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WEAK AND APPROXIMATE CURVATURES OF A MEASURE:

A VARIFOLD PERSPECTIVE

BLANCHE BUET, GIAN PAOLO LEONARDI, AND SIMON MASNOU

Abstract. By revisiting the notion of generalized second fundamental form originally introduced
by Hutchinson for a special class of integral varifolds, we define a weak curvature tensor that is
particularly well-suited for being extended to general varifolds of any dimension and codimension
through regularization. The resulting approximate second fundamental forms are defined not only
for piecewise-smooth surfaces, but also for datasets of very general type (like, e.g., point clouds).
We obtain explicitly computable formulas for both weak and approximate curvature tensors, we
exhibit structural properties and prove convergence results, and lastly we provide some numerical
tests on point clouds that confirm the generality and effectiveness of our approach.

Introduction

The aim of this paper is to present a new approach for the computation of second-order extrinsic
properties (curvatures) for a very general class of geometric objects, including both smooth or
piecewise smooth d-submanifolds and discrete datasets in the Euclidean n-space. The proposed
framework and toolbox rely on a suitable extension of the classical theory of varifolds, as we shall
describe later on.

The generality and potentialities of our method can be mostly appreciated on unstructured
datasets, like point clouds, for which the determination of curvatures is a very important but
extremely delicate task. Indeed, the need of efficient and robust techniques for the analysis of
geometric features of general datasets is today of primary importance, due to the variety of both
data sources and applications of data analysis, in particular in high dimensions. Among the most
common techniques used to measure curvatures of unstructured data, we mention the Moving
Least Squares (MLS) algorithm, that is based on the reconstruction of a local, implicit surface
from the dataset, from which first- and second-order differential properties can be recovered (see
[AK04, Lev98, YQ07]). Other quite popular methods rely on integral geometry, and in particular
on the connection between curvatures and the local expansion of volumes and of covariance-type
quantities (see [CLL14] and [MOG11]). These methods can be used as well for estimating the
curvatures of structured data, typically triangle meshes, a problem which has motivated a large
number of contributions. An exhaustive description of this literature is far beyond the scope of this
paper, the interested reader may refer to [NR17] and the references therein. In comparison with the
various approaches that have been proposed so far for defining and estimating curvatures, we believe
that our framework combines two nice properties: it can handle a large category of unsmooth and
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unstructured data with good consistency and convergence properties, and it is very well suited
for numerical purposes. This latter property is a major advantage over other weak notions of
curvatures, as those developed in metric measure spaces like Menger’s, Wald’s or Finsler-Haantjes’
curvatures (see [NR17]) whose numerical approximation is complicated or, at least, computationally
expensive.

Our framework is based on the notion of varifold (see below), a classical tool in geometric measure
theory. Surprisingly, the representation and analysis of discrete surfaces has rarely taken advantage
of the tools and techniques developed in geometric measure theory. A remarkable exception is the
theory of normal cycles (a generalization of unit normal bundles [Win82, Fu93, Zäh86]) that has
been recently adapted to the reconstruction of curvatures from offsets of distance-like functions
associated with datasets (see [CCLT09, CSM06, Mor08]).

The theory of varifolds. Varifolds represent very natural generalizations of classical d-surfaces, as
they encode, loosely speaking, a joint distribution of mass and tangents. More technically, varifolds
are Radon measures defined on the Grassmann bundle Rn × Gd,n whose elements are pairs (x, S)
specifying a position in space and an unoriented d-plane. Varifolds have been proposed more than
50 years ago by Almgren [Alm65] as a mathematical model for soap films, bubble clusters, crystals,
and grain boundaries. After Allard’s fundamental work [All72], they have been successfully used in
the context of Geometric Measure Theory, Geometric Analysis, and Calculus of Variations. Among
those, Almgren–Pitts min–max theory (see [CDL03] for a survey) has fundamental consequences,
from existence of smooth embedded minimal hypersurfaces in a given compact Riemannian manifold
[Pit81] to the recent proof of Willmore’s conjecture [MN14]. Another successful application of
varifolds resulted in the definition and study of a general weak mean curvature flow in [Bra78],
which allowed to prove existence of mean curvature evolution with singularities in [KT15]. Beyond
the theory of rectifiable varifolds, the flexibility of the varifold structure has proven to be relevant
to model diffuse interfaces, e.g., phase field approximations, and took for instance a crucial part in
the proof of the convergence of the Allen-Cahn equation to Brakke’s mean curvature flow [Ilm93,
Ton03, TT16], or in the proof of the Γ–convergence of Cahn-Hilliard type energies to the Willmore
energy (up to an additional perimeter term) [RS06]. In all these contributions a key element is the
possibility to use second-order properties of varifolds associated with either nicely diffuse or fairly
well concentrated (rectifiable) measures. The notion of approximate curvature tensors proposed
in our paper opens new perspectives for calculating second-order properties associated with any
varifold.

Within the classical theory of varifolds, a generalized notion of curvature is encoded in the
first variation operator, see [All72, All75, Sim83]. The first variation δV of a varifold V is a
vector–valued distribution of order 1, i.e., a linear and continuous functional defined on compactly
supported vector fields of class C1. Given a vector field Y , the first variation of V applied to Y
equals the derivative of the mass of the varifold obtained by transforming (push-forwarding) V
through the one-parameter flow generated by Y (see Section 1). Note that such a derivative, in
the case of a smooth d-surface M without boundary, can be obtained by integrating (minus) the
scalar product between the mean curvature vector HM and the vector field Y on M . The so–called
Allard varifolds, i.e., varifolds whose first variation is a Radon measure, constitute a very important
class of measures. In particular, the generalized mean curvature HV of an Allard varifold V can be
defined as the vector–valued density of δV with respect to the mass (or weight) measure ‖V ‖. We
mention that, as a key ingredient of the direct method of the Calculus of Variations, a regularity
theory is available for varifolds with generalized mean curvature in Lp for p > d (see [All72]). With
less integrability, weak regularity results still hold: all integral varifolds with locally bounded first
variation are uniformly rectifiable [Luc08] and C2-rectifiable [Men13]. Let us also mention the
extension of Allard’s regularity theory to the anisotropic setting recently achieved in [DPDRG16].
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More than a decade after Allard’s work, a theory of curvature varifolds was proposed by Hutchin-
son [Hut86b, Hut86a]. This theory provides a notion of generalized second fundamental form, to-
gether with existence and regularity results for solutions to variational problems involving curvature–
dependent functionals. As a matter of fact, if Almgren-Allard’s theory of varifolds has been mostly
known and used by specialists of Geometric Measure Theory, Geometric Analysis, and Calculus of
Variations, it seems that an even smaller community of mathematicians has been aware of Hutchin-
son’s theory of curvature varifolds. Among the most noticeable works that refer to this theory, or
make some use of it, we recall the extension to curvature varifolds with boundary [Man96] and
the recent reformulation and extension [Men16, MS18], plus several works on the minimization of
curvature-dependent energies [Bel97, Mon10, KMS14], on the relaxation of elastica and Willmore
functionals [BM10, BM07], on some applications to mechanics [GMMM09], or on geometric flows
arising from cosmology [HI01]. Other closely related works are [AST90, Del00, Del97, DS95] on
the theory of generalized Gauss graphs, and [AGP98] on a comparison between curvature varifolds
and measures arising as limits of suitable classes of multiple–valued functions.

As we already pointed out in our previous work [BLM17], the theory of varifolds has seen no
substantial applications in the fields of applied mathematics. A possible explanation is that some
key tools, like the first variation operator, are not directly applicable to general varifolds, and in
particular to varifolds arising from discrete datasets. For example, the first variation of a point cloud
varifold is not a measure, but only a distribution resulting from a directional / tangential derivative
of a finite sum of weighted Dirac’s deltas (see Section 2). Therefore, the standard first variation of
a point cloud varifold does not directly provide any consistent notion of (mean) curvature for that
kind of dataset.

Weak and approximate curvature tensors. In [BLM17] we showed how to define consistent
notions of approximate mean curvature for any varifold, including those of discrete type, and we
proved a series of results that opened the way for a systematic application of the (extended) theory
of varifolds in the context of discrete and computational geometry. Here, our main objective is
to push forward our previous work in the direction of a general theory of approximate curvature
tensors, to be made available for the whole class of varifold measures.

In respect of this objective, a very natural idea would be to apply the same regularization scheme
as in [BLM17] to Hutchinson’s generalized curvature tensor. However, this is not possible without
a suitable revision of Hutchinson’s theory itself. The fact that Hutchinson’s generalized curvature
tensor is not defined as a distribution of order 1 (see formula (4.2)) is the main, structural ob-
struction to a direct application of our regularization technique. By taking a closer look to the
definition of curvature tensor given by Hutchinson (see also Section 4), one can easily realize that
the constraints imposed on the curvature tensor by general test functions ϕ(x, S) – specifically,
by those that are nonlinear with respect to the Grassmannian variable S – make Hutchinson’s
notion extremely rigid, in the sense that every blow-up of an integral varifold admitting general-
ized curvatures in Lploc(‖V ‖), with p > d, necessarily consists of a finite union of d-planes with
multiplicities.

In order to overcome the structural obstruction mentioned above, we need to modify Hutchinson’s
definition of generalized curvature tensor in order to obtain less rigid, but at the same time fully
consistent notions of weak curvatures. To this aim, we introduce in Section 3 a suitable family
of variation operators (the G-linear variations, see Definition 3.1) and obtain from them a weak
second fundamental form (WSFF, see Definition 3.5). The path we follow is similar to the standard
one that, starting from the first variation δV , leads to the generalized mean curvature HV . Our
WSFF can be considered in some sense a core distributional notion extracted from Hutchinson’s
original definition. We refer the interested reader to Section 4 for a thorough comparison between
Hutchinson’s tensor and our WSFF. As explained in Section 3, a net advantage of the WSFF
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with respect to Hutchinson’s tensor is that it only depends on the space variable x and can be
directly computed from the G-linear variations through explicit formulae. As far as we know, these
formulae are new and provide the basis for the definition of explicitly computable approximate
second fundamental forms. and contained in a neighborhood of x Let us note that the mean
curvature vector is orthogonal to the tangent plane for a smooth submanifold as well as for an
integral varifold, at least almost everywhere ([Bra78]) and consequently there is some margin in
the definition of a weak second fundamental form consistent for regular varifolds. This observation
allows to define a consistent variant of the WSFF, the orthogonal weak second fundamental form
denoted by WSFF⊥ (see Definition 3.7), that both enforces the structural properties (3.10) (which
are satisfied by the second fundamental form of any smooth d-surface) and gives a better rate of
convergence after regularization (see Theorem 6.11).

In Section 6 we apply the regularization technique of [BLM17] to the WSFF (as well as to its
variant WSFF⊥) and obtain corresponding notions of approximate second fundamental form for
general varifolds (ε-WSFF or ε-WSFF⊥, where ε > 0 is a parameter that controls the approximation
scale, see Definitions 6.5 and 6.9). The convergence properties of these approximate curvature
tensors are then analyzed in the last part of the section, resulting in Theorem 6.8 and 6.11. We
insist that those results are convergence and not only consistency results, in the sense that they
compare the approximate second fundamental forms of a sequence of varifolds with the second
fundamental form of its weak-∗ limit.

Finally, in Section 7 we show some numerical results on point clouds that illustrate the robustness
of the method. In particular, some examples of 2-dimensional point clouds in R3 are considered. For
them, we compute the approximate principal curvatures also in presence of noise and singularities.

In conclusion, the approximate second fundamental form ε-WSFF (as well as its orthogonal
variant ε-WSFF⊥) constitutes a general, robust, and easily-computable tool for extracting local
curvature information from very general geometric objects. Several possible applications as well
as future research directions can be thus envisaged. Some of them are (1) the development of a
theory of discrete geometric evolutions (e.g., the discrete mean curvature flow) for point clouds with
application to either shape smoothing and segmentation, or to the study of interfaces in systems
of microscopic particles (see the context in [Spo93]); (2) the use of curvature estimators for data
analysis and classification; (3) the determination of intrinsic properties of unstructured datasets
(like the density of a point cloud, or the second-order derivatives of functions in grid-free numerical
methods) via curvature–related properties.

1. Preliminaries

Notations. In what follows, N and R denote, respectively, the set of natural and of real numbers.
Given n ∈ N, n ≥ 1, x ∈ Rn and r > 0, we denote by (e1, . . . , en) the canonical basis of Rn, |x| the
Euclidean norm of x and set Br(x) = {y ∈ Rn : |y − x| < r}. If B is an open set, writing A ⊂⊂ B
means that A is a relatively compact subset of B. We define the δ-tubular neighborhood of a set
A ⊂ Rn as

Aδ =
⋃
x∈A

Bδ(x) = {y ∈ Rn | d(y,A) < δ}.

Ln denotes the n–dimensional Lebesgue measure and ωn = Ln(B1(0)). Given a metric space (X, δ)
and a function f : X → R, we denote by lip(f) the Lipschitz constant of f . Then, LipL(X) denotes
the space of real–valued Lipschitz functions f defined on X and such that lip(f) ≤ L. Mloc(X)m

is the space of Rm–valued Radon measures and M(X)m is the space of Rm–valued finite Radon
measures on the metric space (X, δ). We denote by |µ| the total variation of a measure µ and sptµ
the support of µ. We refer for instance to [AFP00] for basic definitions concerning Radon measures.

From now on, we fix d, n ∈ N with 1 ≤ d ≤ n. By Ω ⊂ Rn we shall always denote an
open set. The d–dimensional Hausdorff measure in Rn is denoted by Hd. We let Gd,n be the

4



Grassmannian manifold of unoriented d-dimensional vector subspaces of Rn. We recall that a d-
dimensional subspace T of Rn is equivalently represented by the orthogonal projection onto T ,
denoted as ΠT (or simply T when there is no possible confusion). Gd,n is equipped with the metric
d(T, P ) = ‖ΠT − ΠP ‖, where ‖ · ‖ denotes the operator norm on the space L(Rn;Rn) of linear
endomorphisms of Rn. We will usually write ‖T − P‖ instead of ‖ΠT − ΠP ‖. Other norms on
vectors and matrices will be used in the sequel, like the `∞ norm defined as |v|∞ = maxj |vj | when
v is a vector of Rn, or |M |∞ = maxi,j |Mij | if M is a matrix with real coefficients.

Given a continuous Rm–valued function f defined in Ω, its support spt f is the closure in Ω of
{y ∈ Ω | f(y) 6= 0}. C0

o(Ω) is the closure of C0
c(Ω) in C0(Ω) with respect to the norm ‖u‖∞ =

supx∈Ω |u(x)|. Given k ∈ N, Ck
c (Ω) is the space of real–valued functions of class Ck with compact

support in Ω. C0,1(R) and C1,1(R) denote, respectively, the space of Lipschitz functions and the
space of functions of class C1 with Lipschitz continuous derivative on R. On such spaces we shall
consider the norms ‖u‖1,∞ = ‖u‖∞ + lip(u) and ‖u‖2,∞ = ‖u‖∞ + ‖u′‖1,∞, respectively.

Given f ∈ C1(Ω), X ∈ C1(Ω,Rn) and S ∈ Gd,n, we define for x ∈ Ω, the S–gradient of f at x as
well as the S–divergence of X at x as

∇Sf(x) = ΠS∇f(x) and

{
divSX(x) =

∑n
i=1DX(x)τi · τi,

(τ1, . . . , τd) orthonormal basis of S ∈ Gd,n
.

Notice that if M ⊂ Ω is a d–submanifold, those notations are shortened in the classical ones
∇Mf(x) = ∇TxMf(x) and divMX(x) = divTxMX(x). In the case where f ∈ C1(M), ∇Mf(x) is

the usual tangential gradient of f at x ∈M that can be defined as ∇M f̃(x) for f̃ a C1 extension of
f in a neighborhood of x, note that such an extension of f can always be defined and the resulting
gradient ∇M f̃(x) does not depend on the chosen extension f̃ so that ∇Mf(x) is well-defined.

Second fundamental form: the classical case. For the sake of clarity, and in order to fix
further notations that will be used in the next sections, we recall the essential definitions and
facts about the classical second fundamental form. In view of the generalized notions that will be
introduced below, we closely follow the notation of [Hut86b]. We consider a smooth d-dimensional
submanifold M of Rn with the standard induced metric. Given x ∈ M , we denote by P (x) the
orthogonal projection onto the tangent space TxM ; such a projection is represented by the matrix
Pij(x) with respect to the standard basis of Rn. The usual covariant derivative in Rn is denoted
by D. Assuming x ∈ M fixed, and given a vector V ∈ TxRn = Rn, we let V T = P (x)V and
V ⊥ = V − V T .

We denote by, respectively, TM and (TM)⊥ the tangential and the normal bundle associated
with M , so that we have the splitting TM ⊕ (TM)⊥ = TRn.

We can now introduce the classical, second fundamental form of M , as the bilinear and symmetric
map II : TM × TM → TM⊥ defined as

II(U, V ) = (DUV )⊥ .

For technical reasons it is convenient to consider the extended second fundamental form of M ,
which is defined as B(U, V ) = II(UT , V T ) for all U, V ∈ TRn. Therefore we have that the map
B : TRn × TRn → TRn fully encodes the second fundamental form. We set

(1.1) Bk
ij = B(ei, ej) · ek ,

where {ei : i = 1, . . . , n} is the canonical basis of TRn ' Rn. It is easy to check that the coefficient
set {Bk

ij : i, j, k = 1, . . . , n} uniquely identifies B.
We now present an equivalent way of defining the extended second fundamental form by com-

puting tangential derivatives of the orthogonal projection P (x) onto the tangent space to M at x.
More precisely, let us set

(1.2) Aijk(x) = ∇MPjk(x) · ei
5



whenever x ∈ M and i, j, k = 1, . . . , n. It is not difficult to check (see Proposition 5.1.1(ii) in
[Hut86b]) that

(1.3) Aijk = Bk
ij +Bj

ik

and, reciprocally,

(1.4) Bk
ij =

1

2
(Aijk +Ajik −Akij) ,

see also Proposition 3.6 for a proof of these identities. We note for future reference the symmetry
properties Aijk = Aikj and Bk

ij = Bk
ji. The symmetry of Aijk follows from Pjk = Pkj . The

symmetry of Bk
ij relies upon the well-known identity (DUV )⊥ = (DV U)⊥, which follows from the

fact that the Levi-Civita connection D is torsion–free.

Remark 1.1. We point out that the second fundamental form II, as well as the tensors B = (Bk
ij)

and A = (Aijk), can be defined in the present setting of submanifolds of Rn without referring to
covariant derivative and Levi-Civita connection. It is indeed possible to follow [Sim83, chapter 2 -
§ 4] and define the second fundamental form at x, IIx : TxM × TxM → (TxM)⊥ by

IIx(u, v) = −
n−d∑
l=1

(
dMx ν

l(u) · v
)
νl

where y ∈M 7→ (ν1(y), . . . , νn−d(y)) is a smooth orthonormal basis of the normal space defined in
a neighborhood of x and dMx ν

l : TxM → Rn is the differential of νl at x.

Let us now recall the classical divergence theorem on M . Given a smooth vector field X with
compact support on an open neighborhood of M , we have

(1.5)

ˆ
M

divM (PX) dHd =

ˆ
∂M

X · η dHd−1 ,

where η is the outward pointing conormal to ∂M .
Let us now consider vector fields of the form X = Xijk(x) = ϕ(x)Pjk(x)ei, with ϕ ∈ C1

c(Rn).

Recalling that Aijk(x) = ∇MPjk(x) · ei, from (1.5) we obtain the identityˆ
M
Pjk∇Mϕ · ei dHd = −

ˆ
M
ϕ
(
Aijk + Pjk

∑
q

Aqiq

)
dHd +

ˆ
∂M

ϕPjk(η · ei) dHd−1 ,(1.6)

for every i, j, k = 1, . . . , n. It is worth noticing that∑
q

Aqiq(x) = H(x) · ei ,

where H(x) denotes the mean curvature vector of M at x. We shall see in Section 3 that formula
(1.6) can be used to define the curvature tensor A = {Aijk} in a weak sense.

2. Varifolds

Here we briefly recall the main definitions and some basic facts about varifolds, and refer the
interested reader to [Sim83] for more details.

Definition 2.1 (General d–varifold). Let Ω ⊂ Rn be an open set. A d–varifold in Ω is a non-
negative Radon measure on Ω×Gd,n.

An important class of varifolds is represented by the so-called rectifiable varifolds that are natu-
rally associated with rectifiable sets.
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Definition 2.2 (Rectifiable sets). A set M ⊂ Rn is said to be countably d–rectifiable if there exist
a Hd–negligible set M0 ⊂ Rn and a family of Lipschitz functions Fj : Rd → Rn, j ∈ N, satisfying

M ⊂M0 ∪
⋃
j∈N

Fj(Rd) .

Definition 2.3 (Rectifiable d–varifold). Given an open set Ω ⊂ Rn, let M ⊂ Ω be a countably
d–rectifiable set and θ be a non negative function with θ > 0 Hd–almost everywhere in M . A
rectifiable d–varifold V = v(M, θ) in Ω is a non-negative Radon measure on Ω × Gd,n of the form

V = θHd|M ⊗ δTxM i.e.ˆ
Ω×Gd,n

ϕ(x, T ) dV (x, T ) =

ˆ
M
ϕ(x, TxM) θ(x) dHd(x) ∀ϕ ∈ C0

c(Ω×Gd,n,R)

where TxM is the approximate tangent space at x which exists Hd–almost everywhere in M . The
function θ is called the multiplicity of the rectifiable varifold. If additionally θ(x) ∈ N forHd–almost
every x ∈M , we say that V is an integral varifold.

In [BLM17] we considered discrete varifolds (i.e., varifolds that are defined by a finite set of real
parameters) as a relevant class of varifolds associated with discrete geometric data. Among them,
an important subclass is that of point cloud varifolds.

Definition 2.4 (Point cloud varifold). Let {(xi, Pi,mi)}i=1...N ⊂ Rn be a finite set of triplets,
where xi ∈ Rn, Pi ∈ Gd,n, and mi ∈ (0,+∞) for all i. We associate with this set of triplets the
point cloud d–varifold

V pc =
N∑
i=1

mi δxi ⊗ δPi .

Note that a point cloud varifold is a d–varifold even though it is not d–rectifiable as its support
is zero-dimensional.

Definition 2.5 (Mass). The mass of a general varifold V is the positive Radon measure defined
by ‖V ‖(B) = V (π−1(B)) for every B ⊂ Ω Borel, with π : Ω × Gd,n → Ω defined by π(x, S) = x.

For example, the mass of a d–rectifiable varifold V = v(M, θ) is the measure ‖V ‖ = θHd|M , while

the mass of a point cloud d–varifold is the measure ‖V pc‖ =
∑N

i=1miδxi .

The following result is proved via a standard disintegration of the measure V in terms of its
mass ‖V ‖ (see [AFP00] 2.28-29 for the general disintegration result or [MS18, 4.1] for the case of
varifolds).

Proposition 2.6 (Young-measure representation). Given a d–varifold V on Ω, there exists a family
of probability measures {νx}x on Gd,n defined for ‖V ‖-almost all x ∈ Ω, such that V = ‖V ‖⊗{νx}x,
that is,

V (ϕ) =

ˆ
x∈Ω

ˆ
S∈Gd,n

ϕ(x, S) dνx(S) d‖V ‖(x)

for all ϕ ∈ C0
c(Ω×Gd,n).

As varifolds are Radon measures, a natural notion of convergence is given by the so called weak–∗
convergence:

Definition 2.7 (Convergence of varifolds). A sequence of d–varifolds (Vi)i weakly–∗ converges to
a d–varifold V in Ω if, for all ϕ ∈ C0

c(Ω×Gd,n),

〈Vi, ϕ〉 =

ˆ
Ω×Gd,n

ϕ(x, P ) dVi(x, P ) −−−→
i→∞

〈V, ϕ〉 =

ˆ
Ω×Gd,n

ϕ(x, P ) dV (x, P ) .
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We now recall the definition of Bounded Lipschitz distance between two Radon measures. It
is also called flat metric and can be seen as a modified 1–Wasserstein distance which allows the
comparison of measures with different masses (see [Vil09], [PR14]). In contrast, the 1–Wasserstein
distance between two measures with different masses is infinite.

Definition 2.8 (Bounded Lipschitz distance). Being µ and ν two Radon measures on a locally
compact metric space (X, d), we define

∆(µ, ν) = sup

{∣∣∣∣ˆ
X
ϕdµ−

ˆ
X
ϕdν

∣∣∣∣ : ϕ ∈ Lip1(X), ‖ϕ‖∞ ≤ 1

}
.

It is well-known that ∆(µ, ν) defines a distance on the space of Radon measures on X, called the
Bounded Lipschitz distance.

Hereafter we introduce some special notation for the ∆ distance between varifolds.

Definition 2.9. Let Ω ⊂ Rn be an open set and let V,W be two d–varifolds on Ω. For any open
set U ⊂ Ω we define

∆U (V,W ) = sup

{∣∣∣∣∣
ˆ

Ω×Gd,n
ϕdV −

ˆ
Ω×Gd,n

ϕdW

∣∣∣∣∣ :
ϕ ∈ Lip1(Ω×Gd,n), ‖ϕ‖∞ ≤ 1
and sptϕ ⊂ U ×Gd,n

}
and

∆U (‖V ‖, ‖W‖) = sup

{∣∣∣∣ˆ
Ω
ϕd‖V ‖ −

ˆ
Ω
ϕd‖W‖

∣∣∣∣ :
ϕ ∈ Lip1(Ω), ‖ϕ‖∞ ≤ 1
and sptϕ ⊂ U

}
.

We shall often drop the subscript when U = Ω, that is we set

∆(V,W ) = ∆Ω(V,W ) and ∆(‖V ‖, ‖W‖) = ∆Ω(‖V ‖, ‖W‖) ,
thus making the dependence upon the domain implicit whenever this does not create any confusion.

The following fact is well-known (see [Vil09, Bog07]).

Proposition 2.10. Let µ, (µi)i, i ∈ N, be Radon measures on a locally compact and separable
metric space (X, δ). Assume that µ(X) + supi µi(X) < +∞ and that there exists a compact set

K ⊂ X such that the supports of µ and of µi are contained in K for all i ∈ N. Then µi
∗−⇀ µ if

and only if ∆(µi, µ)→ 0 as i→∞.

Let us eventually introduce the following linear form that encodes a generalized notion of mean
curvature.

Definition 2.11 (First variation of a varifold, [All72]). The first variation of a d–varifold in Ω ⊂ Rn
is the vector–valued distribution (of order 1) defined for any vector field X ∈ C1

c(Ω,Rn) as

δV (X) =

ˆ
Ω×Gd,n

divSX(x) dV (x, S) .

Remark 2.12. It is convenient to define the action of δV on a function ϕ ∈ C1
c (Ω) as the vector

δV (ϕ) =
(
δV (ϕe1), . . . , δV (ϕen)

)
=

ˆ
Ω×Gd,n

∇Sϕ(x) dV (x, S) .

We also notice that δV (X) is well-defined whenever X is a Lipschitz vector field such that the
measure ‖V ‖ of the set of non-differentiability points for X is zero.

The definition of first variation can be motivated as follows. Let ϕXt be the one-parameter group
of diffeomorphisms generated by the flow of the vector field X. Let ΦX

t be the mapping defined on
Rn ×Gd,n as

ΦX
t (x, S) = (ϕXt (x), dϕXt (S)) .

8



Set Vt as the push–forward of the varifold measure V by the mapping ΦX
t , that is,

Vt(ϕ) =

ˆ
ϕ(ΦX

t (x, S)) JSϕXt (x) dV (x, S) ,

where JSϕXt (x) denotes the tangential Jacobian of ϕXt at x. Then, assuming spt(X) ⊂⊂ A for
some relatively compact open set A ⊂ Ω, one has the identity

δV (X) =
d

dt
‖Vt‖(A)|t=0 .

The linear functional δV is, by definition, continuous with respect to the C1-topology on C1
c (Ω,Rn),

however in general it is not continuous with respect to the C0
c topology. In the special case when

this is satisfied, that is, for any fixed compact set K ⊂ Ω there exists a constant cK > 0, such that
for any vector field X ∈ C1

c(Ω,Rn) with sptX ⊂ K, one has

|δV (X)| ≤ cK sup
K
|X| ,

we say that V has a locally bounded first variation. In this case, by Riesz Theorem, there exists a
vector–valued Radon measure on Ω (still denoted as δV ) such that

δV (X) =

ˆ
Ω
X · d δV for every X ∈ C0

c(Ω,Rn)

Thanks to Radon-Nikodym Theorem, we can decompose δV as

(2.1) δV = −H‖V ‖+ δVs ,

where H ∈
(
L1
loc(Ω, ‖V ‖)

)n
and δVs is singular with respect to ‖V ‖. The function H is called the

generalized mean curvature vector. By the divergence theorem, H coincides with the classical mean
curvature vector if V = v(M, 1), where M is a d-dimensional submanifold of class C2.

3. Weak Second Fundamental Form

The left-hand side of (1.6) motivates the following definition.

Definition 3.1 (G-linear variation). Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω.
We fix i, j, k ∈ {1, . . . , n} and define the distribution δijkV : C1

c(Ω)→ R as

δijkV (ϕ) =

ˆ
Ω×Gd,n

Sjk∇Sϕ(y) · ei dV (y, S) .

We say that δijkV is a G-linear variation (or, shortly, a variation) of V .

Definition 3.2 (Bounded variations). Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω.
We say that V has locally bounded variations if and only if for i, j, k = 1 . . . n, δijkV is a Radon
measure. In this case there exist βijk ∈ L1

loc(‖V ‖) and Radon measures (δijkV )s that are singular
w.r.t. ‖V ‖, such that

(3.1) δijkV = −βijk ‖V ‖+ (δijkV )s .

The proof of the following proposition is immediate.

Proposition 3.3. For any S ∈ Gd,n we have tr(S) = d and therefore

n∑
j=1

δijjV = d δV · ei , ∀ i = 1, . . . , n .

Hence, if V has locally bounded variations then in particular it has locally bounded first variation.
9



When M is a compact d–submanifold of class C2, and V = v(M, 1) is the associated varifold
with multiplicity 1, then we infer from (1.6) and (3.1) that

(3.2) βijk(x) = Aijk(x) + Pjk(x)
∑
q

Aqiq(x) and (δijkV )s = PjkηiHd−1
|∂M ,

for all x ∈M . Note that in this case we have

Pjk(x) =

ˆ
Gd,n

Sjk dνx(S) ,

where νx = δP (x). In Lemma 3.4 below we prove some crucial properties of the linear system

(3.3) Aijk(x) +

ˆ
Gd,n

Sjk dνx(S)
∑
q

Aqiq(x) = βijk(x) , i, j, k = 1, . . . , n ,

and in particular the fact that it completely characterizes the tensor A = {Aijk(x)}.

Lemma 3.4. Let c be a n × n positive semi-definite symmetric matrix and let b = (bijk) ∈ Rn3
.

Let us consider the set of n3 equations of unknowns (aijk)i,j,k=1...n

(3.4) aijk + cjk
∑
q

aqiq = bijk , for i, j, k = 1 . . . n ,

and let L be the n3 × n3 matrix associated with system (3.4). Then,

(1) the matrix L is invertible and det(L) = det(In + c),
(2) the unique solution of the system is

(3.5) aijk = bijk − cjk[(I + c)−1 h]i ,

where h = (h1, . . . , hn) is defined by hi :=
∑

q bqiq.

In particular, if c is an orthogonal projector of rank d or c =
´
Gd,n

S dν(S) for a probability measure

ν on Gd,n, then c is positive semidefinite and symmetric. Moreover, there exists a dimensional
constant C0 > 0 such that

(3.6) ‖(I + c)−1‖ ≤ C0 and sup
ijk
|aijk| ≤ C0 sup

ijk
|bijk| .

Proof. We first order the 3-tuples (i, j, k) in lexicographic order. Then, we note that, except for
the (l,m, l) columns/rows, every other column and row of L contains exactly one coefficient (the
diagonal one) which is equal to 1, while all the other coefficients are zero. Therefore one has
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det(L) = det(L′), where L′ is the following matrix:

111 121 . . . 1n1 212 222 . . . 2n2 . . . n1n n2n . . . nnn
111 1 + c11 0 0 c11 0 0 c11 0 0
121 c21 1 0 c21 0 0 c21 0 0

...
...

...
. . .

...
...

...
...

...
...

...
1n1 cn1 0 1 cn1 0 0 cn1 0 0
212 0 c12 0 1 c12 0 0 c12 0
222 0 c22 0 0 1 + c22 0 0 c22 0

...
...

...
...

...
...

. . .
...

...
...

...
2n2 0 cn2 0 0 cn2 1 0 cn2 0

...
...

...
...

...
...

...
...

...
...

n1n 0 0 c1n 0 0 c1n 1 0 c1n

n2n 0 0 c2n 0 0 c2n 0 1 c2n
...

...
...

...
...

...
...

...
...

. . .
...

nnn 0 0 cnn 0 0 cnn 0 0 1 + cnn

We then substract the n last columns (n1n, n2n, . . . , nnn) by block to the columns (l1l, l2l, . . . , lnl)
for l = 1 . . . n − 1. Then, the last columns are unchanged, and for l = 1 . . . n − 1, the columns
(l1l, l2l, . . . , lnl) are constituted of In on lines (l1l, l2l, . . . , lnl), −In on last lines (n1n, n2n, . . . , nnn)
and zeros elsewhere. Therefore, when adding by block to the last lines (n1n, n2n, . . . , nnn) the lines
(l1l, l2l, . . . , lnl) for l = 1 . . . n − 1, the determinant of L′ is equal to the determinant of an upper
triangular block-matrix, whose diagonal blocks are (In, In, . . . , In, In + c) and eventually

det(L) = det(In + c) .

The proof of the second assertion follows by plugging (3.5) into (3.4) and by using the matrix
identity

(I + c)−1 − I + c(I + c)−1 = 0 .

If now c =
´
S∈Gd,n S dν(S), then c is a symmetric matrix, and for every vector X ∈ Rn one has

cX ·X =

ˆ
S∈Gd,n

SX ·X︸ ︷︷ ︸
≥0

dν(S) ≥ 0 .

Moreover, if c is an orthogonal projector of rank d, then det(I+ c) = 2d (indeed, c is diagonalisable
with d eigenvalues equal to 1 and the remaining ones equal to 0) and if c =

´
S∈Gd,n S dν(S), then

by log–concavity of the determinant on the convex set of positive definite matrices, and by Jensen
inequality, one obtains

log(2d) =

ˆ
Gd,n

log (det(I + S)) dν(S) ≤ log

(
det
( ˆ

Gd,n

(I + S) dν(S)
))

= log (det(I + c)) ,

and thus det(I + c) ≥ 2d. Being S a projector, we have |Sjk| ≤ 1 and thus

|cjk| =

∣∣∣∣∣
ˆ
Gd,n

Sjk dνx(S)

∣∣∣∣∣ ≤
ˆ
Gd,n

|Sjk| dνx(S) ≤ 1 ,

therefore we obtain ‖I + c‖∞ ≤ 2. Moreover det(I + c) ≥ 2d, hence it is easy to bound ‖(I + c)−1‖
using the formula

(I + c)−1 =
1

det(I + c)
comatrix(I + c)T .
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This concludes the proof. �

We fix the notations we will stick to thereafter. For a d–varifold V = ‖V ‖ ⊗ νx with bounded

variations δijkV , we let βV =
(
βVijk

)
ijk

be such that δijkV = −βVijk ‖V ‖ + δijkVs. Then we set

cV =
´
S∈Gd,n S dνx(S), which is defined for ‖V ‖–almost every x. Applying Lemma 3.4 to the linear

system

(3.7) aijk + cVjk(x)
∑
l

alil = βVijk(x) , for i, j, k = 1 . . . n

we find that it admits a unique solution for ‖V ‖-almost every x. This motivates the following
definition.

Definition 3.5 (Weak second fundamental form). Let Ω ⊂ Rn be an open set and V be a d–
varifold in Ω with locally bounded variations. Given the tensor {βijk} from Definition 3.2 we call

weak second fundamental form the unique solution AV = {AVijk(·)} of (3.7). In particular, for all

i, j, k AVijk(·) ∈ L1
loc(‖V ‖) and

δijkV = −

(
AVijk(x) +

ˆ
Gd,n

Sjk dνx(S)
∑
q

AVqiq(x)

)
‖V ‖+ (δijkV )s.

In view of the classical notion of second fundamental form, we also define the tensor BV = {BV,k
ij }

as

(3.8) BV,k
ij =

1

2

(
AVijk +AVjik −AVkij

)
.

Calling AV a second fundamental form (instead of BV ) is a certain abuse of terminology. It is
actually very easy to switch between both tensors as the following result shows.

Proposition 3.6. The weak second fundamental form {BV,k
ij } defined in (3.8) is equivalently char-

acterized by

(3.9) AVijk = BV,k
ij +BV,j

ik and BV,k
ij = BV,k

ji for i, j, k = 1 . . . n .

Proof. Let us simplify the notation by setting Aijk = AVijk and Bk
ij = BV,k

ij . Assume first that Bk
ij

satisfies (3.9), so that

Aijk +Ajik = Bk
ij +Bj

ik +Bk
ji +Bi

jk = 2Bk
ij +Bj

ki +Bi
kj = 2Bk

ij +Akij

and this proves (3.8). Conversely, if {Bk
ij} satisfies (3.8), then by the symmetry property Aijk = Aikj

(following from cjk = ckj , δijkV = δikjV and thus βVijk = βVikj and the formula (3.5)) we obtain

Bk
ij = Bk

ji; moreover we have

Bk
ij +Bj

ik =
1

2
(Aijk +Ajik −Akij) +

1

2
(Aikj +Akij −Ajik) =

1

2
(Aijk +Aikj) = Aijk ,

so that Bk
ij satisfies (3.9). �

In the case of an integral varifold, Brakke has shown that the mean curvature vector is orthogonal
to the approximate tangent plane almost everywhere (see [Bra78]) and therefore, being cV the

orthogonal projector on the approximate tangent plane in this case, one has (I + cV )−1 = I − cV

2
and therefore

(3.10)
∑
q

AVq·q = HV and
∑
q

AV·qq = 0 .
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With this observation in force, we now introduce a modified version of weak second fundamental
form, that is denoted by WSFF⊥ and coincides with the WSFF whenever the varifold is integral
and has bounded variations (see Proposition 3.8). We will later show in Proposition 5.2 that this
orthogonal weak second fundamental form WSFF⊥ satisfies in addition the structural properties
(3.10).

Definition 3.7 (WSFF⊥, Orthogonal weak second fundamental form). Let Ω ⊂ Rn be an open set
and let V = ‖V ‖ ⊗ νx be a d–varifold in Ω with locally bounded variations. For ‖V ‖–almost every
x, we define

(3.11) βV,⊥ijk (x) = βVijk(x)− cVjk(x)

(
cV (x)

∑
q

βVq·q(x)

)
i

and AV,⊥ijk (x) as the solution to the linear system (3.4), with bijk = βV,⊥ijk (x) and cjk = cVjk(x). The

tensor AV,⊥ijk (x) will be then referred to as the orthogonal weak second fundamental form WSFF⊥ of
V .

Proposition 3.8. Let Ω ⊂ Rn be an open set and let V = v(M, θ) be an integral d–varifold in

Ω with bounded variations. Then, for Hd–almost every x, one has βV,⊥ijk (x) = βVijk(x), hence the

WSFF and WSFF⊥ coincide.

Proof. We know from Proposition 5.1 that
∑

q β
V
q·q = HV and by Brakke’s result ([Bra78]) we know

that the mean curvature vector of an integral varifold is orthogonal to the approximate tangent
plane almost everywhere. Therefore, for Hd–almost every x,

cV (x)
∑
q

βVq·q(x) = 0 ,

which together with (3.11) gives the conclusion. �

4. A comparison with Hutchinson’s Generalized Second Fundamental Form

In the previous section we have introduced the notion of weak second fundamental form (WSFF).
This notion corresponds to a modification of the generalized second fundamental form that was first
proposed and studied by Hutchinson in [Hut86b, Hut86a]. As we will explain later on, our WSFF
corrects some critical aspects that are present in Hutchinson’s definition, it is more consistent with
Allard’s definitions of first variation and of generalized mean curvature, and it is well-suited for
regularization and approximation, according to the scheme proposed in [BLM17].

In order to better motivate our WSFF, a comparison with Hutchinson’s generalized tensor is
necessary. We start recalling that Hutchinson’s tensor arises from the application of the tangential
divergence theorem (1.5) (M being a smooth d-submanifold of Rn) to vector fields of the form
Xi(x, S) = ϕ(x, S)ei, with ϕ ∈ C1

c(Ω × Mn(R)), Mn(R) being the space of real matrices of size
n× n and ei being the i-th vector of the canonical basis of Rn. Indeed, one obtains in this case an
identity similar to (1.6), that is,
(4.1)

−
ˆ
M
∇Mϕ(y, P (y)) ·ei dHd(y) =

ˆ
M

(
n∑

j,k=1

Aijk(y)D∗jkϕ(y, P (y))+ϕ(y, P (y))

n∑
q=1

Aqiq(y)

)
dHd(y)

where D∗jkϕ is the partial derivative of ϕ with respect to the variable Sjk, and ∇Mϕ is the tangential

gradient of ϕ(y, S) with respect to y. Here, M is assumed to be a d-submanifold of Rn without
boundary, and the projection onto its tangent plane at x is denoted by P (x) = (Pjk(x))jk.
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Extending this identity to the varifold setting led Hutchinson to Definition 4.1 below. Let us
point out that (4.1) holds true for submanifolds without boundary, therefore Definition 4.1 does
not take into account boundary terms. However, we recall that a notion of curvature varifold with
boundary has been studied in [Man96].

Definition 4.1 (Hutchinson’s Generalized Second Fundamental Form). Let Ω ⊂ Rn be an open set
and let V be an integral d–varifold in Ω. We say that V admits a generalized second fundamental
form in the sense of Hutchinson if there exists a family (Aijk)ijk=1...n ∈ L1(V ) such that for all

ϕ ∈ C1
c(Ω×Mn(R)),

(4.2)

ˆ
Ω×Gd,n

(
∇Sϕ(y, S) · ei +

n∑
j,k=1

D∗jkϕ(y, S)Aijk(y, S) + ϕ(y, S)
n∑
q=1

Aqiq(y, S)

)
dV (y, S) = 0 .

A first observation concerning Hutchinson’s tensor is that, in general, it may depend not only
on the spatial variable x, but also on the Grassmannian variable S. On the one hand, this seems
not fully consistent with the fact that Allard’s generalized mean curvature only depends on x. On
the other hand, Hutchinson himself implicitly shows in [Hut86b, Proposition 5.2.2] that his tensor
ultimately depends upon x - and not on S - as soon as the varifold is rectifiable.

A second observation is about the existence of the tensor as a distribution, which is a delicate
issue even if one restricts the analysis to integral varifolds. Here one finds a structural obstruction.
Indeed, due to the form of the middle term in the left-hand side of (4.2), where the jk-derivative of ϕ
multiplies Aijk, it is not possible to interpret the identity as a distributional definition of the tensor
A. However, we note that the class of test functions ensuring uniqueness of the tensor A is strictly
smaller than the class used in the definition of this tensor, see [Hut86b, Proposition 5.2.2]. To be
more specific, that definition uses test functions which are possibly nonlinear in the Grassmannian
variable, however linearity in the Grassmannian variable is enough to prove uniqueness. From this
observation we infer that Hutchinson’s definition contains a core distributional notion (the one
leading to our WSFF), plus extra constraints coming from test functions ϕ(x, S) that are nonlinear
in S, which make Hutchinson’s definition more rigid. As we have said in the introduction, this
rigidity affects the structure of the singularities of integral varifolds whose curvature tensor A is
bounded. Indeed, a non-quantitative version of Lemma 3.3 coupled with Corollary 3.5 in [Hut86a]
shows that an integral varifold V , with curvature tensor in Lploc for p > d, only admits blow-ups in
the form of finite unions of d-planes with multiplicities.

We now restrict our analysis to rectifiable varifolds, as actually done in [Hut86b]. We first prove
the following proposition.

Proposition 4.2 (WSFF versus Hutchinson’s tensor: the case of rectifiable varifolds). If a recti-
fiable varifold V in Rn admits a generalized second fundamental form in the sense of Hutchinson
(Definition 4.1), then it also admits a weak second fundamental form in the sense of Definition 3.5,
and the two tensors coincide ‖V ‖-almost everywhere.

Proof. Let V = v(M, θ) be a d–rectifiable varifold in Rn and let us denote, for ‖V ‖–almost every x,

by P (x) its approximate tangent plane at x. We assume that there exists Ãijk ∈ L1(Rn ×Gd,n, V )
sastisfying (4.2). Taking test functions of the form ψjk(x, S) = ϕ(x)Sjk, one has

D∗j′k′ψjk(x, S) =

{
1 if (j′, k′) = (j, k)
0 otherwise
14



By (4.2) we obtain that for all i, j, k = 1, . . . n and ϕ ∈ C1
c(Rn),

−
ˆ
Rn×Gd,n

Sjk∇Sϕ(x) · ei dV (x, S) =

ˆ
Rn×Gd,n

(
Ãijk(x, S) + Sjk

n∑
q=1

Ãqiq(x, S)

)
ϕ(x) dV (x, S)

=

ˆ
Rn

(
Ãijk(x, P (x)) + Pjk(x)

n∑
q=1

Ãqiq(x, P (x))

)
ϕ(x) d‖V ‖(x).

Therefore V has bounded variations δijkV (see Definition 3.1) with no singular part:

(4.3) δijkV = −βijk‖V ‖ with βijk(x) = Ãijk(x, P (x))+Pjk(x)
n∑
q=1

Ãqiq(x, P (x)) for ‖V ‖–a.e. x

Since V has bounded variations, it has also a WSFF (in the sense of Definition 3.5) that we denote

by AVijk. Then we infer from (4.3) that for ‖V ‖–a.e. x, Ãijk(x, P (x)) and AVijk(x) are both solutions

of the linear system (3.7), therefore they must coincide by uniqueness. �

Remark 4.3. In view of (4.1) and Hutchinson’s definition, an obvious consequence of the above
proposition is that our weak second fundamental form coincides with the classical second funda-
mental form whenever V = v(M, c) with M a smooth d–submanifold of Rn and c > 0 a constant.

Structural differences between the WSFF and Hutchinson’s generalized second fun-
damental form: a 1-dimensional example in the plane. We are now going to see that the
essential difference between our WSFF and Hutchinson’s tensor shows up in the structure of admis-
sible singularities of a curvature varifold. We remark that in [Hut86a] the following fact is shown:
if an integral varifold V admits a generalized second fundamental form in Lp for p > d, then
any tangent cone at every point of the support of ‖V ‖ consists of a finite union of d–planes with
constant integral multiplicities. This follows from a key monotonicity identity proved in [Hut86a,
Section 3.4]. In particular, a junction of half-lines, seen as a 1–varifold with multiplicity 1, is a
curvature varifold in Hutchinson’s sense if and only if it is a finite union of full lines. In the example
below, we compute our WSFF and Hutchinson’s tensor in the case of 9 half-lines issuing from the
origin through the vertices of a regular 9-gon, obtaining that the WSFF is identically zero, while
Hutchinson’s tensor is not globally defined.

Let us consider the rectifiable 1–varifold V associated with a union of N half lines (Dl)
N
l=1 joining

at 0, of constant multiplicity 1, and directed by a unit vector (ul)
N
l=1 ⊂ R2. On each half line Dl, the

projection matrix P l = (P ljk)jk onto the tangent line satisfies P ljk = (ul · ej)(ul · ek) for j, k = 1, 2.

Let us compute the G-linear variation δijkV , for ϕ ∈ C1
c(R2) and i, j, k = 1, 2:

δijkV (ϕ) =

N∑
l=1

ˆ
Dl

P ljk(∇ϕ · ul)(ul · ei) dH1 =

N∑
l=1

P ljk(ul · ei)
ˆ
Dl

(∇ϕ · ul) dH1

= −
N∑
l=1

P ljk(ul · ei)ϕ(0) = −
N∑
l=1

(ul · ei)(ul · ej)(ul · ek)δ0(ϕ).

Therefore V has bounded variations and

(4.4) δijkV = −
N∑
l=1

(ul · ei)(ul · ej)(ul · ek)δ0

is singular (or zero) with respect to ‖V ‖. In particular, contrarily to Hutchinson’s case, any such
junctions admit a WSFF. We then wonder if some of them have zero WSFF without being a union
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of lines. Hence, we study the case where the WSFF of the junction is identically zero. By (4.4),
this property is equivalent to the following 4 equations:

N∑
l=1

(ul · e1)3 = 0,

N∑
l=1

(ul · e2)3 = 0,

N∑
l=1

(ul · e1)2(ul · e2) = 0,

N∑
l=1

(ul · e1)(ul · e2)2 = 0.

As ul are unit vectors, it is also equivalent to

N∑
l=1

(ul · e1)3 = 0,
N∑
l=1

(ul · e2)3 = 0,
N∑
l=1

(ul · e1) = 0,
N∑
l=1

(ul · e2) = 0.

If ul = (cosαl, sinαl) for αl ∈]− π, π], we end up with the conditions

N∑
l=1

exp(iαl) = 0 and
N∑
l=1

exp(3iαl) = 0 .

By taking N = 9 and αl = 2lπ
N , we obtain a regular junction of 9 half–lines (which is not a union of

full lines), whose weak second fundamental form is identically zero. At the same time, Hutchinson’s
tensor cannot be globally defined, otherwise it should also be identically zero by Proposition 4.2,
and thus we would reach a contradiction with the admissible singularities of a varifold with zero
curvature (see [Hut86a, Corollary 3.5] and the discussion following Definition 4.1).

Remark 4.4 (Interpretation in terms of weak differentiability of the approximate tangent plane).
Theorem 15.6 of [Men16] states that an integral varifold is a curvature varifold in Hutchinson’s sense
if and only if δV is a Radon measure absolutely continuous with respect to ‖V ‖ and the approximate
tangent plane P (x) is a weakly V -differentiable function in the sense of [Men16, Definition 8.3].
Thanks to this characterization, in [MS18] the notion of curvature varifold is extended to diffuse-
type varifolds.

5. Properties of the weak second fundamental form

5.1. Structural properties. In the smooth case, the functions βVijk and AVijk satisfy some struc-
tural properties. We check in the next proposition which ones are still valid in our extended setting.

Proposition 5.1. Let Ω ⊂ Rn be an open set and V be a d–varifold in Ω with bounded variations.
Then, for all i, j, k = 1, . . . , n,

(1) δijkV = δikjV , βVijk = βVikj and AVijk = AVikj,

(2)
∑
q

βiqq = dHV
i and

∑
q

βVqiq = HV
i where HV = (HV

1 , . . . ,H
V
n ) = − δV

‖V ‖ is the generalized

mean curvature vector,

(3)
∑
q

AVq·q = (I + cV )−1HV and
∑
q

AV·qq = dcV (I + cV )−1HV .

Proof. The first assertion follows from Pjk = Pkj for every P ∈ Gd,n. In order to prove the second
assertion, for ϕ ∈ C1

c(Ω) we compute∑
q

δ·qqV (ϕ) =

ˆ
Ω×Gd,n

∑
q

Sqq︸ ︷︷ ︸
=d

∇Sϕ(y) dV (y, S) = dδV (ϕ)
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and ∑
q

δq·qV (ϕ) =

ˆ
Ω×Gd,n

∑
q

S·q
(
∇Sϕ(y)

)
q︸ ︷︷ ︸

= S∇Sϕ(y)

dV (y, S) =

ˆ
Ω×Gd,n

∇Sϕ(y) dV (y, S) = δV (ϕ) .

Consequently, we deduce that
∑

q δ·qqV = dδV and
∑

q δq·qV = δV . By taking the Radon-Nikodym

derivative with respect to ‖V ‖, the analogous equalities hold for βV and HV . The last assertions
are then direct consequences of formula (3.5):∑

q

AVq·q =
∑
q

(
βVq·q − c·q((I + c)−1HV )q

)
= HV − c(I + c)−1HV = (I + c)−1HV

and ∑
q

AV·qq =
∑
q

βV·qq −
∑
q

cqq(I + c)−1HV = dHV − d(I + c)−1HV = dc(I + c)−1HV .

�

We recall that the following identities were proved in Proposition 5.1:∑
q

AVq·q = (I + cV )−1HV and
∑
q

AV·qq = dcV (I + cV )−1HV .

Therefore, the identities

(5.1)
∑
q

AVq·q = HV and
∑
q

AV·qq = 0

are true for an integral varifold, but not for a general varifold. Owing to (I + cV )−1 = I − (I +
cV )−1cV , we get that (5.1) hold if and only if cVHV = 0. Nevertheless, in the following proposition

we show that the identities (5.1) are satisfied by AV,⊥ijk (see Definition 3.7).

Proposition 5.2. Let Ω ⊂ Rn be an open set and V be a d–varifold in Ω with bounded variations.
Then, ∑

q

AV,⊥q·q = HV,⊥ and
∑
q

AV,⊥·qq = 0 ,

where we have set HV,⊥ = (I − cV )HV .

Proof. Indeed, dropping the V –superscript for more simplicity, and recalling that
∑

q βq·q = H, we
have ∑

q

β⊥qiq =
∑
q

βqiq −
∑
q

ciq

(
c
∑
l

βl·l

)
q

=
∑
q

βqiq − c

(
c
∑
l

βl·l

)
i

= ((I − c2)H)i

and then,

A⊥ijk = β⊥ijk − cjk

(
(I + c)−1

∑
q

β⊥q·q

)
i

= βijk − cjk

(
c
∑
q

βq·q

)
i

− cjk
(
(I + c)−1(I − c2)H

)
i

= βijk − cjk (cH + (I − c)H)i
= βijk − cjkHi ,(5.2)
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We can now compute ∑
q

A⊥qiq =
∑
q

βqiq −
∑
q

ciqHq = Hi − (cH)i = H⊥i

and ∑
q

A⊥iqq =
∑
q

βiqq −
∑
q

cqqHi = dHi − dHi = 0 ,

as wanted. �

5.2. Convergence and compactness. We start with a direct consequence of Allard’s compact-
ness theorem, see also [BLM17].

Proposition 5.3. Let Ω ⊂ Rn be an open set and let (Vh)h be a sequence of d–varifolds in Ω, with
bounded variations. Assume that for i, j, k = 1 . . . n,

(5.3) sup
h
{‖Vh‖(Ω) + |δijkVh|(Ω)} < +∞ ,

then, there exists a subsequence (Vhl)l weakly–∗ converging to a d–varifold V with bounded variations
satisfying

|δijkV |(Ω) ≤ lim inf
l
|δijkVhl |(Ω) .

Moreover, if the Vh are integral varifolds, then V is integral.

Proof. Let (e1, . . . , en) be the canonical basis of Rn, then

δV =

n∑
i=1

n∑
j=1

δijjV ei .

Therefore (5.3) implies

sup
h
{‖Vh‖(Ω) + |δVh|(Ω)} < +∞ ,

and it only remains to apply Allard’s compactness theorem ([All72]) and use the lower semiconti-
nuity of |δijkV |(Ω). �

Next, we deal with some convergence properties of the WSFF. Let Ω ⊂ Rn be an open set and
let (Vh) be a sequence of d–varifolds weakly–∗ converging to a d–varifold V . Assuming that the
variations of Vh are bounded and that suph |δijkVh| (Ω) < +∞ is enough to conclude that V has
bounded variations. Thus Vh (resp. V ) admits a WSFF (in the sense of Definition 3.5), denoted
by Ahijk (resp. Aijk). The following theorem focuses on the convergence of the measures AhijkVh, as
h→∞.

Proposition 5.4 (Convergence of the WSFF). Let Ω ⊂ Rn be an open set and let (Vh)h be a
sequence of d–varifolds weakly–∗ converging to a rectifiable d–varifold V . Assume that there exists
constants C0 > 0 and p > 1, such that δijkVh << ‖Vh‖ and

(5.4)

ˆ
Ω
|Ahijk(x)|p d‖Vh‖(x) ≤ C0

for all h ∈ N. Then δijkV is absolutely continuous with respect to ‖V ‖, the measures AhijkVh
weakly–∗ converge to the measure AijkV as h→∞ andˆ

Ω
|Aijk(x)|p d‖V ‖(x) ≤ lim inf

h

ˆ
Ω
|Ahijk(x)|p d‖Vh‖(x).
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Proof. Let M be a d–rectifiable set endowed with a multiplicity function θ, such that V = v(M, θ).
Thanks to (3.4) we have

sup
i,j,k
|βhijk(x)| ≤ Cn sup

i,j,k
|Ahijk(x)|

for ‖Vh‖-almost all x ∈ Ω and h ∈ N, with Cn only depending on the dimension n. Therefore, by
(5.4) and Hölder’s inequality we infer that

(5.5)
∣∣∣δV h

ijk

∣∣∣ (K) =

∣∣∣∣ˆ
K
βhijk d‖Vh‖

∣∣∣∣ ≤ ‖Vh‖(K)
1
p′

(ˆ
Ω
|βhijk|p d‖Vh‖

) 1
p

≤ C0Cn‖Vh‖(K)
1
p′

for every compact set K ⊂ Ω. Combining the fact that δijkVh(ϕ) converges to δijkV (ϕ) for all
ϕ ∈ C1

c(Ω) with the above uniform control (5.5), we obtain that δijkVh weakly–∗ converges to
δijkV . We can now apply Example 2.36 in [AFP00] to conclude that δijkV << ‖V ‖ and moreoverˆ

Ω
|βijk(x)|p d‖V ‖(x) ≤ lim inf

h

ˆ
Ω
|βhijk(x)|p d‖Vh‖(x).

On the other hand, from (5.4) we similarly deduce that sup
h

ˆ
K
|Ahijk| d‖Vh‖ < +∞ for every fixed

compact K ⊂ Ω. Therefore, again using Example 2.36 in [AFP00] there exists a subsequence
(which we do not relabel) that weakly–∗ converges to a limit Radon measure which is absolutely
continuous with respect to ‖V ‖. In other words, there exists fijk ∈ L1(‖V ‖) such that Ahijk‖Vh‖
weakly–∗ converges to fijk‖V ‖ and moreover

(5.6)

ˆ
Ω
|fijk(x)|p d‖V ‖(x) ≤ lim inf

h

ˆ
Ω
|Ahijk(x)|p d‖Vh‖(x).

Note that

sup
h

ˆ
Ω×Gd,n

|Ahijk(x)|p dVh(x, P ) = sup
h

ˆ
Ω
|Ahijk(x)|p d‖Vh‖(x) < +∞,

and thus (up to extraction) there exists gijk ∈ Lp(V ) such that AhijkVh weakly–∗ converges to gijkV .

We now check that fijk(x) = gijk(x, P (x)) for ‖V ‖-almost every x. Let ϕ ∈ C0
c(Ω), thenˆ

Ω
Ahijk(x)ϕ(x) d‖Vh‖(x) =

ˆ
Ω×Gd,n

Ahijk(x)ϕ(x) dVh(x, S) ,

hence by taking the limit as h→∞ in the previous equality we obtainˆ
Ω
fijk(x)ϕ(x) d‖V ‖(x) =

ˆ
Ω×Gd,n

gijk(x, S)ϕ(x) dV (x, S) =

ˆ
Ω
gijk(x, P (x))ϕ(x) d‖V ‖(x)

so that for ‖V ‖–almost every x, fijk(x) = gijk(x, P (x)), as wanted.

By Definitions 3.2 and 3.5 of βhijk and Ahijk , for every ϕ ∈ C0
c(Ω) and for all h we have

ˆ
Ω
βhijk(x)ϕ(x) d‖Vh‖(x) =

ˆ
Ω

(
Ahijk(x) +

ˆ
S∈Gd,n

Sjk dν
h
x (S)

∑
q

Ahqiq(x)

)
ϕ(x) d‖Vh‖(x)

=

ˆ
Ω
Ahijk(x)ϕ(x) dVh(x, S) +

∑
q

ˆ
(x,S)∈Ω×Gd,n

Ahqiq(x)ϕ(x)Sjk dVh(x, S).

Taking again the limit as h→∞ in the above equality, we getˆ
Ω
fijk(x)ϕ(x) d‖V ‖(x) +

∑
q

ˆ
Ω×Gd,n

Sjk gqiq(x, S)ϕ(x) dV (x, S) =

ˆ
Ω
βijk(x)ϕ(x) d‖V ‖(x),
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and by representing the limit measure V via the Young measures {νx}, for ‖V ‖–almost every x,

fijk(x) +

ˆ
S∈Gd,n

Sjk
∑
q

gqiq(x, S) dνx(S) = fijk(x) + Pjk(x)
∑
q

gqiq(x, P (x))

= fijk(x) + Pjk(x)
∑
q

fqiq(x) = βijk(x).

By uniqueness of the solution to the linear system (3.4) (see Lemma 3.4) we obtain

gijk(x, P (x)) = fijk(x) = Aijk(x)

for ‖V ‖–almost every x, hence gijk(x, S) = Aijk(x) for V –almost every (x, S), which concludes the
proof together with (5.6). �

6. Approximate weak second fundamental form

Let us fix some notations that we will use all along the paper. We fix three non-negative functions
ρ, ξ, η : R+ → R+ of class C1, with the properties listed below:

• for all t ≥ 1, ρ(t) = ξ(t) = η(t) = 0;
• ρ is decreasing, ρ′(0) = 0, and

´
Rn ρ(|x|) dx = 1;

• ξ(t) > 0 for all 0 < t < 1, and
´
Rn ξ(|x|) dx = 1.

We define for ε > 0 and x ∈ Rn

(6.1) ρε(x) =
1

εn
ρ

(
|x|
ε

)
, ξε(x) =

1

εn
ξ

(
|x|
ε

)
, ηε(x) =

1

εn
η

(
|x|
ε

)
.

We also define the constants

(6.2) Cρ = dωd

ˆ 1

0
ρ(r)rd−1 dr , Cξ = dωd

ˆ 1

0
ξ(r)rd−1 dr .

Given an open set Ω ⊂ Rn and ε > 0 we define Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}.

6.1. Approximation via mollification. We showed in [BLM17] how to define the approximate
mean curvature of general varifolds using a mollification of the first variation. We extend here this
approach to define the approximate second fundamental form of general varifolds. We observe that
the idea of mollifying the first variation to get a smoothed mean curvature was first used by Brakke
in [Bra78] for varifolds with bounded first variation in order to construct their evolution by mean
curvature flow.

Definition 6.1 (Regularized variations). Let Ω ⊂ Rn be an open set and let V be a d–varifold in
Ω. Given i, j, k ∈ {1, . . . , n} and ε > 0, for any vector field ϕ ∈ C1

c(Ωε) we set

(6.3) δijkV ∗ ρε(ϕ) := δijkV (ϕ ∗ ρε) =

ˆ
Ω×Gd,n

Sjk∇S(ϕ ∗ ρε)(y) · ei dV (y, S) .

We say that δijkV ∗ ρε is a regularized G-linear variation of V .

Of course (6.3) defines δijkV ∗ ρε in the sense of distributions. The following proposition, which
is a simple adaptation of Proposition 4.2 in [BLM17], shows that δijkV ∗ ρε can be represented by
a smooth vector field with locally bounded L1-norm when V has locally finite mass in Ω.

Proposition 6.2 (Representation of the regularized variations). Let Ω ⊂ Rn be an open set, V a
d–varifold in Ω, and let i, j, k ∈ {1, . . . , n}. Then δijkV ∗ ρε is represented by the continuous vector
field
(6.4)

δijkV ∗ ρε(x) =

ˆ
Ω×Gd,n

Sjk∇Sρε(y − x) · ei dV (y, S) =
1

εn+1

ˆ
Ω×Gd,n

Sjk∇Sρ1

(
y − x
ε

)
· ei dV (y, S)
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defined for x ∈ Ωε. In addition, δijkV ∗ ρε ∈ L1
loc(Ωε).

Proof. By Fubini-Tonelli’s theorem we get from (6.3) for every ϕ ∈ C1
c(Ωε):

δijkV ∗ ρε(ϕ) =

ˆ
Ω×Gd,n

Sjk(ϕ ∗ ∇Sρε)(y) · ei dV (y, S),

=

ˆ
Ω×Gd,n

Sjk

(ˆ
x∈Ωε

ϕ(x)∇Sρε(y − x) dLn(x)

)
· ei dV (y, S),

=

ˆ
x∈Ωε

ϕ(x)

(ˆ
Ω×Gd,n

Sjk∇Sρε(y − x) · ei dV (y, S)

)
dLn(x) ,

which proves (6.4). The fact that δijkV ∗ ρε ∈ L1
loc(Ωε) is an immediate consequence of ∇ρε being

bounded in Rn. �

Remark 6.3. We emphasize that δijkV ∗ ρε is in L1
loc(Ωε) even when δijkV is not locally bounded.

In view of the above representation of the G-linear variation, given any d–varifold V = ‖V ‖⊗ νx
and given ε > 0, the following quantities are defined for ‖V ‖–almost every x ∈ Ωε:

(6.5) βV,εijk (x) = −
Cξ
Cρ

δijkV ∗ ρε(x)

‖V ‖ ∗ ξε(x)
and cV,εjk (x) =

(ˆ
Gd,n

Sjk dν·(S)‖V ‖

)
∗ ηε(x)

‖V ‖ ∗ ηε(x)
.

Recall that in [BLM17], we defined a regularization of the mean curvature vector HV of a varifold
V with finite mass and locally bounded first variation as the approximate mean curvature vector
given for ‖V ‖–a.e. x ∈ Ωε by

HV,ε(x) = −
Cξ
Cρ

δV ∗ ρε(x)

‖V ‖ ∗ ξε(x)
.

The regularizations of βVijk and HV are consistent in the sense that the structural identities (2) in
Proposition 5.1 are preserved, i.e.

(6.6)
∑
q

βV,εqiq = HV,ε
i and

∑
q

βV,εiqq = dHV,ε
i .

Remark 6.4. As when we defined HV,ε in [BLM17], we allow two different kernels for the regu-

larization of δijkV and ‖V ‖ in the definition of βV,εijk . As evidenced for mean curvature, the same

computations as done in [BLM17] Section 5, suggest a specific choice of ρ and ξ, namely the so-called
natural kernel pair relation, that is

(6.7) nξ(s) = −sρ′(s) .
This choice has proven to be relevant from a numerical point of view (see [BLM17], Section 8) and
we shall use it in the numerical experiments performed in Section 7, we recall that with this choice

of kernels
Cξ
Cρ

= d
n .

We can write cV,ε(x) =

ˆ
Ω×Gd,n

S dWx(y, S) where Wx is the probability measure defined as

dWx(y, S) =
ηε (y − x) dV (y, S)´

Ω×Gd,n ηε (z − x) dV (z, P )
.

so that Lemma 3.4 applies to the linear system

(6.8) aijk + cV,εjk (x)
∑
l

alil = βV,εijk (x) , for i, j, k = 1 . . . n,
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which arises as the natural regularization of (3.4) and the unique solution is explicitly given in
(3.5). This allows to introduce a notion of approximate second fundamental form as follows:

Definition 6.5 (Approximate second fundamental form, ε–WSFF). Let Ω ⊂ Rn be an open set
and V = ‖V ‖ ⊗ νx be a d–varifold in Ω. For ε > 0 and for ‖V ‖–almost every x ∈ Ωε, we define

AV,εijk(x) as the unique solution to system (6.8) that is

(6.9) AV,εijk = βV,εijk − c
V,ε
jk

(
(I + cV,ε)−1HV,ε

)
i
.

We call {AV,εijk} the approximate second fundamental form, or the ε–WSFF. With a slight abuse of

terminology, we will also call approximate second fundamental form the tensor {Bk,ε
ij } defined by

Bk,ε
ij =

1

2
(AV,εijk +AV,εjik −A

V,ε
kij) (see (3.8)).

Remark 6.6. We stress that the ε–WSFF can be defined for any varifold V , even though V does
not have bounded variations.

We denote for brevity

βV = (βVijk)ijk, cV = (cVjk)jk, AV = (AVijk)ijk and BV = (Bk
ij)ijk

and

βV,ε = (βV,εijk )ijk, cV,ε = (cV,εjk )jk, AV,ε = (AV,εijk)ijk and BV,ε = (Bk,ε
ij )ijk .

When there is no ambiguity, we might drop the part of the superscript referring to the varifold V .

6.2. Consistency of the approximate second fundamental form. We justify in Proposi-
tion 6.7 the definition of ε–WSFF (Definition 6.5) by proving that it converges (when ε → 0) to
the exact one when it exists.

Proposition 6.7 (Consistency of the approximate second fundamental form). Let Ω ⊂ Rn be an
open set and let V be a rectifiable d–varifold with bounded variations. Then, for ‖V ‖–almost any
x ∈ Ω the quantities βV,ε(x), cV,ε(x), AV,ε(x), BV,ε are defined for ε small enough, and respectively
converge to βV (x), cV (x), AV (x), BV (x) as ε→ 0.
Moreover, there exist constants C1 > 0, C2 > 0 such that

(6.10)
∣∣AV,ε −AV ∣∣ ≤ C1|βV,ε − βV |+ C2|HV ||cV,ε − cV | .

Proof. The proof of the convergence of βV,ε and cV,ε is obtained arguing as in [BLM17, Theorem 5.3].
For the sake of clarity, we provide it hereafter. For x ∈ spt ‖V ‖ ∩ Ω and ε > 0 small enough, we
can drop V in the superscript for simplicity, and write

(6.11)
∣∣βεijk(x)− βijk(x)

∣∣ =
Cξ
Cρ

∣∣∣∣∣∣
(
βijk‖V ‖ − δijkVs

)
∗ ρε(x)

‖V ‖ ∗ ξε(x)
− Cρ
Cξ
βijk(x)

∣∣∣∣∣∣ ≤ I1(ε) + I2(ε) + I3(ε) ,

where

I1(ε) =
Cξ
Cρ

∣∣∣∣∣∣
´ (

βijk(y)− βijk(x)
)
ρε(x− y) d‖V ‖(y)

‖V ‖ ∗ ξε(x)

∣∣∣∣∣∣ ,
I2(ε) =

Cξ
Cρ
· |βijk(x)| ·

∣∣∣∣‖V ‖ ∗ ρε(x)

‖V ‖ ∗ ξε(x)
− Cρ
Cξ

∣∣∣∣ ,
I3(ε) =

Cξ
Cρ

|δijkVs ∗ ρε(x)|
‖V ‖ ∗ ξε(x)

.
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We recall that V is rectifiable, that is, V = v(M, θ). Then we preliminarily notice that, for ‖V ‖-
almost every x,

ε−d‖V ‖(Bε(x)) −−−→
ε→0

ωdθ(x),

εn−d‖V ‖ ∗ ρε(x) −−−→
ε→0

Cρθ(x) > 0,(6.12)

εn−d‖V ‖ ∗ ξε(x) −−−→
ε→0

Cξθ(x) > 0 ,

which follows from the definition of the approximate tangent plane and the fact that ρ ∈ C0
c(Rn).

Thanks to (6.12), for ‖V ‖-almost any x ∈ Ω (such that x is also a Lebesgue point of βijk ∈ L1(‖V ‖)),
we have

I1(ε) ≤
Cξ‖ρ‖∞ε−d‖V ‖(Bε(x))

Cρεn−d‖V ‖ ∗ ξε(x)
· 1

‖V ‖(Bε(x))

ˆ
Bε(x)

|βijk(y)− βijk(x)| d‖V ‖(y) −−−→
ε→0

0 ,

I2(ε) ≤
Cξ|βijk(x)|

Cρ

∣∣∣∣‖V ‖ ∗ ρε(x)

‖V ‖ ∗ ξε(x)
− Cρ
Cξ

∣∣∣∣ −−−→ε→0
0 ,

I3(ε) ≤
|δijkVs| ∗ ρε(x)

‖V ‖ ∗ ξε(x)
≤
Cξ‖ρ‖∞ε−d‖V ‖(Bε(x))

Cρεn−d‖V ‖ ∗ ξε(x)
·
|δijkVs|(Bε(x))

‖V ‖(Bε(x))
−−−→
ε→0

0 ,

The previous estimate together with (6.11) lead to βεijk(x) −−−→
ε→0

βijk(x), as wanted.

Now we observe that the map x 7→
´
Gd,n

S dνx(P ) is in L1(‖V ‖), then by a similar proof, where

essentially one replaces βijk(x) with
´
Gd,n

S dνx(P ), we get the convergence of cε to c for ‖V ‖ almost

every x ∈ Ω; and the convergences of AV,ε and BV,ε follow.

We are thus left with the proof of (6.10) which follows from the fact that |cV,εjk | ≤ 1 and that

‖(I + cV,ε)−1‖ and ‖(I + cV )−1‖ are uniformly bounded by a dimensional constant C0 (see (3.6)).
Indeed, from (3.5), we have∣∣∣AVijk −AV,εijk∣∣∣ ≤ ∣∣∣βVijk − βV,εijk

∣∣∣+
∣∣(I + cV )−1HV

∣∣ ∣∣∣cV,εjk − cVjk∣∣∣
+
∥∥∥cV,εjk ∥∥∥ ∣∣(I + cV,ε)−1HV,ε − (I + cV )−1HV

∣∣
≤
∣∣βV − βV,ε∣∣+ C0

∣∣HV
∣∣ ∣∣∣cV,εjk − cVjk∣∣∣+

∣∣(I + cV,ε)−1HV,ε − (I + cV )−1HV
∣∣(6.13)

And for the last term in (6.13), let us temporarily denote u = (I + cV )−1HV and uε = (I +
cV,ε)−1HV,ε so that

(I + cV,ε)(uε − u) + (cV − cV,ε)u = (I + cV,ε)uε − (I + cV )u = HV,ε −HV

leading to

|uε − u| =
∣∣(I + cV,ε)−1

(
HV,ε −HV − (cV − cV,ε)u

)∣∣
≤ C0

(∣∣HV,ε −HV
∣∣+
∥∥cV − cV,ε∥∥ ∣∣(I + cV )−1HV

∣∣)
≤ C0n

∣∣βV − βV,ε∣∣+ C2
0

∣∣HV
∣∣ ∥∥cV − cV,ε∥∥(6.14)

since HV
i =

∑
q

βVqiq and HV,ε
i =

∑
q

βV,εqiq . Plugging (6.14) into (6.13) we obtain (6.10).
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6.3. Convergence of the approximate second fundamental form of a sequence of vari-
folds. We now turn to the following question: given a sequence of d–varifolds (Vh)h approximating
(in the sense of weak–∗ convergence for instance) a d–rectifiable varifold with bounded variations,
does the ε–WSFF BVh,εh of Vh converge to the WSFF BV of V under suitable assumptions? In
order to answer this question we follow the scheme of [BLM17] and obtain two convergence results.
A first one showing a slower convergence rate, but requiring weaker assumptions; a second one
showing a better convergence rate, but under stronger assumptions. The proofs are slight vari-
ants of the ones given in [BLM17, Theorems 5.5 and 5.8]), therefore we shall only provide the key
estimates and underline the main differences with[BLM17].

Theorem 6.8. Let Ω ⊂ Rn be an open set and V be a rectifiable d–varifold with bounded varia-
tions. Let (Vh)h be a sequence of d–varifolds and let (ηh)h, (dh)h be two positive, decreasing and
infinitesimal sequences satisfying the following property: for any ball B ⊂ Ω, with small enough
radius and centered in spt ‖V ‖, one has

(6.15) ∆B(V, Vh) ≤ dh min (‖V ‖(Bηh), ‖Vh‖(Bηh)) .

Then, for ‖V ‖–almost every x, for any sequence (zh)h tending to x, and for any infinitesimal
sequence (εh)h such that

ηh
εh
−−−→
h→∞

0 ,

one has for h large enough

(6.16)

max
i,j,k

{∣∣∣βVh,εhijk (zh)− βV,εhijk (x)
∣∣∣ , ∣∣∣AVh,εhijk (zh)−AV,εhijk (x)

∣∣∣} ≤ C‖ρ‖W2,∞
dh + |x− zh|

ε2
h

,

∣∣cVh,εh(zh)− cV,εh(x)
∣∣ ≤ C‖ρ‖W1,∞

dh + |x− zh|
εh

.

In particular, both right-hand sides of (6.16) are infinitesimal as soon as
dh + |x− zh|

(εh)2
−−−→
h→∞

0 ,

and both βVh,εhijk (zh) and AVh,εhijk (zh) respectively converge to βVijk(x) and AVijk(x) as h→∞.

Proof. In order to prove (6.16), it is enough to prove that the right-hand sides of (6.16) provide
upper bounds for, respectively,

∣∣βVh,εh(zh)− βV,εh(x)
∣∣ and |cVh,εh(zh) − cV,εh(x)|. The proof is

exactly the same as that of Theorem 5.5 in [BLM17]. Shortly, we combine Proposition 6.7 with the
two estimates below: for ε > 0,

(6.17)

∣∣∣∣ˆ Sρ

(
y − zh
ε

)
dVh(y, S)−

ˆ
Sρ

(
y − x
ε

)
dV (y, S)

∣∣∣∣
≤ 1

ε
‖ρ‖W1,∞

(
∆Bε+|x−zh|(x)(Vh, V ) + |x− zh|‖V ‖

(
Bε+|x−zh|(x)

))
and

(6.18) εn |δijkVh ∗ ρε(zh)− δijkV ∗ ρε(x)|

=
1

ε

∣∣∣∣ˆ Sjk∇Sρ
(
y − zh
ε

)
dVh(y, S)−

ˆ
Sjk∇Sρ

(
y − x
ε

)
dV (y, S)

∣∣∣∣
≤ 1

ε2
‖ρ‖W2,∞

(
∆Bε+|x−zh|(x)(Vh, V ) + |x− zh|‖V ‖

(
Bε+|x−zh|(x)

))
.
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In order to prove (6.17) and (6.18), we first observe that the following general inequality holds:∣∣∣∣ˆ ψh(y, S) dVh −
ˆ
ψ(y, S) dV

∣∣∣∣ ≤ ∣∣∣∣ˆ ψh(y, S) d(Vh − V )

∣∣∣∣+

∣∣∣∣ˆ (ψh(y, S)− ψ(y, S)) dV

∣∣∣∣
≤ lip(ψh)∆Bh(Vh, V ) +

ˆ
|ψh(y, S)− ψ(y, S)| dV.(6.19)

where Bh contains sptψh. In the case of (6.17), we have

ψh(y, S) = Sρ

(
y − zh
εh

)
, lip(ψh) =

1

εh
‖ρ‖W1,∞ , sptψh ⊂ Bεh+|x−zh|(x),

therefore we can take Bh = Bεh+|x−zh|(x) and ψ(y, S) = Sρ

(
y − x
εh

)
, so that plugging

ˆ
|ψh(y, S)− ψ(y, S)| dV ≤ 1

εh
lip(ρ)

ˆ
Bεh+|x−zh|(x)

|x− zh| dV ≤ lip(ρ)
|x− zh|
εh

‖V ‖
(
Bεh+|x−zh|(x)

)
into (6.19) gives (6.17). In the case of (6.18) we have

ψh(y, S) =
1

εh
Sjk∇Sρ

(
y − zh
εh

)
, lip(ψh) =

1

ε2
h

‖ρ‖W2,∞ , sptψh ⊂ Bεh+|x−zh|(x),

therefore we can still take Bh = Bεh+|x−zh|(x) and set ψ(y, S) =
1

εh
Sjk∇Sρ

(
y − x
εh

)
, so that

plugging ˆ
|ψh(y, S)− ψ(y, S)| dV ≤ 1

ε2
h

lip(∇ρ)

ˆ
Bεh+|x−zh|(x)

|x− zh| dV

≤ lip(∇ρ)
|x− zh|
ε2
h

‖V ‖
(
Bεh+|x−zh|(x)

)
into (6.19) gives (6.18). �

The convergence estimate (6.16) proved in Theorem 6.8, and obtained under quite general as-

sumptions, shows an asymptotic rate proportional to dh
ε2h

. On the other hand, we can obtain a better

convergence rate under more restrictive assumptions, as shown in Theorem 6.11 below. The idea is
that, whenever M is a smooth d–submanifold of Rn and V = v(M, 1), the mean curvature vector
is orthogonal to the tangent plane, therefore we haveˆ

Sjk∇Sρ
(
y − x
ε

)
dV (y, S) =

ˆ
y∈M

P (y)jk∇P (y)ρ

(
y − x
ε

)
dHd(y)

=

ˆ
y∈M

[P (y)jk − P (x)jk]∇P (y)ρ

(
y − x
ε

)
︸ ︷︷ ︸

=ϕ(y)

dHd(y) + P (x)jk

ˆ
y∈M
∇P (y)ρ

(
y − x
ε

)
dHd(y)

(6.20)

In (6.20), as soon as the tangent plane is Lipschitz, we will gain one factor of order ε in the
first term when computing the Lipschitz constant of ϕ, which leads to the same gain of order
when estimating the pointwise error

∣∣βVh,εh(zh)− βV,εh(x)
∣∣, as seen in the proof of Theorem 6.8.

Concerning the second term, we know from Theorem 4.8 in [BLM17] that we gain an order ε by
projecting the tangential gradient to the orthogonal space at x. When defining a modified version
of βV in accordance with (6.20), we recover the βV,⊥ introduced in Definition 3.7. We next propose
an approximate version of βV,⊥:
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Definition 6.9 (Approximate orthogonal weak second fundamental form, ε–WSFF⊥). Let Ω ⊂ Rn
be an open set and let V = ‖V ‖ ⊗ νx be a d–varifold in Ω. For x ∈ Ω, we define

(6.21) βV,ε,⊥ijk (x) = βV,εijk (x)− cVjk(x)

(
cV (x)

∑
q

βV,εq·q (x)

)
i

.

We call approximate orthogonal weak second fundamental form (referred to as ε–WSFF⊥) the tensor

AV,ε,⊥(x) = {AV,ε,⊥ijk (x)} where each AV,ε,⊥ijk (x) is the solution to the linear system (3.4) with bijk =

βV,⊥,εijk (x) and cjk = cVjk(x). With a slight abuse of terminology, we will also call approximate

orthogonal weak second fundamental form the tensor {Bk,ε,⊥
ij } defined by Bk,ε,⊥

ij =
1

2
(AV,ε,⊥ijk +

AV,ε,⊥jik −AV,ε,⊥kij ) (see (3.8)).

Notice that by (3.5) and following the computations in the proof of Proposition 5.2, we get that

(6.22) AV,⊥,εijk = βV,⊥,εijk − cVjk

(I + cV )−1
n∑
q=1

βV,⊥,εq·q


i

= βV,εijk − c
V
jk

n∑
q=1

βV,εqiq .

Remark 6.10. Notice that we use cV (x) rather than the regularized expression cV,ε(x) in Defini-
tion 6.9. If we used cV,ε(x), we would directly recover the convergence of Theorem 6.8. Yet, under
the assumptions of Theorem 6.11, the regularization of cV is not necessary anymore and that is
why we drop it in Definition 6.9.

Theorem 6.11. Let Ω ⊂ Rn be an open set, M ⊂ Ω be a d–dimensional submanifold of class
C2 without boundary, and let V = v(M, 1). Let P be a C1 extension of the tangent map TyM on
a tubular neighborhood of M . Let (Vh)h be a sequence of d–varifolds in Ω. Choose x ∈ M and
a sequence (zh)h ⊂ Ω converging to x, such that zh ∈ spt ‖Vh‖. Assume that there exist positive,
decreasing and infinitesimal sequences (ηh)h, (d1,h)h, (d2,h)h, (εh)h and a neighborhood ω of x, such
that for any ball B ⊂ ω centered in spt ‖V ‖, one has

(6.23) ∆B(‖V ‖, ‖Vh‖) ≤ d1,h min (‖V ‖(Bηh), ‖Vh‖(Bηh)) ,

and, recalling the decomposition Vh = ‖Vh‖ ⊗ νhx ,

(6.24) sup
{y∈Bεh+|x−zh|(x)∩spt ‖Vh‖}

ˆ
S∈Gd,n

‖P (y)− S‖ dνhy (S) ≤ d2,h .

Then, there exists C > 0 such that for h large enough,

(6.25) max
{∣∣∣βVh,εh,⊥ijk (zh)− βV,εh,⊥ijk (x)

∣∣∣ , ∣∣∣AVh,εh,⊥ijk (zh)−AV,εh,⊥ijk (x)
∣∣∣} ≤ Cd1,h + d2,h + |x− zh|

εh

for all i, j, k. Moreover, if we also assume that d1,h + d2,h + ηh + |x− zh| = o(εh) as h→∞, then

βVh,εh,⊥ijk (zh) −−−→
h→∞

βVijk(x) .

Proof. First of all, note that as for the proof of Theorem 6.8, we only need to bound |cVh(zh)−cV (x)|
and

∣∣∣βVh,εh,⊥ijk (zh)− βV,εh,⊥ijk (x)
∣∣∣ from above by the right-hand side of (6.25), and the upper bound
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for |cVh(zh)− cV (x)| is a direct consequence of (6.24). Let us rewrite explicitly βV,ε,⊥ijk :

(6.26) βV,ε,⊥ijk (x) = −
Cξ
Cρ

1

‖V ‖ ∗ ξε(x)

ˆ (
Sjk −

ˆ
P∈Gd,n

Pjk dνx(P )
) (
∇Sρε(y − x)

)
i
dV (y, S)

−
ˆ
P∈Gd,n

Pjk dνx(P )
Cξ
Cρ

1

‖V ‖ ∗ ξε(x)

ˆ
P∈Gd,n

ˆ (
P⊥∇Sρε(y − x)

)
i
dV (y, S) dνx(P )︸ ︷︷ ︸

=:−HV,ε,⊥
i (x)

.

We know from Theorem 5.8 in [BLM17] that for h large enough

(6.27)

ah :=

∣∣∣∣∣
ˆ
P

ˆ (
P⊥∇Sρεh(y − x)

)
i

‖V ‖ ∗ ξεh(x)
dV (y, S) dνx(P )−

ˆ
P

ˆ (
P⊥∇Sρεh(y − zh)

)
i

‖Vh‖ ∗ ξεh(zh)
dVh(y, S) dνzh(P )

∣∣∣∣∣
≤ C

d1,h + d2,h + |x− zh|
εh

.

In the following we fix j, k and prove that

(6.28) bh :=
1

εh

∣∣∣∣∣
ˆ [

Sjk −
ˆ
P∈Gd,n

Pjk dνzh(P )

]
∇Sρ

(
y − zh
εh

)
dVh(y, S)

−
ˆ [

Sjk −
ˆ
P∈Gd,n

Pjk dνx(P )

]
∇Sρ

(
y − x
εh

)
dV (y, S)

∣∣∣∣∣
≤ C

d1,h + d2,h + |x− zh|
εh

‖Vh‖
(
Bεh+|x−zh|+ηh(x)

)
.

where C is a constant depending only on lip(P ) and ‖ρ‖W2,∞ . To this aim we write

(6.29)
1

εh

∣∣∣∣∣
ˆ [

Sjk −
ˆ
P∈Gd,n

Pjk dνzh(P )

]
∇Sρ

(
y − zh
εh

)
dVh(y, S)

−
ˆ [

Sjk −
ˆ
P∈Gd,n

Pjk dνx(P )

]
∇Sρ

(
y − x
εh

)
dV (y, S)

∣∣∣∣∣ ≤ ch + dh + eh
εh

,

where ch, dh and eh are defined - and estimated - hereafter. We start with

ch :=

∣∣∣∣ˆ ψh(x, y) d‖Vh‖(y)−
ˆ
ψh(x, y) d‖V ‖(y)

∣∣∣∣ ,
where ψh(x, y) = (P (y)jk − P (x)jk)∇P (y)ρ

(
y − x
εh

)
, so that ψh is Lipschitz, with lip(ψh) depend-

ing only on lip(P ) and on ‖ρ‖W2,∞ . Note also that sptψh(x, ·) ⊂ Bε(x). Therefore we obtain

(6.30) ch ≤ lip(ψh)∆Bεh (x) (‖Vh‖, ‖V ‖) ≤ lip(ψh)d1,h‖Vh‖ (Bεh+ηh(x)) .

Then we have

dh :=

∣∣∣∣ˆ (ψh(zh, y)− ψh(x, y)
)
dVh(y, S)

∣∣∣∣ ≤ lip(ψh)|x− zh|‖Vh‖
(
Bεh+|x−zh|(x)

)
.
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Finally we have

eh :=

∣∣∣∣∣
ˆ [(

Sjk −
ˆ
P∈Gd,n

Pjk dνzh(P )

)
∇Sρ

(
y − zh
εh

)
−

(P (y)jk − P (zh)jk)∇P (y)ρ

(
y − zh
εh

)]
dVh(y, S)

∣∣∣∣
≤

∣∣∣∣∣
ˆ [(

Sjk −
ˆ
P∈Gd,n

Pjk dνzh(P )

)
− (P (y)jk − P (zh)jk)

]
∇Sρ

(
y − zh
εh

)
dVh(y, S)

∣∣∣∣∣
+

∣∣∣∣ˆ (P (y)jk − P (zh)jk)
(
ΠS −ΠP (y)

) [
∇ρ
(
y − zh
εh

)]
dVh(y, S)

∣∣∣∣
≤ 4d2,h‖ρ‖W1,∞‖Vh‖

(
Bεh+|zh−x|(x)

)
,

so that by combining these estimates with (6.29) we obtain (6.28).
Eventually, we know from (6.26) that

(6.31)
∣∣∣βVh,ε,⊥ijk (zh)− βV,ε,⊥ijk (x)

∣∣∣ ≤ Cξ
Cρ

(
ah +

bh
(εh)n‖Vh‖ ∗ ξεh(zh)

)

+

∣∣∣βV,εh,⊥ijk (x)− Pjk(x)HV,εh,⊥
i (x)

∣∣∣
‖Vh‖ ∗ ξεh(zh)

|‖V ‖ ∗ ξεh(x)− ‖Vh‖ ∗ ξεh(zh)| .

The conclusion follows from injecting (6.27) and (6.28) in (6.31), combined with Lemma 4.4 in

[BLM17] and the fact that
∣∣∣βV,εh,⊥ijk (x)− Pjk(x)HV,εh,⊥

i

∣∣∣ −−−→
h→∞

∣∣∣βV,⊥ijk (x)− Pjk(x)HV,⊥
i (x)

∣∣∣ is thus

bounded. The last part of the statement follows from (6.25) and Proposition 3.8. �

7. Implementation and numerical illustrations

We present in this section a few numerical illustrations of approximate curvatures for point clouds.
We recall for more convenience the notion of point cloud varifold (see Definition 2.4). Given a finite
set of points {xl}l=1...N ⊂ Rn, of ”masses” {ml}l=1...N ⊂ R+, and d–planes {Pl}l=1...N ⊂ Gd,n, we
associate a d–varifold V in Rn defined as

(7.1) V =

N∑
l=1

mlδ(xl,Pl) .

While the variations δijkV of V are generally not Radon measures but distributions of order 1, it
is yet possible to compute explicitly the ε–WSFF of V for any ε > 0, as explained in Section 6.
Explicit formulas for point cloud varifolds are derived in Section 7.1 below, while the implementation
is detailed in Section 7.2. Finally, in Section 7.3 we perform some numerical experiments on 2–
dimensional point clouds in R3.

7.1. Approximate WSFF⊥ for point clouds. Let us give the precise expression of the ε–
WSFF⊥ in the case of the point cloud varifold V defined in (7.1). We take, up to re-normalization,

the profile ρ(t) = exp
(
− 1

1−t2

)
for t ∈ [0, 1) and then define ξ according to (6.7). Let ε > 0 and
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l0 ∈ {1, . . . , N}. We have

βV,εijk (xl0) =
d

n

N∑
l=1

ml (Pl)jk ρ
′
(
|xl0 − xl|

ε

)
Pl(xl0 − xl)
|xl0 − xl|

· ei

N∑
l=1

mlξ

(
|xl0 − xl|

ε

) .

Then, thanks to cV (xl0) = Pl0 and (6.22), AV,⊥,εijk (xl0) is defined as

AV,⊥,εijk (xl0) =
d

n

N∑
l=1

ml

(
(Pl)jk − (Pl0)jk

)
ρ′
(
|xl0 − xl|

ε

)
Pl(xl0 − xl)
|xl0 − xl|

· ei

N∑
l=1

mlξ

(
|xl0 − xl|

ε

) .

Lastly, by Definition 6.9:
(7.2)

Bk,⊥,ε
ij (xl0) =

d

n

N∑
l=1

mlρ
′
(
|xl0 − xl|

ε

)
Pl(xl0 − xl)
|xl0 − xl|

· 1

2

(
(Pl − Pl0)jk ei + (Pl − Pl0)ik ej − (Pl − Pl0)ij ek

)
N∑
l=1

mlξ

(
|xl0 − xl|

ε

) .

In order to rewrite this latter tensor in a more standard way, we first project, for fixed i, j, the
vector (Bk

ij)k=1...n onto the normal space by taking:

(I − Pl0)B·,⊥,εij (xl0)

and in the case where d = n − 1 (codimension 1), we obtain a scalar value by taking the scalar

product with a unit vector nl0 generating the normal space. We obtain the matrix (B⊥,εij )i,j=1...n:

B⊥,εij (xl0) = (I − Pl0)B·,⊥,εij (xl0) · nl0 = B·,⊥,εij (xl0) · nl0 .
In order to recover the principal curvatures, it remains to pass from the extended second funda-

mental form B⊥,εij to the one restricted to the tangent space. It can be done by simply considering
the n × d matrix Ql0 whose columns constitute an orthonormal basis of the tangent space at xl0 ,
and then computing

Bij
ε
(xl0) = Qtl0B

⊥,ε
ij (xl0)Ql0

The eigenvalues and eigenvectors of Bij
ε
(xl0) are (approximations of) the principal curvatures and

directions at xl0 .
Notice that as long as no global orientation of the cloud is given, nl0 is chosen up to a sign,

therefore the sign of each eigenvalue cannot be recovered, but their relative sign is known. This
is perfectly normal as the eigenvalues depend on a chosen orientation. In dimension d = 2, it is
however possible to compute the Gaussian curvature for instance since it does not depend on the
orientation (because being κ1, κ2 the principal curvatures, one has κ1κ2 = (−κ1)(−κ2)).

7.2. Implementation. The implementation relies on the computation of ε–neighborhoods of points
in point clouds (or k–neighborhoods when the number of neighboring points is fixed rather than
the radius of the neighboring ball). This can be done very efficiently in practice with the C++
library Nanoflann[Nan]. Linear algebra computations are done with the Eigen library [Eig]. We
use CloudCompare [Clo] for point clouds rendering.
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The approximation of the curvature tensor requires the computation of the masses (ml)l and
the approximate tangent planes (Pl)l from the positions {xl}l. As usual, the planes (Pl)l can
be computed by local weighted regression: given a point xi in the cloud, and given a parameter
σ > 0 (or a number of points kσ), we first compute the barycenter x̄ of the points contained
in the σ–neighborhood Bσ(xi) of xi (or of kσ closest neighbors of xi). Then, with the notation

x = (x(1), . . . , x(n)) for the n–components of x ∈ Rn, we compute the n × n covariance matrix at
xi defined as C = (Ckl)k,l=1,...n, where

Ckl =
N∑
j=1

ρ
(
|xj−xi|

σ

)(
x

(k)
j − x̄

(k)
)(

x
(l)
j − x̄

(l)
)
.

Computing the d eigenvectors associated with the d highest eigenvalues gives a basis of a plane Pi
which approximates the tangent plane at xi.

As for the computation of the weights (ml)l, if the discretization is locally uniform (at scale ε),
then one can simply take all masses equal (to 1 for instance). Otherwise, we fix a number of points
Nmass and we compute at xi the (smallest) radius ri of the ball Bri(xi) containing at least Nmass

points. Then we define the mass mi at xi as
ωdr

d
i

Nmass
, or simply rdi (simplifying the constant in (7.2)).

7.3. Numerical experiments. Figure 1 shows the approximate Gaussian curvature κ1κ2 of a
dragon point cloud with N = 435 545 points (the point cloud was sampled from a mesh from
Stanford 3D scanning repository http://graphics.stanford.edu/data/3Dscanrep/). The cur-
vature values are represented with colors ranging from blue (negative values) to red (positive values)
through white.

We represent in Figure 2 the approximation on the same point cloud of the sum of the absolute
values of the two principal curvatures |κ1|+ |κ2|. The values are indicated with colors ranging from
blue (low values) to red (high values) through green and yellow.

Figure 3 shows the approximation of various curvature informations (Gaussian curvature, sum of
the absolute principal curvatures, and norm of the mean curvature) for a point cloud of N = 100 030
points subsampled on a genus 3 surface. The number of points used to compute local tangent
planes and the ε-WSFF⊥ is Nneigh = 40, corresponding to an average ε = 0.016 for a point cloud
of diameter approximately 1.

Figure 4 shows the approximation on a Farman Institute 3D point cloud, see [DAL+11], of the
sum |κ1| + |κ2| of the absolute principal curvatures at every point of the cloud. This example
illustrates that curvature information can be useful for the extraction of features from a dataset.

We conclude with a test performed on a cube discretized with N = 21 602 points (i.e. around 60
points per edge). The number of points used to compute local tangent planes and the ε-WSFF⊥ was
Nneigh = 40, corresponding to an average ε = 0.060 for a cube of side–length 1. The approximate
Gaussian curvature is shown in Figure 5(a) and the sum of the approximate absolute values of
the two principal curvatures |κ1| + |κ2| is represented in Figure 5(d). Figures 5(b) and 5(e) show
the results of the same test performed after modifying the positions of all points with an additive
centered Gaussian noise of standard deviation 0.01. A standard deviation equal to 0.05 was used
for Figures 5(c) and 5(f). In these latter experiments, the number of points used to compute local
tangent planes and the ε-WSFF⊥ was Nneigh = 150 which corresponds to an average ε = 0.134.
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Figure 1. Approximate Gaussian curvature κ1κ2 of a “dragon” point cloud. Top
image: detail of the point cloud. Bottom image: the complete point cloud with
augmented point size for better rendering. The colors range from blue (negative
Gaussian curvature) to red (positive Gaussian curvature) through white. The point
cloud has N = 435 545 points and the approximate Gaussian curvature is computed
at each point using Nneigh = 40 nearest points.
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