
√
l2+m2 ≤ 1− eβµµ′s([

H−1
s ]+1)

(1− eβµµ′s)
([
H−1
s

]
+ 1
) , (3.7)

therefore:

|cov(ĉdµν , ĉ
d′

µ′ν′)| ≤
eαµµ′

(N − 1)

1− eβµµ′s([
H−1
s ]+1)

(1− eβµµ′s)
([
H−1
s

]
+ 1
) +

1

N
|cdµνcd

′

µ′ν′ |, (3.8)

but H−1
s − 1 <

[
H−1
s

]
≤ H−1

s , thus, if we plug the previous inequality into the upper bound in
eq. (3.8), then we get:

|cov(ĉdµν , ĉ
d′

µ′ν′)| <
eαµµ′

(N − 1)

1− eβµµ′ (H−1+s)

(1− eβµµ′s)
(
H−1
s

) +
1

N
|cdµνcd

′

µ′ν′ |. (3.9)
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So we get an upper bound for the covariances and, furthermore, when the set of parameters µ, ν, d
is equal to the set µ′, ν′, d′, then we automatically have upper bound for the variances of the
estimators.

Following an analogous procedure, we can get another upper bound w.r.t to the dimension W ,
i.e.

|cov(ĉdµν , ĉ
d′

µ′ν′)| <
eαµµ′

(N − 1)

1− eβµµ′ (W−1+s)

(1− eβµµ′s)
(
W−1
s

) +
1

N
|cdµνcd

′

µ′ν′ |. (3.10)

This upper bound implies that the estimators are under control. Since βµµ′ < 0, this upper bound
increases monotonically w.r.t s and thus it decreases w.r.t P . So, it makes sense for us to sample
more pairs even in one image.

Let us compute the limit of the upper bound when P tends to infinity. The only part of it

that depends on P is the kernel 1−eβµµ′ (H−1+s)

(1−eβµµ′s)(H−1
s )

, thus we confine the computation on it:

1− eβµµ′ (H−1+s)

(1− eβµµ′s)
(
H−1
s

) =
s

H − 1
+

1− eβµµ′ (H−1)

e
−β

µµ′s−1
s (H − 1)

s→0−−−→ 0 +
1− eβµµ′ (H−1)

−βµµ′(H − 1)
> 0.

(3.11)

In figure 3, we show the behavior of the kernel w.r.t. P for the image dimensions of our database
and for some β values of the same magnitude of those reported in [16].

We can notice an asymptotic behavior of the upper bound w.r.t. P , which implies that the
error introduced in the computation by limiting ourselves to a value of P that can be managed by
an ordinary computer is negligible.

We conclude this section with two remarks. The first one is that, if we set (µ, ν, d) = (µ′, ν′, d′),

then, by equations (3.9) and (3.10), then the covariance cov(ĉdµν , ĉ
d′

µ′ν′) becomes the variance

var(ĉdµν) and so, when N → +∞, the upper bounds tend to 0 and thus the variance will tend to
0 as well.

var(ĉdµν) <
eαµµ

(N − 1)

1− eβµµ(H−1+s)

(1− eβµµs)
(
H−1
s

) +
1

N
(cdµν)2, (3.12)

var(ĉdµν) <
eαµµ

(N − 1)

1− eβµµ(W−1+s)

(1− eβµµs)
(
W−1
s

) +
1

N
(cdµν)2, (3.13)

The second remark is that, the previous information plus the unbiasedness of the estimators imply
that the estimators ĉdµν converge to cdµν in L2 sense, so that they are

√
N -consistent. Furthermore,

because of the dedicated sampling strategy, ĉdµν are asymptotically normal estimators. By the

delta method, we get that log(ĉdµν) is also a
√
N -consistent estimator of log(cdµν), for every strictly

positive cdµν .

3.3 Regression

We now pass to the analysis of the regression step in order to estimate the slopes βµν with the
OLS technique, as previously mentioned, which can be written as follows:

log(ĉdµν) = αµν + βµνd+ εdµν , µ, ν ∈ {R,G,B}, (3.14)

where d ranges in the intermediate pixel range mentioned in section 2.6. We will denote the OLS
estimators of the slopes βµν as β̂OLS

µν .

We start by pointing out two problems related with the use of log(ĉdµν): the first one is that

they are correlated, so that the noise terms εdµν are correlated too. The second one is that log(ĉdµν)
is likely to be biased because of the non-linearity of the logarithmic function.
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Figure 3: Theoretical upper bound kernel vs P . H = 1288, W = 1936, β = −0.0026 (top), −0.0020
(bottom). Right dashed line is the limit of the upper bound kernel.

As we will now underline, these two problems will have a limited impact on our computation.
Actually, in spite of the fact that the noise terms are correlated, the OLS estimators are

still unbiased, the only adverse effect of correlation is that the variance of β̂OLS
µν will become

larger. Formally speaking, the β̂OLS
µν will not be the so-called BLUE, which stands for Best Linear

Unbiased Estimators.
Passing to the second problem, even if log(ĉdµν) is biased w.r.t log(cdµν), as we previously

mentioned, it remains
√
N -consistent. By definition of consistency, if we observe a tiny variance

of log(ĉdµν), then its biasedness can be ignored.

As we will show in more detail in section 5, the variance of log(ĉdµν) that we measured in

practice is almost null and so is the variance of β̂OLS
µν , thus biasedness is not a problem for our

computations.
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4 Analysis of spatiochromatic covariance matrices commu-
tativity

To study the commutativity of spatiochromatic covariance matrices quantitatively, we need to
select a measure. Let us report here some standard definition that will be useful in this section.

Quoting [9], we call a set F ⊂ M(n,R) of matrices a commuting family of matrices if every
pair of matrices in F commutes. F is said to be simultaneously diagonalizable if there is a single
non-singular matrix V ∈M(n,R) such that V −1AV is diagonal for every A ∈ F .

From classical linear algebra, it is well known that F ⊂M(n,R) is a commuting family if and
only if it is a simultaneously diagonalizable family. Moreover, for any given A ∈ F and for any
given ordering λ1, . . . , λn of the eigenvalues of A, there is a non-singular matrix V ∈M(n,R) such
that V −1AV = diag(λ1, . . . , λn). Finally, if A is symmetric, then V is orthogonal, i.e. V −1 = V T ,
the transposed of V .

These considerations allow us the possibility to measure the commutativity properties of the
set of estimates {ĉd}d without having to compute all the commutators. Instead, we will compute
the matrix V which best simultaneously diagonalizes the family of matrix estimates and we will
measure the lack of commutativity by this value:

JD-obj =
∑
d

∑
i 6=j

[
(V T ĉdV )ij

]2
, (4.1)

where JD-obj stands for joint diagonalisability objective and it is the sum of the square off-
diagonal elements of V T ĉdV , where d runs from 0 to some maximal distance value used compute
the covariances. Of course, in the case of perfect commutativity, JD-obj would be zero while, for
an almost-commuting family, the value of JD-obj will be small but not perfectly null.

4.1 Dataset description

The database we used consists of 732 raw images, of size 1288× 1936, taken by a Canon 400D. In
order to explore the largest possible variety of visual content of natural scenes, we have diversified
as much as possible the pictures that we have taken. In Each 4-neighborhood of pixels in a raw
image contains two pixels corresponding to the R and B channels and two pixels corresponding
to the G channel. Each RAW image was demosaicked to build a subsampled sRGB image simply
by keeping unaltered the R and B information and averaging the G channel.

The advantage of raw images is that they are free from post-processing operations such as
gamma correction, white balance or compression, thus, modulo camera noise, they provide a
much better approximation of irradiance than other images, as e.g. jpeg ones. An excerpt of this
database is provided in Figure 4.

However, we found out that the proportion of images containing large areas of the sky (called
sky images hereafter) dominates the semantic content of the database. Too many sky images will
cluster a subset, which will have a different covariance structure than the rest. Therefore, prior
to the numeric studies, we need to filter part of sky images out, to balance the database.

For this purpose, we have developed a sky classifier, that we will describe in detail in the
appendix.

After filtering, there are 701 images left.

4.2 Implementation

The only hyperparameter that we need to assign beforehand is the step size s. In practice, we
have approximately min(H,W ) options for s. Since we need to decrease the variance as much as
possible, considering the execution time, we chose s = 2 (P = 623392).

The computational complexity of eq. (3.1) is O(NP ). We use Matlab 9.4 5 to implement the
method. In the case of our database, it takes around 14 hours to compute 281 (pixel distances)

5Codes to reproduce our experiments are available at https://github.com/yiyej/spatiochromatic_cov.
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Figure 4: Excerpt of the raw image database.

× 9 (channel combinations) estimates for raw images, while it needs 23 to 24 hours to perform a
Michaelis-Menten transformation and the same estimation.

5 Numeric results

In this section we present and discuss the numerical results that we have obtained through our
simulations.

5.1 Validations of estimators’ properties

To validate the properties of estimator ĉdµν , we group n0 images to mimic once realization. So

we have N
n0

realizations in total. Figure 5 shows the unbiasedness of ĉdµν . Figure 6 shows the

empirical upper bounds of var(ĉdµν).

50 100 150 200 250 300 350
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Figure 5: Unbiasedness. Estimates of ĉ0
RR from different realizations. Left: n0 = 2 (350 realizations);

right: n0 = 5 (140 realizations)

. We can find that the estimator is unbaised.
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Figure 6: Empirical upper bounds. Sample variances of ĉ0
RR vs P . Left: n0 = 2 (350 realizations); right:

n0 = 5 (140 realizations). First, the empirical upper bound decreases dramatically as P goes up, sharing
the shape with theoretical upper bound kernel. Second, the effect from P on covariances is independent
of N . Third, with 5 images, the magnitude of sample variance has already reached 10−4 with sufficient
large P .

βRR βRG (βGR) βRB (βBR)
-0.00228 -0.00228(-0.00228) -0.00229(-0.00229)

βGG βGB (βBG)
-0.00222 -0.00218(-0.00218)

βBB
-0.00210

Table 1: Estimates of the slopes from our database of raw images after the application of the sky
classifier.

5.2 Exponential decay of spatio-chromatic covariance of raw images

In Figure 7 we show the decay of log(ĉdµν) computed for the raw images of our database, after the
sky classifier, with respect to d. Since we find a linear relationship, the exponential decay holds.
We built the regression model and fit it with OLS. Estimates of the slopes are provided in Table 1.
Notice that, up to the accuracy 10−4, the straight lines relative to the combinations of chromatic
channels RR, RG (GR), RB (BR) are parallel and the same is true for those relatives to the
combinations GG and GB (BG). All the straight lines are parallel up to the accuracy 10−3.

5.3 Effects of the Michaelis-Menten transformation on commutativity

In this subsection, we will be focusing on the effects of the Michaelis-Menten transformation,
uµ(x) 7→ uγµ(x)/(uγµ(x) + mγ

µ) on the commutativity properties of spatio-chromatic covariance
matrices.

Firstly, we compute the JD-obj measure, eq. (4.1) for the original raw images of our database
after the action of the sky classifier. Then, we transform the raw images applying the Michaelis-
Menten formula with 9 different γ values, ranging from 0.2 to 1 with step 0.1 and we compute
again the JD-obj measure.

It is clear that, if γ → 0, then the Michaelis-Menten formula will turn all the image pixels
to 1/2, thus leaving with constant images and all spatiochromatic covariance matrices would be
identical and perfectly commuting. Since we want to avoid this trivial situation, we remain far
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Figure 7: Exponential decay of raw images. Parameter setting: s = 2(P = 623392), d = 0, 1, ...280.
We built the regression model and fit it with OLS on the range [70, 280], where the covariances exhibit
exponential decay precisely.

from the value γ = 0 by starting with γ = 0.2.
In Figure 8 it can be seen that also after the Michaelis-Menten transformation the exponential

decay of covariance holds true6.
Let us now discuss the quantitative results about the commutativity measure, i.e. the JD-

obj values. For the sake of clarity, let us write JD-obj(raw) and JD-obj(MM) for the JD-obj
values obtained with the original raw images and the transformed ones, with the Michaelis-Menten
transformation, respectively.

We have performed experiments to compute these values on the family of matrices {ĉd}d=0,...,dM

by changing the value of γ.
One interesting result is that for all dM and for all γ greater than 0.5 JD-obj(MM) < JD-

obj(raw). This remains true also for some values of γ smaller than 0.5 but, in this case, the
relationship between JD-obj(MM) and JD-obj(raw) depends on dM .

In Figure 9 we show the JD-obj(MM) with different γ parameters and with dM ranging from
10 to 90. The horizontal line is JD-obj(raw). For all these distance values, we empirically verified
that when γ ≥ 0.6, then the Michaelis-Menten transformation improves the commutativity of the
family {ĉd}d=0,...,75, whilst, for γ ≤ 0.5, the Michaelis-Menten transformation may improve or not
the commutativity.

In Figure 10 we show the JD-obj(MM) with different γ parameters and with dM ranging
from 100 to 280. Here there is no horizontal line showing JD-obj(raw) because, for all these
distance values and for all γ the Michaelis-Menten transformation improves the commutativity
of the family {ĉd}d=0,...,75. However, we can notice that the optimal value of γ, corresponding
the absolute minimum of the curve representing JD-obj(MM), gradually shifts towards 0. One

6It is worth mentioning that the Michaelis-Menten transformation interchanges the position of some straight
lines. For example, when γ = 0.7, the lines RB(BR) and RR are shifted up w.r.t RG(GR) and GG, respectively.
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Figure 8: Exponential decay of covariance after the application of the Michaelis-Menten formula with
γ = 0.7. Parameter setting: s = 2(P = 623392), d = 0, 1, ...280. The choice of γ = 0.7 is arbitrary, but we
stress that the exponential decay remains true also for all the other γ values that we have considered.

explanation for this behavior is the following: when a large number of matrices is considered,
much more noise will be introduced in the computation, in this case, very small values of γ tend
to make the family of matrices more homogeneous, thus improving commutativity. Plus, if these
matrices do not really commute, then the best way of forcing them to commute is to make them
having more homogeneous values.

We believe that, focusing on small dM will help revealing the true information about the action
of the Michaelis-Menten transformation. Interestingly, 0.9 is the first value of γ to be best, before
γ decreases back to small values.

In Figure 11 we indicate the best γ value with respect to commutativity for all the distances
from 1 to 280.
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Figure 9: JD-obj values. JD-obj(MM) with different γ parameters and with dM ranging from 10 to 90.
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Figure 10: JD-obj values. JD-obj(MM) with different γ parameters and with dM ranging from 100 to
280.
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Figure 11: The best γ values for the families {ĉd}d=0,...,dM . The x-axis records the moving of dM .

6 Conclusions and perspectives

The work of this paper is inspired by the analysis of spatiochromatic features of natural images
provided in [16]. Our contributions to the improvements of this paper are the following.

First of all, we constructed a collection of estimators for spatiochromatic covariance matrices
that is reliable from the perspectives of unbiasedness and consistency. This construction is based
on a method that permits to exploit as much as possible the information of each image, thus
allowing the use of relatively small databases of images, as those typically available for raw or
multispectral natural images. Our proposal is general and may be applied to reduces the amount
of sample needed by any image statistics model.

Moreover, we devised a sky classifier which allowed us to remove from our database images
with statistically redundant information about the sky.

We also verified with great accuracy the exponential decay of spatiochromatic covariance for
raw images, showing that, up to a 10−3 accuracy, the exponential decay coefficient is the same for
each combination of chromatic channels, if we avoid the very first distances which are affected by
noise and errors introduced by the convolution kernel of cameras. The consequence is that, up to
this accuracy, spatio-chromatic covariance matrices commute and the results of paper [16] about
the possibility to separate the codification of spatial and chromatic visual signals into a tensor
product hold true.

Finally, we have analyzed the consequences of the application of the Michaelis-Menten trans-
formation to our raw data. If raw data can be associated to the radiance of a visual scene,
their Michaelis-Menten transformed can be associated with the output of retinal cones after the
absorption of light.

So, it is natural to test if the Michaelis-Menten transformation has an effect on the commuta-
tivity of spatio-chromatic covariance matrices, allowing a more precise and efficient tensor product
codification of spatial and chromatic visual signals by the optical neurons.

The Michaelis-Menten transformation depends on a parameter γ, which has been measured
as 0.74 for the retina of a rhesus monkey. Our tests have confirmed that the exponential decay
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is retained after the application of the Michaelis-Menten transformation and, remarkably, that,
when γ ranges between 0.6 and 1, the commutativity of spatio-chromatic covariance matrices is
actually improved with respect to the original raw image values.

The results that we have obtained are very promising and confirm the conjectures of paper
[16] about the importance of the Michaelis-Menten transformation. However, for a full proof of
these assumptions a database of natural mulispectral images should be built and analyzed with
the techniques described in this paper. Technological limitations of multispectral cameras do not
allow this for the moment when movement (e.g. leaves moved by the wind or people walking) is
considered.

Appendix

Sky classifier

The key point of this classifier is to control the distribution mass of blue channel and red channel.
After a statistical analysis of our database, we found out that, in general, the objects appearing in
the pictures are characterized by high values of red, while, of course, the sky is always characterized
by high values of blue.

We only consider sky in the daylight. Figure 12 shows one common distribution of daylight sky.
We can see that the mass of blue channel distribution of the sky area is located in the high-valued
range, so that there is an enough number of pixels capable of exhibiting ‘bright blue’. Also, the
mass of red channel is located out of the high-valued range. Thus, most of pixels in sky images
in our database are characterized by a simultaneous presence of large amount of high-valued blue
pixels and a relatively small amount of high-valued red pixels.
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Figure 12: One typical distribution of sky images. The histogram is plotted with 10 bins and pixels are
taken from the upper 1/3 part of the corresponding image.
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Inspired by the analysis above, we defined the Boolean variable that labels sky in our classifier
as follows:

label = (QuantileB(pB) > θB) AND (QuantileR(pR) < θR),

where, Quantileµ(pµ) is the quantile of the probability pµ for the pixel value distribution of the
chromatic channels µ = B or R and θB should be located in the high-valued range, θR should be
located out of high-valued range.

If our database contained only horizontal images, we could limit our sky classifier only to
the upper 1/3 part of an image. However, as can be seen from Figure 4, we also have to deal
with rotated vertical images, thus, in order to take into account both image geometries, we apply
our algorithm only on the top right part of the images. More specifically, we considered the
pixels belonging to the top-right part of the image, i.e. the sub-image with coordinates (x, y),
x ≥ (1− λ)W and 0 ≤ y ≤ λH.

We then compute Quantileµ(pµ) in each sub-image and the label variable. If the label turns
out to be 1, then we take the image out of our database.

Notice that pictures with a significant amount of clouds in the sky will, correctly, not be
removed, because in this case there will be a significant amount of bright red pixels.

Moreover, if there is a sufficient amount of detail in the sky, as shown by Figure 13, the classifier
will not remove the image from the database.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Right borders of the bins

0

500

1000

1500

2000

2500

3000

3500

4000

F
re

q
u
e
n
c
y

Blue channel
Green channel
Red channel

Figure 13: The sky classifier did not remove this image from the database thanks to the presence
of the visible gradient which is responsible for the distributions shown in the graph at the right.

By correctly tuning the parameters of the classifier, we can control the proportion of sky images
to be taken out. The tuning for our database gave this parameter selection: λ = 0.4, pB = 0.4, pR
= 0.6, θB = 0.6, θR = 0.6 which classified 31 pictures as sky images over 732, reported in Figure
14.

Figure 14: Pictures taken out of our database because labeled as sky images by our classifier.
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