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Abstract—Navigation systems used in racing boats require
sensors to be more and more sophisticated in order to obtain
accurate information in real time. To meet the need for accuracy
of the surface speed measurement, the mechanical sensor paddle
wheel has been replaced by the ultrasonic sensor. This ultrasonic
sensor measures the water speed precisely and with very good
linearity. Furthermore, by its principle of operation, it measures
the water flow several centimetres from the sensor, which puts it
outside the boundary layer, the region close to the hull where the
flow is disturbed. However, this sensor has several drawbacks: it
is quite sensitive and if the flow contains too many air bubbles,
the sensor picks them up, which can happen quite frequently
on boat with a planing hull. Another limitation of this sensor
is its low frequency measurement rate. In this paper we explain
the techniques used based on Kalman filters to address these
shortcomings, firstly by identifying the inaccurate measurements
caused by inadvertent dropouts, then by improving the useful
sensor frequency with GNSS data fusion.

NOMENCLATURE

SOG Speed Over Ground (knots).
SOW Speed Over Water (knots).
GNSS Global Navigation Satellite System.
Xk State vector.
yk Measurement vector.
Fk State transition matrix.
Hk Observation matrix.
wk Process noise.
vk Observation noise.
Qk Process noise covariance matrix.
Rk Measurement noise covariance matrix.
Kk Kalman gain matrix.
Pk State covariance matrix.
σSOG GPS speed standard deviation.
σSOW Speedometer standard deviation.
εAccSOW Model noise.
r Fault detection threshold.
Te Integration time.
resk Measurement residual.
Sk Measurement covariance.

I. INTRODUCTION

Surface speed corresponds to boat speed relative to the
water. It is a major element in the wind measurement chain,
because it is one of the basis for calculations to determine,

among others, the true wind speed and angle. As it is data
that occurs at the basis of the reconstruction of the true wind,
the measurement error is transmitted and amplified onto
the ensuing results. Sensors commonly used are the paddle
wheel, the wheel is driven by the water flow. The boat speed
is then determined by measuring the rotation speed of this
wheel. This kind of sensor presents two major problems: the
first one is that the mobile part is immersed in sea water, so
it is quickly covered by seaweed that leads to variations in its
behaviour. The second is that it measures the flow along the
hull, in the boundary layer; where the flow is disturbed and
not representative of the actual boat speed. In conclusion, the
sensor measurements are neither precise nor linear.
To address the shortcomings of the paddle wheel sensor, a
new kind of sensor has been developed: an ultrasonic sensor.
Its main advantage is that it has no moving parts, so it is
not sensitive to the marine environment.1 The second one is
that it measures the flow velocity several centimetres away,
outside the boundary layer; where the speed measurement is
less disturbed by the hull. The measurements are thus highly
accurate and linear over the full speed range. However, new
problems occur: the sensor is inaccurate when it is near the
limit of immersion. This is often the case with planing hulls
or when the boat is heeled over too far. Indeed in this case,
the sensor is no longer able to acquire the real data so it
drops out. This phenomenon is shown in Figure 1.

We can see that surface speed drops to 6kts whereas
the ground speed remains stable. The sensor is therefore
in an error state. The main problem in this situation is not
that the sensor is no longer able to provide a valid speed,
although the fact of no longer having surface speed is an
issue, it is even more problematic to rely on completely
erroneous information while thinking it is accurate because all
the information and rules that are using this data are deceived.

Currently, the method performed by the electronic sensor to
detect these dropouts is not efficient enough because this state
is detected after 2 or 3 erroneous samples (as shown in Figure

1It is a flush sensor that can be covered with gel coat or anti-fouling as the
rest of the hull.



Fig. 1. Dropout example. Sea recording on a 60” Imoca. (ErrorState 2 is for
valid data, 0 for errors).

1). This delay leads to some errors in the computation of the
true wind angle for instance, which is a concern for security
when the boat is under autopilot. Although this period is very
short, the autopilot will make decisions based on incorrect
information which can for example, lead to unwanted gybes.
The objective of this paper is to propose a methodology to
detect these errors as soon as they appear, and not after a
delay as is currently the case. The present paper does not
seek to compare the performance and accuracy of the sensor
but focuses on the error detection.

II. FAULT DETECTION METHODOLOGY

In this section we will present our methodology in order to
detect the sensor’s errors. First, we will present the ultrasonic
sensor.

A. The ultrasonic sensor

The purpose of this section is not to describe how this sensor
works, but to understand its basic principle of operation.
As shown in Figure 2, the sensor monitors the flow of particles
at 8 centimetres with its ultrasonic beam.

This means that in this area, the water must be homoge-
neous, without large air bubbles, otherwise the sensor cannot
follow the signal, as shown in Figure 1. As already stated,
it is not so much that sometimes the sensor picks up that
is constraining, because this is rarely the case in normal
conditions of use, but the fact that there is a delay in the actual
error detection. The goal is therefore to provide a solution that
detects errors before they are transmitted to the rest of the
navigation system.
Our approach is presented below.
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Fig. 2. Ultrasonic sensor working principle.

B. Methodology of detection

With the aim of detecting errors at their earliest stage, we
will move towards a filter that features predictive capabilities.
By observing the correlation between the predicted and the
measured value, we could then estimate the validity of the
latter. Prediction is one of the main characteristics of the
well-known Kalman filter [1], which is why it was chosen.
Mehra and Peschon [2] were the first to apply Kalman filters
for fault detection.

Generally the practical implementation of a Kalman filter is
quite complicated, but in this case, the one used is relatively
straightforward, firstly because the processed variables are
linear; this enables us to avoid linearization steps. And
secondly because of the observation (13) and transition (14)
matrices which are of a limited order.

The filter is characterized by two equations: the state
equation and the measurement equation (1). yk represents the
measurement vector, in this case the surface speed and Xk its
estimate.

{
Xk = FkXk−1 + wk−1

yk = HkXk + vk
(1)

Measurement equation (1) refers to Hk the observation
or measurement matrix which associates the measurement
vector to the state estimate.
Fk is the state transition matrix which models the transition
between two estimates.

wk and vk respectively represent, model noise and measure-
ment noise which are assumed to have a normal probability
distribution.

p(w) ∼ N(0, Qk) (2)

p(v) ∼ N(0, Rk) (3)

(2) and (3) state that wk and vk are not’t biased with
variance Qk and Rk.

The state of the filter is represented by two variables:



• X̂k|k the a posteriori state estimate at time k giving
observations up to and including at time k.

• Pk|k the a posteriori error covariance matrix.
We compute the filter in two recursive steps, prediction

and estimation.
In the context of error detection, it is the predictive ability
of the filter that we are going to use in order to detect the
sensor errors.

1) Prediction: This step predicts the a priori estimate of the
state vector equation (4) and the covariance of the estimation
error equation (5) of the system at time k from the previous
state.

X̂k|k−1 = FkX̂k−1|k−1 (4)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (5)

After the prediction comes the update step.

2) Update: The update step calculates from the a priori
error covariance Pk|k−1 (5), the Kalman gain (6) which
minimizes the covariance of the estimated error. A posteriori
estimate of the state vector (7) and a posterior estimate
covariance (8) are both updated with the new gain (6) and
measurement vector yk.

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k −Rk)

−1 (6)

X̂k|k = X̂k|k−1 +Kk(yk −HkX̂k|k−1) (7)

Pk|k = Pk|k−1 −KkHkPk|k−1 (8)

C. Implementation

The measurement vector (9) is limited to one dimension:
the raw signal. As it has been observed previously, the aim
of this work is to detect sensor errors only by observing its
evolutions, without external information which could also be
incorrect.

y = (SOW ) (9)

We restrict the state vector to a first order system, i.e. we
use one derivative to model the system. As we try to model
the speed, this first order is adapted to a constant acceleration
model. This approximation must be taken into account in the
process noise covariance matrix (15).

X =

( ̂SOŴAccSOW

)
(10)

Using (1), (9) and (10) we can deduce both the state matrix
(13) and observation matrix (14).

(SOW ) =
[
1 0

]
×

( ̂SOŴAccSOW

)
(11)

( ̂SOŴAccSOW

)
k+1

=

[
1 Te
0 1

]
×

( ̂SOŴAccSOW

)
k

(12)

Hence:
H =

[
1 0

]
(13)

F =

[
1 Te
0 1

]
(14)

The transition matrix (14) assumes that acceleration is
constant during the time steps. If it is not the case, we will have
to adjust the noise model applied to acceleration εAccSOW ,
depending on the boat’s acceleration / deceleration capability,
brought back onto the iterative time Te.

Q =

[
0 0
0 εAccSOW

2

]
(15)

The Q matrix design is one of the trickiest aspects of
the Kalman filter. If Q is too small then the filter will be
overconfident and if it is too large the estimate will be too
affected by measurementss. Normally this matrix can be more
complex, but in order to limit the computing cost and as
the iterative time is small, we have restricted it to (15).
Measurement noise σSOW depends on sensor characteristics,
and more precisely on its inaccuracy. Techniques for a good
variance estimate are proposed in [3].

R =
[
σSOW

2
]

(16)

The measurement noise covariance matrix (16) will
influence the weight given to a new measurements during the
prediction step (6). The more its value increases, the less the
sensor data will be taken into account. In the case of our
application, model and sensors noises are considered to be
static, which is why subscripts k of their respective matrices
are no longer present in the equations.

We have seen the implementation of the Kalman filter;
now let us look at its error detection abilities.

1) Fault condition: The filter’s predictive ability enables us
to know if we are dealing with bad data, by comparing the dif-
ference between the measured yk value and the estimated X̂k

value. The measurement residual is computed with equation
(17):

resk = yk −HkX̂k|k−1 (17)

Measurement residual is also called innovation because
once weighted by the Kalman gain during the update step
(7), it determines the evolution of the prediction compared to
the last estimate.

In Figure 3 we can observe the evolution of the ̂SOW
residual with respect to the uncertainty drawn from the state
covariance (8). In this experiment we are in the operating
conditions of the sensor, so it is normal to observe that most
of the data is in the 1σ standard deviation bounds (68%).

Now we have to determine if the last data from the sensor is
valid or not by using the residual behaviour. Several methods



Fig. 3. Residual vs 1σ uncertainty.

from the literature can be used as Zarchan [4] or Salehfar [5].
Zarchan compare the absolute of the residual with a multiple
of the standard deviation of the innovation covariance

√
S.

Sk = HkPkH
T
k +R (18)

This method requires huge computational resources and as
we use an embedded system it is not suitable.

The Salehfar method compares the square of the residual
with a pre-specified detection threshold r:

resk
2 > r2 (19)

If the condition (19) is satisfied then the sensor is reported
faulty.

It is the correct setting of r which allows bad-data detection.
Its determination is performed empirically but the good value
is usually close to 10 times the sensor standard deviation [6]
r = 10× σSOW

Figure 4 shows an error condition detected with the filter
that has been set up.
While the boat was under way without making any particular
manoeuvre, the raw speed suddenly drops to 5 knots.
This is clearly impossible but the error state communicated
by the sensor (2 is for normal operation and 0 for error)
occurs 960 milliseconds too late. For about one second, the
entire measurement chain which uses this information was
incorrect, this is not acceptable.

By using the fault detection rule (19) based on the
prediction of the filter, it is able to identify bad measurements
from their very first iteration.

The results from Figure 4 show that we are able to detect if
the data provided by the sensor are valid or not. In this example
if the values are not valid then no speed is communicated to
the system, however a speed measurement is required.
In the next section, we will present a solution in order to

Fig. 4. Fault detection. Sea recording on a 60’ Imoca.

provide a speed value when the one provided by the transducer
is no longer valid.

III. SOW SUBSTITUTION

In order to provide an alternative for surface speed when
the sensor is unable to provide a valid one, we propose to rely
on another sensor: the GNSS receiver. Firstly, because of its
ready availability and secondly because it relies on a different
technology. Both sensors therefore have few common causes
of breakdowns.
However the GNSS receiver provides speed information which
is not in the same referential as the one from the speedometer.
Indeed the speedometer measures the flow velocity of the
water, therefore the boats moving speed relative to the water
surface. Unlike the GNSS receiver which measures its speed
in the Earth referential, relative to the ground.

A. Assumptions

Surface and ground speed differ with the effect of current
and leeway. To simplify the calculations we consider that
the current and leeway are constant over the iteration time.
So we can say that surface and ground speed differ from an
almost constant offset.
This may also be written as:
The derivative of the speed relative to the water and the
ground are identical.

Compared to the previous implementation, measurement
(20) and state (22) vectors are enhanced by ground speed.

y =

(
SOW
SOG

)
(20)



We retain that the boat acceleration is constant between two
iterative steps so:

ŜOGk = ŜOGk−1 + ̂AccSOGk−1 × Te (21)

X =


ŜOĜAccSOW

ŜOĜAccSOG

 (22)

Adding SOG to the state vector (22) aims to take advantage
of the GNSS receiver information when surface speed is no
longer available. We must now define the method that takes
advantage of this new sensor.

B. Taulerant fault estimator

Unlike the previous implementation, transition and
observation matrices are no longer constant.
We will switch between two models with their respective
matrices based on the state of the sensor, if the sensor is
detected as being in default or not. We use subscript .N for
normal operation mode and .F when the sensor has been
identified as faulty.

1) Normal operating mode: When the transducer is opera-
tional, the model is fed by each sensor, the observation matrix
(23) includes two inputs, the whole measurement vector.

HN =

[
1 0 0 0
0 0 1 0

]
(23)

We find the same pattern (14) in the transition matrix (24)
since it uses the same model and same filter order as for
fault detection, with the additional dimensions for speed over
ground.

FN =


1 Te 0 0
0 1 0 0
0 0 1 Te
0 0 0 1

 (24)

2) Substitution mode: When condition (19) is satisfied,
information returned by the faulty sensor must be rejected.
Compared to (23) the substitution observation matrix (25) no
longer takes into account information from the sensor to feed
the model.
HF prevents the use of bad data during the a posteriori
estimate (7).

HF =

[
0 0 0 0
0 0 1 0

]
(25)

It is the previous assumption which suggests that the deriva-
tive of the speed relative to the water and the ground are
identical that allows us to maintain an evolution of the surface
speed based on the variations of the other. The transition
matrix (26) no longer uses the SOW accelerations to update
the estimate but uses those from the SOG.

FN =


1 0 0 Te
0 1 0 0
0 0 1 Te
0 0 0 1

 (26)

The a priori estimate ̂SOW is now supplied by the SOG
derivative. The evolutions of ̂SOW are then based on those
from the speed over ground estimate.
Assumptions and approximations made must now be taken
into account.

C. Noises matrices

The sensor’s characteristics do not change whether they are
in fault or not. There is no reason to change their noise, σSOW

is therefore the same. Although the GPS receptor used is very
accurate, the order of magnitude of σSOG is two times higher
than σSOW .

R =

[
σ2
SOW 0
0 σ2

SOG

]
(27)

Concerning noise models, when the transducer is estimated
to be valid, the noise process matrix is similar to (15).

QN =


0 0 0 0
0 εAccSOW

2 0 0
0 0 0 0
0 0 0 εAccSOG

2

 (28)

However QF does not refer to the same model, therefore
it as to be adapted:
ε4Acc represents the modelling error introduced by the
assumption that the ground and surface acceleration are
identical. As εAccSOG and ε4Acc are two independent
variables the standard deviation of their sum is equal to:√
εAccSOG

2 + ε4Acc
2

εSOW is no longer equal to zero because it would mean
that the model is absolutely correct : εSOW = ε4Acc ×Te

During substitution, Q becomes:

QF =


εSOW

2 0 0 0

0 εAccSOG
2 + ε4Acc

2 0 0
0 0 0 0
0 0 0 εAccSOG

2


(29)

D. Results

We have applied our tolerant fault estimator to the same
application as in (19). Results are shown in Figure 5.

The first interesting thing to notice in this case is the fact
that the ErrorState indicates that the sensor status remains at
2. This means the sensor is not aware of its own fault, despite
the relatively long duration (4 sec).



Fig. 5. SOW substitution during a fault.

The Fault detection is performed at the right moment as
soon as the condition (19) is satisfied. At this moment the
filter switches to the substitution model. SOW estimate X
starts to follow SOG variations during all the substitution
phases and we can see that the false measurements are
correctly rejected.
Throughout this phase, the filter uncertainty increases, due
to εSOW which is added to each iteration of (5) and which
cannot be reduced during (8) since HF (1, 1) is equal to zero.

A return to normal operating mode does not occur as
soon as the condition (19) is no longer met because we
want to ensure that the sensor has recovered the signal for
a few iterations. The artefact of uncertainty which appears
at the hang-up is due to the switching of the covariance
matrices which have lost their continuity. It is not of great
concern because we want to give more importance to the
measurements during this transition phase.

Our system now enables the detection of errors and proposes
the use of substitution data so that the rest of the measurement
chain continues to operate properly. Furthermore our approach
also helps to improve signal quality when the sensor is not in
an error state. The following section will present this aspect.

IV. SIGNAL IMPROVEMENT

The signal processing functions developed in the previous
sections allow possibilities other than the fault detection. As
the tools are in place, we will use them to improve the signal
quality.
The ultrasonic sensor is used in a navigation system that
calculates and provides commands to the autopilot 25 times

per second, but the sensor provides new data only 2 to 4 times
per second, so there are two issues with this situation. The first
is that the data refresh rate is not fixed, so it must be taken
into account when applying the Kalman filter.
The second is that the autopilot computes its algorithms at
a higher frequency than the one provided by the sensor. To
be efficient the sensor should provide its values as fast as the
autopilot computes its own.

A. Time varying filter
The information is coming from the sensor at random

intervals. It is necessary to take this into account during the
predicting step to propagate the state covariance (5). The
transition matrix (14) needs to be reassessed to take into
account the exact time since the last iteration: Tek.

F =

[
1 Tek
0 1

]
(30)

Likewise, the process noise covariance matrix (15) must be
revised as it takes into account the acceleration model noise
εAccSOW itself related to Tek. Q becomes:

Q =

[
0 0
0 εAccSOW

2
k

]
(31)

The next section presents what can be done between the
measurement updates.

B. Improved frequency
As the navigation system runs its algorithms at 25Hz it is

preferable to do the same with the Kalman filter, or 6 to 12
times more often than the sensor refresh rate. The technique
is simple, as planned by the filter:
The prediction steps (4) & (5) are performed at each
iteration. Te used in the transition matrix (14) is constant
and worth 1/25. However the process noise covariance matrix
(15) increase with each new prediction steps because the
acceleration model noise εAccSOW refers to time spent since
the last update step.
When a new data from the sensor is available, update steps
(6), (7) &(8) are performed.

Figure 6 shows the filter 25Hz predictions (red dots) be-
tween the measurements updates (o). As the estimate takes
account of acceleration, the signal is continued until the next
measurement update. When this acceleration is well modelled,
prediction coincides with the next sensor measurement. The
constant line corresponds to the shape of the signal that we
would be forced to use without the prediction: holding the last
measurement until the new one.

Note in Figure 6 that the uncertainty increases with
the square of the time since the last measurement. This
is in agreement with the noise covariance matrix (15),
which increases with each prediction iteration without new
measurement updates.

The next section will present the complete methodology
flow (from fault detection to the improved signal).



Fig. 6. Signal prediction between the measurement update.

C. Methodology flow

Figure 7 summarizes the decision process for updating the
model at 25Hz.

Figure 7 shows the process used when the sensor is not
at fault, as for the example in Figure 6. At each iteration, if
no new sensor data is available, then the signal is constructed
using the prediction. If new data is available, then we first
apply the fault detection method (section II). If the outcome
is positive we switch to the substitution process (section III).
If the data is good then it is used to update the estimate.

D. Adjustable Process Noise

We have seen in Figure 6 that the speed prediction between
measurement updates is suitable when we are in conditions de-
scribed by the model, if the acceleration is close to a constant.
However this is no longer the case when the boat switches
from an acceleration phase to a deceleration phase, and vice
versa. Indeed, in this situation the model approximation is
borderline and tends to delay the signal. The first-order filter
is no longer optimal.
It is the situation presented in Figure 8: where the sensor is not
in fault but subjected to waves. The resulting readout speeds
are very fluctuating, so estimated accelerations induce errors
and add noise to the signal. Therefore it is necessary to find a
law that will detect these circumstances and will then correct
the behaviour of the model.

Shalom [7] described a method adapted to this situation;
Adjusting the process noise Q according to criteria based on
normalized residual squared:

εk = resTk S
−1
k resk (32)

Fig. 7. Flowchart.

With Sk measurement covariance described in (18)

(32) offers two possibilities, either Q is proportional to ε or
increases by a scaling factor whenever ε exceeds a threshold.
The second solution adopted: switching between two noise
covariance matrices Q whenever ε is higher or lower than a
threshold.

εk > εmax (33)

The switching threshold εmax is chosen such that the
probability of it being reached under normal conditions
is small. Normalizing the residual by the measurement
covariance ensures that the residual is disassociated from
measurement noise. Choosing εmax has to be done empirically
but can be from a baseline in the order of 3 to 5 times the
sensor/signal standard deviation σSOW .

When condition (33) is reached, the process noise εAccSOW

is increased which will give more weight to the measurements.
So the estimate will adhere to the measurements in such
situations; this case is presented in Figure 9 which uses the
same signal as Figure 8 but adjusting Q when condition (33)
is met. The estimates do not add more noise; the behaviour of
the filter is comparable to a low pass filter.

V. CONCLUSION

In this paper, we have shown that even if the ultrasonic
sensor is intrinsically accurate, sometimes errors may appear.
In this case, all computations derived from these data also gen-
erate errors which can be harmful to the system’s performance
(here on a boat). In order to detect these faults, we proposed
the use of a Kalman filter that allows us not only, due to its



Fig. 8. Poor acceleration estimate.

predictive property, to detect the sensor’s errors (cf. section II)
but also to provide an alternative way to obtain a boat speed
measurement when the sensor is in fault (cf. section III). The
implementation of this filter also improves the signal quality
when the sensor operates correctly, indeed we are able to use
the predictive property of the Kalman filter in order to predict
the sensor data between two measurement cycles (cf. section
IV). However, particular attention to the noise model must be
given in order to adjust it when the transition matrix no longer
correctly represents the behaviour.
We have shown that with our proposed methodology, the
ultrasonic sensor is now reliable and even more accurate.

Fig. 9. Here, see adjusted process noise.
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