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bUniversité de Lyon, CNRS, LIRIS
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Abstract

Recent works on data-driven sketch-based modeling use either voxel grids or normal/depth maps as geometric representations com-
patible with convolutional neural networks. While voxel grids can represent complete objects – including parts not visible in the
sketches – their memory consumption restricts them to low-resolution predictions. In contrast, a single normal or depth map can
capture fine details, but multiple maps from different viewpoints need to be predicted and fused to produce a closed surface. We
propose to combine these two representations to address their respective shortcomings in the context of a multi-view sketch-based
modeling system. Our method predicts a voxel grid common to all the input sketches, along with one normal map per sketch. We
then use the voxel grid as a support for normal map fusion by optimizing its extracted surface such that it is consistent with the
re-projected normals, while being as piecewise-smooth as possible overall. We compare our method with a recent voxel prediction
system, demonstrating improved recovery of sharp features over a variety of man-made objects.
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1. Introduction1

As many related fields, sketch-based modeling recently wit-2

nessed major progress thanks to deep learning. In particular,3

several authors demonstrated that generative convolutional net-4

works can predict 3D shapes from one or several line drawings5

[1, 2, 3, 4]. A common challenge faced by these methods is the6

choice of a geometric representation that can both represent the7

important features of the shape while also being compatible with8

convolutional neural networks. Voxel grids form a natural 3D ex-9

tension to images, and were used by Delanoy et al. [1] to predict10

a complete object from as little as one input drawing. This com-11

plete prediction allows users to rotate around the 3D shape before12

creating drawings from other viewpoints. However, the memory13

consumption of voxel grids limits their resolution, resulting in14

smooth surfaces that lack details. Alternatively, several methods15

adopt image-based representations, predicting depth and normal16

maps from one or several drawings [2, 3, 4]. While these maps17

can represent finer details than voxel grids, each map only shows18

part of the surface, and multiple maps from different viewpoints19

need to be fused to produce a closed object.20

Motivated by the complementary strengths of voxel grids and21

normal maps, we propose to combine both representations within22

the same system. Our approach builds on the voxel prediction23

network of Delanoy et al. [1], which produces a volumetric pre-24

diction of a shape from one or several sketches. We complement25

this architecture with a normal prediction network similar to the26

one used by Su et al. [4], which we use to obtain a normal map for 27

each input sketch. The voxel grid thus provides us with a com- 28

plete, closed surface, while the normal maps allow us to recover 29

details in the parts seen from the sketches. 30

Our originality is to not only use the voxel grid as a prelim- 31

inary prediction to be shown to the user, but also as a support 32

for normal map fusion. To do so, we first locate the voxels de- 33

lineating the object’s boundary, and re-project the normal maps 34

on the resulting surface to obtain a distribution of candidate nor- 35

mals for each surface element. We then solve for the smoothest 36

normal field that best agrees with these observations [5]. Finally, 37

we optimize the surface elements to best align with this normal 38

field [6]. We evaluate our approach on the dataset of Delanoy 39

et al. [1], on which we recover smoother surfaces with sharper 40

discontinuities. 41

2. Related work 42

Reconstructing 3D shapes from line drawings has a long his- 43

tory in computer vision and computer graphics. A number of 44

methods tackle this problem by geometric means, for instance by 45

detecting and enforcing 3D relationships between lines, like par- 46

allelism and orthogonality [7, 8, 9, 10, 11]. However, computing 47

these geometric constraints often require access to a clean, well- 48

structured representation of the drawing, for instance in the form 49

of a graph of vectorial curves. In addition, geometric methods 50
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(a) Input (b) CNNs predic-
tions

(c) Candidate normals (d) Aggregated normals (e) Piecewise-smooth normals (f) Final surface

Figure 1: Overview of our method. Our method takes as input multiple sketches of an object (a). We first apply existing deep neural networks to predict a volumetric
reconstruction of the shape as well as one normal map per sketch (b). We re-project the normal maps on the voxel grid (c, blue needles for the first normal map, yellow
needles for the second normal map), which complement the surface normal computed from the volumetric prediction (c, pink needles). We aggregate these different
normals into a distribution represented by a mean vector and a standard deviation (d, colors denote low variance in green and high variance in red). We optimize this
normal field to make it piecewise smooth (e) and use it to regularize the surface (f). The final surface preserves the overall shape of the predicted voxel grid as well
as the sharp features of the predicted normal maps.

often require user annotations to disambiguate multiple interpre-1

tations, or to deal with missing information.2

Data-driven methods hold the promise to lift the above limi-3

tations by providing strong priors on the shapes that a drawing4

can represent. In particular, recent work exploit deep neural net-5

works to predict 3D information from as little as a single bitmap6

line drawing. However, convolutional neural networks have been7

originally developed to work on images, and several alternative8

solutions have been proposed to adapt such architectures to pro-9

duce 3D shapes.10

A first family of methods focuses on parametric shapes such as11

buildings [12], trees [13], and faces [14], and train deep networks12

to regress their parameters. While these methods produce 3D13

shapes of very high quality, extending them to new classes of14

objects require designing novel parametric models by hand.15

A second family of methods target arbitrary shapes and rely on16

encoder-decoder networks to convert the input drawing into 3D17

representations. Among them, Delanoy et al. [1] rely on a voxel18

grid to represent a complete object. Users of their system can thus19

visualize the 3D shape, including its hidden parts, as soon as they20

have completed a single drawing. Their system also supports ad-21

ditional drawings created from different viewpoints, which allow22

the network to refine its prediction. Nevertheless, their system23

is limited to voxel grids of resolution 643, which is too little to24

accurately capture sharp features. Alternatively, Su et al. [4] and25

Li et al. [3] propose encoder-decoder networks to predict normal26

and depth maps respectively. While these maps only represent27

the geometry visible in the input drawing, Li et al. allow users28

to draw the object from several viewpoints and fuse the result-29

ing depth maps to obtain a complete object. A similar image-30

based representation has been proposed by Lun et al. [2], who31

designed a deep network to predict depth maps from 16 view-32

points, given one to three drawings as input. In both cases, fus-33

ing the multiple depth maps requires careful point set registration34

and optimization to compensate for misalignment. Our approach35

combines the strength of both voxel-based and image-based rep- 36

resentations. On the one hand, per-sketch normal maps provide 37

high-resolution details about the shape, while on the other hand, 38

the voxel grid provides an estimate of the complete shape as well 39

as a support surface for normal fusion. By casting normal fusion 40

as the reconstruction of a piecewise-smooth normal field over the 41

voxel surface, our method alleviates the need for precise align- 42

ment of the normal maps. 43

Line drawing interpretation is related to the problem of 3D 44

reconstruction from photographs, for which numerous deep- 45

learning solutions have been proposed by the computer vision 46

community. While many approaches rely on voxel-based [15, 16] 47

and image-based [17] representations as discussed above, other 48

representations have been proposed to achieve finer reconstruc- 49

tions. Octrees have long been used to efficiently represent volu- 50

metric data, although their implementation in convolutional net- 51

works requires the definition of custom operations, such as con- 52

volutions on hash tables [18] or cropping of octants [19]. Point 53

sets have also been considered as an alternative to voxel-based 54

or image-based representations [20], and can be converted to 55

surfaces in a post-process as done for depth map fusion. More 56

recently, several methods attempted to directly predict surfaces. 57

Pixel2Mesh [21] relies on graph convolutional networks [22] to 58

predict deformations of a template mesh. However, this approach 59

is limited to shapes that share the same topology as the tem- 60

plate, an ellipsoid in their experiments. In contrast, Groueix et 61

al. [23] can handle arbitrary topology by predicting multiple sur- 62

face patches that cover the shape. Since these patches do not form 63

a single, closed surface, their approach can also be used to gen- 64

erate a dense point set from which a surface can be computed as 65

a post-process. In contrast to the above approaches, we chose to 66

combine voxel-based and image-based representations because 67

both can be implemented using standard convolutional networks 68

on regular grids. 69
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3. Overview1

Our method takes as input several sketches of a shape drawn2

from different known viewpoints (Figure 1a). We first use ex-3

isting deep neural networks [1, 24] to predict a volumetric re-4

construction of the shape, along with one normal map per sketch5

(Figure 1b). We then project the normal maps on the surface of6

the volumetric reconstruction and combine this information with7

the initial surface normal to obtain a distribution of normals for8

each surface element (Figure 1c,d). While the normals coming9

from different sources are mostly consistent, some parts of the10

shape exhibit significant ambiguity due to erroneous predictions11

and misalignment between the input sketches and the volumet-12

ric reconstruction. Therefore in the next step of our approach13

we reconstruct a piecewise-smooth normal field by a variational14

method [5] that filters the distribution of normals and locates15

sharp surface discontinuities (Figure 1e). The reconstruction en-16

ergy is weighted by the variance of the distribution of normal17

vectors within each surface element, which acts as a confidence18

estimate. Finally, we regularize the initial surface such that its19

quads and edges align with this normal field [6], resulting in a20

piecewise-smooth object that follows the overall shape of the vol-21

umetric prediction as well as the crisp features of the predicted22

normal maps (Figure 1f).23

4. Volumetric and normal prediction24

Our method builds on prior work to obtain its input volumet-25

ric and image-based predictions of the shape. Here we briefly26

describe these two types of prediction and refer the interested27

reader to the original papers for additional details.28

4.1. Volumetric prediction29

We obtain our volumetric prediction using the method of De-30

lanoy et al. [1]. Their approach relies on two deep convolutional31

networks. First, the single-view network is in charge of predicting32

occupancy in a voxel grid given one drawing as input. Then, the33

updater network refines this prediction by taking another draw-34

ing as input. When multiple drawings are available, the updater35

network is applied iteratively over the sequence of drawings to36

achieve a multi-view coherent reconstruction. Both networks fol-37

low a standard U-Net architecture [25] where the drawing is pro-38

cessed by a series of convolution, non-linearity and down-scaling39

operations before being expanded back to a voxel grid, while40

skip-connections propagate information at multiple scales. This41

method produces a voxel grid of resolution 643 from drawings of42

resolution 2562.43

4.2. Normal prediction44

We obtain our normal prediction using a U-Net similar to the45

one we use for volumetric prediction. The network takes as in-46

put a drawing of resolution 2562 and predicts a normal map of47

the same resolution. Lun et al. [2] and Su et al. [4] have shown 48

that this type of architecture performs well on the task of nor- 49

mal prediction from sketches. We base our implementation on 50

Pix2Pix [24], from which we remove the discriminator network 51

for simplicity. 52

5. Data fusion 53

The main novelty of our method is to combine a coarse vol- 54

umetric prediction with per-view normal maps to recover sharp 55

surface features. However, these different sources of information 56

are often not perfectly aligned due to errors in the predictions as 57

well as in the input line drawings. Prior work on multi-view pre- 58

diction of depth maps [2, 3] tackle a similar challenge by aligning 59

the corresponding point sets using costly iterative non-rigid reg- 60

istration. We instead implement this data fusion in two stages, 61

each one being the solution of a different variational formulation 62

that is fast to compute. 63

In the first stage, we project the normal predictions onto the 64

surface of the volumetric prediction, and complement this in- 65

formation with normals estimated directly from the voxel grid. 66

We then solve for the piecewise-smooth normal field that is most 67

consistent with all these candidate normals, such that sharp sur- 68

face discontinuities automatically emerge at their most likely lo- 69

cations [5]. In the second stage, we optimize the surface of the 70

voxel grid such that it respects the normal field resulting from 71

the first stage, while staying close to the initial predicted voxel 72

geometry [6]. 73

5.1. Generation of the candidate normal field 74

We begin by thresholding the volumetric prediction to obtain 75

a binary voxel grid. The boundary of this collection of voxels 76

forms a quadrangulated surface Q made of isothetic unit squares, 77

which we call surface elements in the following. We then project 78

the center of each surface element into each normal map where it 79

appears to look up the corresponding predicted normal. We com- 80

pute this projection using the camera matrix associated to each 81

sketch, which we assume to be given as input to the method. In- 82

teractive sketching systems like the one described by Delanoy et 83

al. [1] provide these matrices by construction. We use a simple 84

depth test to detect if a given surface element is visible from the 85

point of view of the normal map. We also compute the gradi- 86

ent of the volumetric prediction using finite differences, which 87

we use as an additional estimate of the surface normal. We ag- 88

gregate these various estimates into a spherical Gaussian distri- 89

bution, with normalized mean n̄ and standard deviation σn. For 90

surface elements not visible in any normal map, we set n̄ to the 91

estimate given by the volumetric prediction. 92

5.2. Reconstruction of a piecewise-smooth normal vector field 93

For each surface element, we now have a unique normal vector 94

n̄ as well as an estimate of its standard deviation σn. We obtain 95
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our final piecewise-smooth normal field n∗ by minimizing a dis-1

crete variant of the Ambrosio-Tortorelli energy [5].2

On a manifold Ω, the components {n∗0, n
∗
1, n
∗
2} of n∗ and a scalar

function v that captures discontinuities are optimized to minimize

ATε(n∗, v) :=
∫

Ω

α
∑

i

|n∗i − n̄i|
2 +
∑

i

v2|∇n∗i |
2

+ λε|∇v|2 +
λ

ε

(1 − v)2

4
ds , (1)

for some parameters α, λ, ε ∈ R. Note that the scalar function v3

tends to be close to 0 along sharp features and close to 1 else-4

where.5

The first term ensures that the output normal n∗ is close to the6

input n̄. The second term encourages n∗ to be smooth where there7

is no discontinuity. The last two terms control the smoothness of8

the discontinuity field v and encourage it to be close to 1 almost9

everywhere by penalizing its overall length. Note that fixing all10

the n∗i (resp. v), the functional becomes quadratic and its gradient11

is linear in v (resp. all the n∗i ), leading to an efficient alternat-12

ing minimization method to obtain the final n∗ and v. Parameter13

α controls the balance between data fidelity and smoothness. A14

high value better preserves the input while a low value produces15

a smoother field away from discontinuities. Parameter λ con-16

trols the length of the discontinuities – the smaller it is, the more17

discontinuities will be allowed on the surface. We use the same18

value λ = 0.05 for all our results. The last parameter ε is related19

to the Γ-convergence of the functional and decreases during the20

optimization. We used the sequence (4, 2, 1, 0.5) for all our re-21

sults. Please refer to [5] for more details about the discretization22

of Equation (1) onto the digital surface Q and its minimization.23

We further incorporate our knowledge about the distribution
of normals at each surface element by defining α as a function
of the standard deviation σn. Intuitively, we parameterize α such
that it takes on a low value over elements of high variance, effec-
tively increasing the influence of the piecewise-smoothness term
in those areas:

α(s) := 0.2(1 − σn(s))4 .

at a surface element s ∈ Q. This local weight allows the24

Ambrosio-Tortorelli energy to diffuse normals from reliable ar-25

eas to ambiguous ones. We set α(s) to 0.8 for surface elements26

not visible in any normal map.27

5.3. Surface reconstruction28

Equipped with a piecewise-smooth normal field n∗, we finally29

reconstruct a regularized surface whose quads are as close to or-30

thogonal to the prescribed normals as possible. We achieve this31

goal using the variational model proposed in [6]. As illustrated32

in Figure 2, this surface reconstruction guided by our piecewise-33

smooth normal vector field effectively aligns quad edges with34

sharp surface discontinuities.35

Figure 2: Surface reconstruction obtained from the normal field regularized with
our weighted Ambrosio-Tortorelli functional (see Fig.1b for the input voxel grid).
The insets show how the quadrangulation perfectly recovers the surface singular-
ities.

6. Evaluation 36

We first study the impact of the different components of our 37

method, before comparing it against prior work. For all these 38

results, we use the dataset provided by Delanoy et al. [1] to train 39

the neural networks. This dataset is composed of abstract shapes 40

assembled from cuboids and cylinders, along with line drawings 41

rendered from front, side, top and 3/4 views. Note however that 42

we only train and use the normal map predictor on 3/4 views 43

because the other views are often highly ambiguous. 44

6.1. Ablation study 45

Figure 3 compares the surface reconstructions obtained with 46

different sources of normal guidance, and different strategies of 47

normal fusion. We color surfaces according to their orientations, 48

as shown by the sphere in inset. As a baseline, we first extract the 49

surface best aligned with the gradient of the volumetric predic- 50

tion, similarly to prior work [1]. Because the volumetric predic- 51

tion is noisy and of low resolution, this naive approach produces 52

bumpy surfaces that lack sharp features (second column). Op- 53

timizing the normal field according to the Ambrosio-Tortorelli 54

energy removes some of the bumps, but still produces rounded 55

corners (third column). Aggregating the volumetric and image- 56

based normals into a single normal field produces smoother sur- 57

faces, but yield bevels where the normal maps are misaligned 58

(fourth and fifth column). We improve results by weighting the 59

aggregated normal field according to its confidence, which gives 60

the Ambrosio-Tortorelli energy greater freedom to locate surface 61

discontinuities in ambiguous areas (last column). 62

We further evaluate the importance of our local weighting 63

scheme in Figure 4. We first show surfaces obtained using a 64

constant α in the Ambrosio-Tortorelli energy. A low α produces 65

sharp creases and smooth surfaces but the final shape deviates 66

from the input, as seen on the cylindrical lens of the camera that 67

becomes conic (Figure 4b). On the other hand, a high α yields 68
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Input voxel surface {ng} {ng} + AT {n̄} {n̄} + AT n∗ =

{n̄}+ weighted AT

Figure 3: Ablation study showing the surface obtained using various normal fields as guidance. The volumetric gradient ng produces bumpy surfaces that lack sharp
features (second column), even after being optimized according to the Ambrosio-Tortorelli energy (third column). Our aggregated normal field n̄ yields multiple
surface discontinuities where the normal maps are misaligned, such as on the arms and the seat of the armchair (fourth and fifth column). We obtain the best results
by reducing the influence of the aggregated normals in areas of low confidence (last column, n∗).

a surface that remain close to the input, but misses some sharp1

surface transitions (Figure 4d). By defining α as a function of2

the confidence of the normal field, our formulation produces a3

surface that is close to the input shape and locates well sharp4

transitions even in areas where the normal maps are misaligned5

(Figure 4e).6

6.2. Performances7

We implemented the deep networks in Caffe [26] and the nor-8

mal field and surface optimizations in DGtal1. Both the predic-9

tion and optimization parts of our method take approximately the10

same time. The volumetric prediction takes between 150 and 35011

milliseconds, depending on the number of input sketches [1]. The12

normal prediction takes around 15 milliseconds per sketch. In13

contrast, normal field optimization takes around 700 milliseconds14

and surface optimization takes around 30 milliseconds. Note that15

we measured our timings using GPU acceleration for the deep16

networks, while the normal field and surface optimizations were17

performed on the CPU.18

Our approach is an order of magnitude faster than prior image-19

based approaches [3, 2], which need around ten seconds to per-20

form non-rigid registration and fusion of multiple depth maps.21

However, our fast normal aggregation strategy is best suited to22

objects dominated by smooth surface patches delineated by few23

sharp discontinuities, while it is likely to average out information24

in the presence of misaligned repetitive details.25

6.3. Comparisons26

Figure 5 compares our surfaces with the ones obtained by De-27

lanoy et al. [1], who apply a marching cube algorithm on the28

volumetric prediction. Our method produces much smoother sur-29

faces while capturing sharper discontinuities. While our method30

benefits from the guidance of the predicted normal maps, it re-31

mains robust to inconsistencies between these maps and the voxel32

1https://dgtal.org/

(a) Input

(b) α = 0.02 (c) α = 0.05

(d) α = 0.1 (e) ours

Figure 4: Ambrosio-Tortorelli with a fixed α deviates from the input shape (b) or
misses sharp discontinuities (d). Our spatially-varying α allows the recovery of
sharp features in areas where the aggregated normal field has a low confidence
(e).

grid, as shown on the armchair (top right) where one of the nor- 33

mal maps suggests a non-flat back due to a missing line in the 34

input drawing. 35

We also provide a comparison to feature-preserving denoising 36

methods [28, 27] applied on the results of Delanoy et al. [1]. 37

5
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Input sketches [1] [1] + [27] [1] + [28] Ours Normal maps

Figure 5: Comparison to Delanoy et al. [1] on a variety of objects. Applying marching cube on the volumetric prediction results in noisy surfaces that lack sharp
discontinuities (second column). Denoising these surfaces with L0 minimization [27] introduces spurious discontinuities as curved patches are approximated by planes
(third column). Guided denoising [28] produces piecewise-smooth surfaces closer to ours (fourth column) but maintains low-frequency noise and tends to misplace
discontinuities, like on the arm of the armchair (second row) or on the wings and front of the airplane (fourth row). Our formulation based on the Ambrosio-Tortorelli
energy can be seen as a form of guided filtering that benefits from extra guidance from the predicted normal maps (fifth column). We included close-ups on the input
drawings and output surfaces to show that our method better captures the intended shape.
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Figure 6: Robustness to noisy volumetric prediction. Adding gaussian noise to
the input volumetric prediction has little impact on the final result.

Without normal guidance, these methods either maintain low-1

frequency noise, remove important features, or introduce spuri-2

ous discontinuities.3

6.4. Robustness4

Figure 6 evaluates the robustness of our method to noisy volu-5

metric predictions, showing that our combination of normal map6

guidance and piecewise-smooth regularization yields stable re-7

sults even in the presence of significant noise. We also designed8

our method to be robust to normal map misalignment, common9

in a sketching context. Figure 7 demonstrates that our method is10

stable in the presence of global and local misalignment. We sim-11

ulate a global misalignment by shifting one of the normal maps12

by 5 pixels, and a local misalignment by replacing each normal13

by another normal, sampled in a local neighborhood.14

6.5. Limitations15

Figure 8 illustrates typical limitations of our approach. Since16

our method relies on normal maps to guide the surface recon-17

struction, it sometimes misses surface discontinuities between18

co-planar surfaces, as shown on the top of the locomotive. An19

additional drawing would be needed in this example to show the20

discontinuity from bellow. A side effect of the surface optimiza-21

tion energy is to induce a slight loss of volume, which is espe-22

cially visible on thin structures like the wings of the airplane and23

the toothbrush. Possible solutions to this issue includes iterating24

between regularizing the surface and restoring volume by mov-25

ing each vertex in its normal direction. Another limitation of our26

approach is that normal maps only help recovering fine details on27

{n̄} {n̄} + AT ours

N
o

no
is

e
G

lo
ba

ls
hi

ft
L

oc
al

sh
if

t
Figure 7: Robustness to misaligned normal maps. Here we simulate global mis-
alignment by shifting an entire normal map by the same amount (second row) or
by shifting each normal by a random amount (third row). While these perturba-
tions degrades the result of the baseline methods, our method remains stable.

visible surfaces, while hidden parts are solely reconstructed from 28

the volumetric prediction, as shown on the back of the camera in 29

Figure 9. Finally, because we favor piecewise-smooth surfaces, 30

our approach is better suited to man-made objects than to organic 31

shapes made of intricate details. 32

7. Conclusion 33

Recent work on sketch-based modeling using deep learning 34

relied either on volumetric or image-based representations of 3D 35

shapes. In this paper we showed how these two representations 36

can be combined, using the volumetric representation to capture 37

hidden parts and the image-based representation to capture sharp 38

details. Furthermore, we showed how the volumetric represen- 39

tation can serve as a support for normal map fusion by solving 40

for a piecewise-smooth normal field over the voxel surface. This 41

method is especially well suited to man-made objects dominated 42

by a few sharp discontinuities. 43
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Input sketches [1] ours normal maps

Figure 8: Limitations of our method. Our method cannot recover surface dis-
continuities that are not captured by the normal maps, such as the top of the
locomotive. The surface optimization tends to shrink the object, as seen on thin
structures like the wings of the airplane and the toothbrush.

Figure 9: Since normal maps only capture visible surfaces, the back and bottom
of this camera is solely defined by the volumetric prediction. Nevertheless, the
method reconstructs a smooth surface in such cases as it still benefits from the
piecewise-smoothness of the Ambrosio-Tortorelli energy.
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