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Introduction

As many related fields, sketch-based modeling recently witnessed major progress thanks to deep learning. In particular, several authors demonstrated that generative convolutional networks can predict 3D shapes from one or several line drawings [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF]2,3,[START_REF] Su | Interactive sketch-based normal map generation with deep neural networks[END_REF]. A common challenge faced by these methods is the choice of a geometric representation that can both represent the important features of the shape while also being compatible with convolutional neural networks. Voxel grids form a natural 3D extension to images, and were used by Delanoy et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] to predict a complete object from as little as one input drawing. This complete prediction allows users to rotate around the 3D shape before creating drawings from other viewpoints. However, the memory consumption of voxel grids limits their resolution, resulting in smooth surfaces that lack details. Alternatively, several methods adopt image-based representations, predicting depth and normal maps from one or several drawings [2,3,[START_REF] Su | Interactive sketch-based normal map generation with deep neural networks[END_REF]. While these maps can represent finer details than voxel grids, each map only shows part of the surface, and multiple maps from different viewpoints need to be fused to produce a closed object.

Motivated by the complementary strengths of voxel grids and normal maps, we propose to combine both representations within the same system. Our approach builds on the voxel prediction network of Delanoy et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF], which produces a volumetric prediction of a shape from one or several sketches. We complement this architecture with a normal prediction network similar to the one used by Su et al. [START_REF] Su | Interactive sketch-based normal map generation with deep neural networks[END_REF], which we use to obtain a normal map for 27 each input sketch. The voxel grid thus provides us with a com-28 plete, closed surface, while the normal maps allow us to recover 29 details in the parts seen from the sketches.

30

Our originality is to not only use the voxel grid as a prelim-31 inary prediction to be shown to the user, but also as a support 32 for normal map fusion. To do so, we first locate the voxels de-33 lineating the object's boundary, and re-project the normal maps 34 on the resulting surface to obtain a distribution of candidate nor-35 mals for each surface element. We then solve for the smoothest 36 normal field that best agrees with these observations [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector field on digital data[END_REF]. Finally, 37 we optimize the surface elements to best align with this normal 38 field [START_REF] Coeurjolly | Digital surface regularization by normal vector field alignment[END_REF]. We evaluate our approach on the dataset of Delanoy 39 et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF], on which we recover smoother surfaces with sharper 40 discontinuities.

41

Related work 42

Reconstructing 3D shapes from line drawings has a long his-43 tory in computer vision and computer graphics. A number of 44 methods tackle this problem by geometric means, for instance by 45 detecting and enforcing 3D relationships between lines, like par-46 allelism and orthogonality [START_REF] Barrow | Interpreting line drawings as three-dimensional surfaces[END_REF][START_REF] Xu | True2form: 3d curve networks from 2d sketches via selective regularization[END_REF][START_REF] Malik | Recovering three-dimensional shape from a single image of curved objects[END_REF][START_REF] Schmidt | Analytic drawing of 3d scaffolds[END_REF][START_REF] Lipson | Optimization-based reconstruction of a 3d object from a single freehand line drawing[END_REF]. However, computing 47 these geometric constraints often require access to a clean, well-48 structured representation of the drawing, for instance in the form 49 of a graph of vectorial curves. In addition, geometric methods 50 Figure 1: Overview of our method. Our method takes as input multiple sketches of an object (a). We first apply existing deep neural networks to predict a volumetric reconstruction of the shape as well as one normal map per sketch (b). We re-project the normal maps on the voxel grid (c, blue needles for the first normal map, yellow needles for the second normal map), which complement the surface normal computed from the volumetric prediction (c, pink needles). We aggregate these different normals into a distribution represented by a mean vector and a standard deviation (d, colors denote low variance in green and high variance in red). We optimize this normal field to make it piecewise smooth (e) and use it to regularize the surface (f). The final surface preserves the overall shape of the predicted voxel grid as well as the sharp features of the predicted normal maps.

often require user annotations to disambiguate multiple interpretations, or to deal with missing information.

Data-driven methods hold the promise to lift the above limitations by providing strong priors on the shapes that a drawing can represent. In particular, recent work exploit deep neural networks to predict 3D information from as little as a single bitmap line drawing. However, convolutional neural networks have been originally developed to work on images, and several alternative solutions have been proposed to adapt such architectures to produce 3D shapes.

A first family of methods focuses on parametric shapes such as buildings [START_REF] Nishida | Interactive sketching of urban procedural models[END_REF], trees [START_REF] Huang | Shape synthesis from sketches via procedural models and convolutional networks[END_REF], and faces [START_REF] Han | Deepsketch2face: A deep learning based sketching system for 3d face and caricature modeling[END_REF], and train deep networks to regress their parameters. While these methods produce 3D shapes of very high quality, extending them to new classes of objects require designing novel parametric models by hand.

A second family of methods target arbitrary shapes and rely on encoder-decoder networks to convert the input drawing into 3D representations. Among them, Delanoy et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] rely on a voxel grid to represent a complete object. Users of their system can thus visualize the 3D shape, including its hidden parts, as soon as they have completed a single drawing. Their system also supports additional drawings created from different viewpoints, which allow the network to refine its prediction. Nevertheless, their system is limited to voxel grids of resolution 64 Line drawing interpretation is related to the problem of 3D 44 reconstruction from photographs, for which numerous deep-45 learning solutions have been proposed by the computer vision 46 community. While many approaches rely on voxel-based [START_REF] Choy | 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction[END_REF][START_REF] Ji | Surfacenet: An end-to-end 3d neural network for multiview stereopsis[END_REF] 47 and image-based [START_REF] Tatarchenko | Multi-view 3d models from single images with a convolutional network[END_REF] representations as discussed above, other 48 representations have been proposed to achieve finer reconstruc-49 tions. Octrees have long been used to efficiently represent volu-50 metric data, although their implementation in convolutional net-51 works requires the definition of custom operations, such as con-52 volutions on hash tables [START_REF] Tatarchenko | Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs[END_REF] or cropping of octants [START_REF] Häne | Hierarchical surface prediction for 3d object reconstruction[END_REF]. Point 53 sets have also been considered as an alternative to voxel-based 54 or image-based representations [START_REF] Fan | A point set generation network for 3d object reconstruction from a single image[END_REF], and can be converted to 55 surfaces in a post-process as done for depth map fusion. More 56 recently, several methods attempted to directly predict surfaces. 57 Pixel2Mesh [START_REF] Wang | Pixel2mesh: Generating 3d mesh models from single rgb images[END_REF] relies on graph convolutional networks [START_REF] Bronstein | Geometric deep learning: Going beyond euclidean data[END_REF] to 58 predict deformations of a template mesh. However, this approach 59 is limited to shapes that share the same topology as the tem-60 plate, an ellipsoid in their experiments. In contrast, Groueix et 61 al. [START_REF] Groueix | Atlasnet: A papier-mâché approach to learning 3d surface generation[END_REF] can handle arbitrary topology by predicting multiple sur-62 face patches that cover the shape. Since these patches do not form 63 a single, closed surface, their approach can also be used to gen-64 erate a dense point set from which a surface can be computed as 65 a post-process. In contrast to the above approaches, we chose to 66 combine voxel-based and image-based representations because 67 both can be implemented using standard convolutional networks 68 on regular grids.

Overview 1

Our method takes as input several sketches of a shape drawn 2 from different known viewpoints (Figure 1a). We first use ex-3 isting deep neural networks [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF][START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] to predict a volumetric re-4 construction of the shape, along with one normal map per sketch (Figure 1b). We then project the normal maps on the surface of 6 the volumetric reconstruction and combine this information with [START_REF] Su | Interactive sketch-based normal map generation with deep neural networks[END_REF] have shown that this type of architecture performs well on the task of normal prediction from sketches. We base our implementation on Pix2Pix [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF], from which we remove the discriminator network for simplicity.

Data fusion

The main novelty of our method is to combine a coarse volumetric prediction with per-view normal maps to recover sharp surface features. However, these different sources of information are often not perfectly aligned due to errors in the predictions as well as in the input line drawings. Prior work on multi-view prediction of depth maps [2, 3] tackle a similar challenge by aligning the corresponding point sets using costly iterative non-rigid registration. We instead implement this data fusion in two stages, each one being the solution of a different variational formulation that is fast to compute.

In the first stage, we project the normal predictions onto the surface of the volumetric prediction, and complement this information with normals estimated directly from the voxel grid. We then solve for the piecewise-smooth normal field that is most consistent with all these candidate normals, such that sharp surface discontinuities automatically emerge at their most likely locations [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector field on digital data[END_REF]. In the second stage, we optimize the surface of the voxel grid such that it respects the normal field resulting from the first stage, while staying close to the initial predicted voxel geometry [START_REF] Coeurjolly | Digital surface regularization by normal vector field alignment[END_REF].

Generation of the candidate normal field

We begin by thresholding the volumetric prediction to obtain a binary voxel grid. The boundary of this collection of voxels forms a quadrangulated surface Q made of isothetic unit squares, which we call surface elements in the following. We then project the center of each surface element into each normal map where it appears to look up the corresponding predicted normal. We compute this projection using the camera matrix associated to each sketch, which we assume to be given as input to the method. Interactive sketching systems like the one described by Delanoy et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] provide these matrices by construction. We use a simple depth test to detect if a given surface element is visible from the point of view of the normal map. We also compute the gradient of the volumetric prediction using finite differences, which we use as an additional estimate of the surface normal. We aggregate these various estimates into a spherical Gaussian distribution, with normalized mean n and standard deviation σ n . For surface elements not visible in any normal map, we set n to the estimate given by the volumetric prediction.

Reconstruction of a piecewise-smooth normal vector field

For each surface element, we now have a unique normal vector n as well as an estimate of its standard deviation σ n . We obtain our final piecewise-smooth normal field n * by minimizing a discrete variant of the Ambrosio-Tortorelli energy [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector field on digital data[END_REF].

On a manifold Ω, the components {n * 0 , n * 1 , n * 2 } of n * and a scalar function v that captures discontinuities are optimized to minimize

AT ε (n * , v) := Ω α i |n * i -ni | 2 + i v 2 |∇n * i | 2 + λε|∇v| 2 + λ ε (1 -v) 2 4 ds , (1) 
for some parameters α, λ, ε ∈ R. Note that the scalar function v tends to be close to 0 along sharp features and close to 1 elsewhere.

The first term ensures that the output normal n * is close to the input n. The second term encourages n * to be smooth where there is no discontinuity. The last two terms control the smoothness of the discontinuity field v and encourage it to be close to 1 almost everywhere by penalizing its overall length. Note that fixing all the n * i (resp. v), the functional becomes quadratic and its gradient is linear in v (resp. all the n * i ), leading to an efficient alternating minimization method to obtain the final n * and v. Parameter α controls the balance between data fidelity and smoothness. A high value better preserves the input while a low value produces a smoother field away from discontinuities. Parameter λ controls the length of the discontinuities -the smaller it is, the more discontinuities will be allowed on the surface. We use the same value λ = 0.05 for all our results. The last parameter ε is related to the Γ-convergence of the functional and decreases during the optimization. We used the sequence (4, 2, 1, 0.5) for all our results. Please refer to [START_REF] Coeurjolly | Piecewise smooth reconstruction of normal vector field on digital data[END_REF] for more details about the discretization of Equation ( 1) onto the digital surface Q and its minimization.

We further incorporate our knowledge about the distribution of normals at each surface element by defining α as a function of the standard deviation σ n . Intuitively, we parameterize α such that it takes on a low value over elements of high variance, effectively increasing the influence of the piecewise-smoothness term in those areas: α(s) := 0.2(1 -σ n (s)) 4 .

at a surface element s ∈ Q. This local weight allows the Ambrosio-Tortorelli energy to diffuse normals from reliable areas to ambiguous ones. We set α(s) to 0.8 for surface elements not visible in any normal map.

Surface reconstruction

Equipped with a piecewise-smooth normal field n * , we finally reconstruct a regularized surface whose quads are as close to orthogonal to the prescribed normals as possible. We achieve this goal using the variational model proposed in [START_REF] Coeurjolly | Digital surface regularization by normal vector field alignment[END_REF]. As illustrated in Figure 2, this surface reconstruction guided by our piecewisesmooth normal vector field effectively aligns quad edges with sharp surface discontinuities.

Figure 2: Surface reconstruction obtained from the normal field regularized with our weighted Ambrosio-Tortorelli functional (see Fig. 1b for the input voxel grid).

The insets show how the quadrangulation perfectly recovers the surface singularities.

Evaluation 36

We first study the impact of the different components of our 37 method, before comparing it against prior work. For all these 38 results, we use the dataset provided by Delanoy et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] to train 39 the neural networks. This dataset is composed of abstract shapes 40 assembled from cuboids and cylinders, along with line drawings 41 rendered from front, side, top and 3/4 views. Note however that 42 we only train and use the normal map predictor on 3/4 views 43 because the other views are often highly ambiguous. different sources of normal guidance, and different strategies of 47 normal fusion. We color surfaces according to their orientations, 48 as shown by the sphere in inset. As a baseline, we first extract the 49 surface best aligned with the gradient of the volumetric predic-50 tion, similarly to prior work [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF]. Because the volumetric predic-51 tion is noisy and of low resolution, this naive approach produces 52 bumpy surfaces that lack sharp features (second column). Op-53 timizing the normal field according to the Ambrosio-Tortorelli 54 energy removes some of the bumps, but still produces rounded 55 corners (third column). Aggregating the volumetric and image-56 based normals into a single normal field produces smoother sur-57 faces, but yield bevels where the normal maps are misaligned 58 (fourth and fifth column). We improve results by weighting the 59 aggregated normal field according to its confidence, which gives 60 the Ambrosio-Tortorelli energy greater freedom to locate surface 61 discontinuities in ambiguous areas (last column).

62

We further evaluate the importance of our local weighting 63 scheme in Figure 4. We first show surfaces obtained using a 64 constant α in the Ambrosio-Tortorelli energy. A low α produces 65 sharp creases and smooth surfaces but the final shape deviates 66 from the input, as seen on the cylindrical lens of the camera that 67 becomes conic (Figure 4b). On the other hand, a high α yields 68 Input voxel surface

{n g } {n g } + AT { n} { n} + AT n * = { n}+ weighted AT
Figure 3: Ablation study showing the surface obtained using various normal fields as guidance. The volumetric gradient n g produces bumpy surfaces that lack sharp features (second column), even after being optimized according to the Ambrosio-Tortorelli energy (third column). Our aggregated normal field n yields multiple surface discontinuities where the normal maps are misaligned, such as on the arms and the seat of the armchair (fourth and fifth column). We obtain the best results by reducing the influence of the aggregated normals in areas of low confidence (last column, n * ).

a surface that remain close to the input, but misses some sharp surface transitions (Figure 4d). By defining α as a function of the confidence of the normal field, our formulation produces a surface that is close to the input shape and locates well sharp transitions even in areas where the normal maps are misaligned (Figure 4e).

Performances

We implemented the deep networks in Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF] and the normal field and surface optimizations in DGtal 1 . Both the prediction and optimization parts of our method take approximately the same time. The volumetric prediction takes between 150 and 350 milliseconds, depending on the number of input sketches [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF]. The normal prediction takes around 15 milliseconds per sketch. In contrast, normal field optimization takes around 700 milliseconds and surface optimization takes around 30 milliseconds. Note that we measured our timings using GPU acceleration for the deep networks, while the normal field and surface optimizations were performed on the CPU.

Our approach is an order of magnitude faster than prior imagebased approaches [3, 2], which need around ten seconds to perform non-rigid registration and fusion of multiple depth maps. However, our fast normal aggregation strategy is best suited to objects dominated by smooth surface patches delineated by few sharp discontinuities, while it is likely to average out information in the presence of misaligned repetitive details. grid, as shown on the armchair (top right) where one of the nor-33 mal maps suggests a non-flat back due to a missing line in the 34 input drawing.

Comparisons

35

We also provide a comparison to feature-preserving denoising 36 methods [START_REF] Zhang | Guided mesh normal filtering[END_REF][START_REF] He | Mesh denoising via l 0 minimization[END_REF] applied on the results of Delanoy et al. [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF]. 37

Input sketches [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] [1] + [START_REF] He | Mesh denoising via l 0 minimization[END_REF] [1] + [28] Ours Normal maps Applying marching cube on the volumetric prediction results in noisy surfaces that lack sharp discontinuities (second column). Denoising these surfaces with L0 minimization [START_REF] He | Mesh denoising via l 0 minimization[END_REF] introduces spurious discontinuities as curved patches are approximated by planes (third column). Guided denoising [START_REF] Zhang | Guided mesh normal filtering[END_REF] produces piecewise-smooth surfaces closer to ours (fourth column) but maintains low-frequency noise and tends to misplace discontinuities, like on the arm of the armchair (second row) or on the wings and front of the airplane (fourth row). Our formulation based on the Ambrosio-Tortorelli energy can be seen as a form of guided filtering that benefits from extra guidance from the predicted normal maps (fifth column). We included close-ups on the input drawings and output surfaces to show that our method better captures the intended shape. Without normal guidance, these methods either maintain lowfrequency noise, remove important features, or introduce spurious discontinuities.

Robustness

Figure 6 evaluates the robustness of our method to noisy volumetric predictions, showing that our combination of normal map guidance and piecewise-smooth regularization yields stable results even in the presence of significant noise. We also designed our method to be robust to normal map misalignment, common in a sketching context. Figure 7 demonstrates that our method is stable in the presence of global and local misalignment. We simulate a global misalignment by shifting one of the normal maps by 5 pixels, and a local misalignment by replacing each normal by another normal, sampled in a local neighborhood. visible surfaces, while hidden parts are solely reconstructed from 28 the volumetric prediction, as shown on the back of the camera in 29 Figure 9. Finally, because we favor piecewise-smooth surfaces, 30 our approach is better suited to man-made objects than to organic 31 shapes made of intricate details. Recent work on sketch-based modeling using deep learning 34 relied either on volumetric or image-based representations of 3D 35 shapes. In this paper we showed how these two representations 36 can be combined, using the volumetric representation to capture 37 hidden parts and the image-based representation to capture sharp 38 details. Furthermore, we showed how the volumetric represen-39 tation can serve as a support for normal map fusion by solving 40 for a piecewise-smooth normal field over the voxel surface. This 41 method is especially well suited to man-made objects dominated 42 by a few sharp discontinuities.

Limitations

43

Input sketches [START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] ours normal maps

Figure 8: Limitations of our method. Our method cannot recover surface discontinuities that are not captured by the normal maps, such as the top of the locomotive. The surface optimization tends to shrink the object, as seen on thin structures like the wings of the airplane and the toothbrush.

Figure 9: Since normal maps only capture visible surfaces, the back and bottom of this camera is solely defined by the volumetric prediction. Nevertheless, the method reconstructs a smooth surface in such cases as it still benefits from the piecewise-smoothness of the Ambrosio-Tortorelli energy.

  (a) Input (b) CNNs predictions (c) Candidate normals (d) Aggregated normals (e) Piecewise-smooth normals (f) Final surface
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  the initial surface normal to obtain a distribution of normals for 8 each surface element (Figure 1c,d). While the normals coming 9 from different sources are mostly consistent, some parts of the 10 shape exhibit significant ambiguity due to erroneous predictions 11 and misalignment between the input sketches and the volumet-12 ric reconstruction. Therefore in the next step of our approach 13 we reconstruct a piecewise-smooth normal field by a variational 14 method [5] that filters the distribution of normals and locates 15 sharp surface discontinuities (Figure 1e). The reconstruction en-16 ergy is weighted by the variance of the distribution of normal17vectors within each surface element, which acts as a confidence 18 estimate. Finally, we regularize the initial surface such that its 19 quads and edges align with this normal field[START_REF] Coeurjolly | Digital surface regularization by normal vector field alignment[END_REF], resulting in a 20 piecewise-smooth object that follows the overall shape of the vol-21 umetric prediction as well as the crisp features of the predicted 22 normal maps (Figure1f).

23 4 .

 4 Volumetric and normal prediction 24 Our method builds on prior work to obtain its input volumet-25 ric and image-based predictions of the shape. Here we briefly 26 describe these two types of prediction and refer the interested 27 reader to the original papers for additional details.

28 4. 1 .

 281 Volumetric prediction 29We obtain our volumetric prediction using the method of De-30 lanoy et al.[START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF]. Their approach relies on two deep convolutional 31 networks. First, the single-view network is in charge of predicting 32 occupancy in a voxel grid given one drawing as input. Then, the 33 updater network refines this prediction by taking another draw-34 ing as input. When multiple drawings are available, the updater 35 network is applied iteratively over the sequence of drawings to 36 achieve a multi-view coherent reconstruction. Both networks fol-37 low a standard U-Net architecture [25] where the drawing is pro-38 cessed by a series of convolution, non-linearity and down-scaling 39 operations before being expanded back to a voxel grid, while 40 skip-connections propagate information at multiple scales. This 41 method produces a voxel grid of resolution 64 3 from drawings of 42 resolution 256 2 .

43 4 .

 4 2. Normal prediction 44 We obtain our normal prediction using a U-Net similar to the 45 one we use for volumetric prediction. The network takes as in-46 put a drawing of resolution 256 2 and predicts a normal map of the same resolution. Lun et al. [2] and Su et al.

Figure 3

 3 Figure3compares the surface reconstructions obtained with 46 different sources of normal guidance, and different strategies of 47 normal fusion. We color surfaces according to their orientations, 48 as shown by the sphere in inset. As a baseline, we first extract the 49 surface best aligned with the gradient of the volumetric predic-50 tion, similarly to prior work[START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF]. Because the volumetric predic-51 tion is noisy and of low resolution, this naive approach produces 52 bumpy surfaces that lack sharp features (second column). Op-53 timizing the normal field according to the Ambrosio-Tortorelli 54 energy removes some of the bumps, but still produces rounded 55 corners (third column). Aggregating the volumetric and image-56 based normals into a single normal field produces smoother sur-57 faces, but yield bevels where the normal maps are misaligned 58 (fourth and fifth column). We improve results by weighting the 59 aggregated normal field according to its confidence, which gives 60 the Ambrosio-Tortorelli energy greater freedom to locate surface 61 discontinuities in ambiguous areas (last column).

Figure 5 Figure 4 :

 54 Figure 5 compares our surfaces with the ones obtained by Delanoy et al.[START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF], who apply a marching cube algorithm on the volumetric prediction. Our method produces much smoother surfaces while capturing sharper discontinuities. While our method benefits from the guidance of the predicted normal maps, it remains robust to inconsistencies between these maps and the voxel

Figure 5 :

 5 Figure 5: Comparison to Delanoy et al.[START_REF] Delanoy | 2 A. 3d sketching using multi-view deep volumetric predic-3 tion[END_REF] on a variety of objects. Applying marching cube on the volumetric prediction results in noisy surfaces that lack sharp discontinuities (second column). Denoising these surfaces with L0 minimization[START_REF] He | Mesh denoising via l 0 minimization[END_REF] introduces spurious discontinuities as curved patches are approximated by planes (third column). Guided denoising[START_REF] Zhang | Guided mesh normal filtering[END_REF] produces piecewise-smooth surfaces closer to ours (fourth column) but maintains low-frequency noise and tends to misplace discontinuities, like on the arm of the armchair (second row) or on the wings and front of the airplane (fourth row). Our formulation based on the Ambrosio-Tortorelli energy can be seen as a form of guided filtering that benefits from extra guidance from the predicted normal maps (fifth column). We included close-ups on the input drawings and output surfaces to show that our method better captures the intended shape.

Figure 6 :

 6 Figure 6: Robustness to noisy volumetric prediction. Adding gaussian noise to the input volumetric prediction has little impact on the final result.

Figure 8

 8 Figure 8 illustrates typical limitations of our approach. Since our method relies on normal maps to guide the surface reconstruction, it sometimes misses surface discontinuities between co-planar surfaces, as shown on the top of the locomotive. An additional drawing would be needed in this example to show the discontinuity from bellow. A side effect of the surface optimization energy is to induce a slight loss of volume, which is especially visible on thin structures like the wings of the airplane and the toothbrush. Possible solutions to this issue includes iterating between regularizing the surface and restoring volume by moving each vertex in its normal direction. Another limitation of our approach is that normal maps only help recovering fine details on

Figure 7 :

 7 Figure 7: Robustness to misaligned normal maps. Here we simulate global misalignment by shifting an entire normal map by the same amount (second row) or by shifting each normal by a random amount (third row). While these perturbations degrades the result of the baseline methods, our method remains stable.

  On the one hand, per-sketch normal maps provide 37 high-resolution details about the shape, while on the other hand, 38 the voxel grid provides an estimate of the complete shape as well 39 as a support surface for normal fusion. By casting normal fusion 40 as the reconstruction of a piecewise-smooth normal field over the 41 voxel surface, our method alleviates the need for precise align-42 ment of the normal maps.

	combines the strength of both voxel-based and image-based rep-36
	resentations.
	3 , which is too little to
	accurately capture sharp features. Alternatively, Su et al. [4] and
	Li et al. [3] propose encoder-decoder networks to predict normal
	and depth maps respectively. While these maps only represent
	the geometry visible in the input drawing, Li et al. allow users
	to draw the object from several viewpoints and fuse the result-
	ing depth maps to obtain a complete object. A similar image-
	based representation has been proposed by Lun et al. [2], who
	designed a deep network to predict depth maps from 16 view-
	points, given one to three drawings as input. In both cases, fus-
	ing the multiple depth maps requires careful point set registration
	and optimization to compensate for misalignment. Our approach
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