
HAL Id: hal-02141260
https://hal.science/hal-02141260v1

Submitted on 27 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of Finely-Pipelined GF(P ) Multipliers for
Flexible Curve based Cryptography on FPGAs

Gabriel Gallin, Arnaud Tisserand

To cite this version:
Gabriel Gallin, Arnaud Tisserand. Generation of Finely-Pipelined GF(P ) Multipliers for Flexible
Curve based Cryptography on FPGAs. IEEE Transactions on Computers, 2019, 68 (11), pp.1612-
1622. �10.1109/TC.2019.2920352�. �hal-02141260�

https://hal.science/hal-02141260v1
https://hal.archives-ouvertes.fr


1

Generation of Finely-Pipelined GF(P ) Multipliers
for Flexible Curve based Cryptography on FPGAs

Gabriel Gallin and Arnaud Tisserand, Senior Member, IEEE

Abstract—In this paper, we present modular multipliers for
hardware implementations of (hyper)-elliptic curve cryptography
on FPGAs. The prime modulus P is generic and can be
configured at run-time to provide flexible circuits. A finely-
pipelined architecture is proposed for overlapping the partial
products and reductions steps in the pipeline of hardwired
DSP slices. For instance, 2, 3, or 4 independent multiplications
can share the hardware resources at the same time to overlap
internal latencies. We designed a tool, distributed as open source,
for generating VHDL codes with various parameters: width of
operands, number of logical multipliers per physical one, speed
or area optimization, possible use of BRAMs, target FPGA. Our
modular multipliers lead to, at least, 2 times faster as well as 2
times smaller circuits than state of the art operators.

Index Terms—Modular arithmetic, Montgomery multiplica-
tion, elliptic curve cryptography, arithmetic operator generation.

I. INTRODUCTION

Designing efficient modular arithmetic is key for imple-
menting asymmetric cryptography. In such applications, mul-
tiplication is the most important operation for speed and
cost purpose. Several algorithms and architectures have been
proposed. Here, we deal with modular multipliers for GF(P )
used in implementations of (hyper-)elliptic curve cryptography
((H)ECC) on embedded systems. In our cryptographic applica-
tions, we target generic primes (i.e. P has a non-specific binary
representation) and field sizes about 128 bits for HECC and
256 bits for ECC. We do not consider field sizes smaller than
100 bits or larger than 400 bits for our applications. In order
to provide flexible operators, the modulus P can be defined at
run time. This allows us to easily support various curves and
applications in one circuit.

We focus on FPGAs embedding hardwired DSP slices
dedicated to operations such as a× b± c over small integers
(typically 10 to 20 bits). To exploit them at a high frequency,
one has to use the dedicated pipeline registers inside each
DSP slice. This can be tricky in iterative algorithms where the
number of operations per iteration is smaller than the pipeline
depth (leading to idle stages in the schedule). Hyper-threading
has been proposed in this type of situation, see for instance [1].
One physical unit is simultaneously shared by several logical
units for overlapping internal latencies.

In [2], we proposed finely-pipelined modular multipliers
(FPMMs) for 128-bit HECC designed by hand for a few
FPGAs (the URL is given in the references Section). Below,
we extend these results with new optimizations, a wider

G. Gallin is with CNRS, IRISA UMR 6074, University Rennes and INRIA
Centre Rennes - Bretagne Atlantique, France.

A. Tisserand is with CNRS, Lab-STICC UMR 6285 and University South
Brittany, in Lorient, France. (arnaud.tisserand@univ-ubs.fr).

parameter space and more supported FPGAs. The parameter
space is so wide that we decided to design a tool, distributed
as open source [3], to generate optimized FPMMs in VHDL.
Compared to [2], our tool allows us to explore multipliers
with:
• flexible prime P defined at run time (P was fixed in [2]);
• fewer DSP slices and a shorter computation time;
• a higher ratio between the operations throughput and the

area cost compared to state of the art solutions;
• a higher frequency (close to the maximum allowed by the

technology, e.g. 502 MHz upon 550 MHz in Virtex-5);
• a larger parameter space at design time: width of

operands, number of logical multipliers per physical one,
more supported FPGAs, potential use of BRAMs, and
new area/speed optimizations.

Thanks to our finely-pipelined architecture, various opti-
mizations and our exploration tool, we can propose more
efficient multipliers than the state of the art. As an example,
for a 128-bit prime modulus on a Virtex-7 FPGA, our best
multiplier (code name F44D below) only requires 9 DSP
slices, 600 LUTs and 151 clock cycles at 633 MHz to compute
8 modular multiplications (239 ns). As a comparison, the best
operator from the state of the art (code name MA16) requires
21 DSP slices, 1182 LUTs, and 167 clock cycles at 350 MHz
(478 ns). At least, our most efficient solutions are 2 times
faster as well as 2 times smaller than state of the art one for
typical applications in HECC.

Section II recalls the state of the art. Our FPMM operators
and tool are described in Sections III and IV respectively.
Implementation results and comparisons are reported and
analyzed in Section V. Finally, Section VI concludes the paper.

Notations:

• modular multiplication A×B mod P with P prime;
• n the width of P (e.g. 128, 256 bits);
• m the width of field elements (m > n) in Montgomery

domain decomposed into s words of w bits (m = sw);
• σ the number of logical multipliers (LMs) per FPMM;
• Clock cycles are denoted cycles and abbreviated cc;
• λ the multiplication latency (i.e. duration in cc);
• τ the interval between 2 multiplications in a LM (in cc);
• LSW (/MSW) stands for least (/most) significant word.

II. STATE OF THE ART IN MODULAR MULTIPLICATION

In this work, we do not consider specific modulus forms
such as (pseudo)-Mersenne primes where the reduction can
be performed using a few shifts and additions. These specific



2

primes lead to fast (H)ECC implementations (see for in-
stance [4]), but they are limited to only one field characteristic.
Our target applications require the support of several curves
and fields then we only deal with generic primes.

Several algorithms and architectures for modular multi-
plications with generic primes have been proposed. Some
solutions use the interleaved algorithm from Blakley [5]: e.g.
[6], [7] and [8]. Other solutions use the reduction method from
Barrett [9]: e.g. [10]. Montgomery Modular Multiplication
(MMM) [11] algorithm and its numerous variants are widely
used for both software and hardware implementations.

Thanks to operands and results represented in Montgomery
domain, MMM performs the modular reduction by the help of
two multiplications, a few additions, and one shift: e.g. [11],
[12]. In [13], Walter proposed to remove the final subtraction
in the original MMM by enlarging the domain such that the
internal parameter R is R > 4P (instead of R > 2P ).

In [14], five MMM variants are compared. Among them,
the Coarsely Integrated Operand Scanning (CIOS) algorithm
was proposed for software implementations with small com-
putation time and memory requirements, see Algo. 1. CIOS
efficiently interleaves partial products and partial reductions
steps in a regular decomposition using high-radix subwords
(while Blakley algorithm uses interleaving but with very small
subwords). Efficient CIOS implementations on FPGAs have
been proposed in [15], [16], [17] using DSP slices. Among
MMM solutions, the CIOS algorithm, and its variants, are
widely used in cryptographic applications.

The high-radix algorithms proposed in [12] relax data
dependencies inside iterations and simplify the quotient com-
putation by enlarging the internal datapath with a wider Mont-
gomery domain. Later, [18] and [19] used this idea to design
FPGA implementations with increased internal parallelism
and reduced computation time. The 256-bit ECC processor
over generic GF(P ) presented in [19] is one of the fastest
on FPGAs. Their multiplier requires 37 DSP slices. The
reported frequency is 250 or 291 MHz for Virtex-4 or Virtex-5
respectively (the authors state that the critical path is in the
multiplier), but no detailed area metrics are reported.

As the results from [19] are very good, we reproduced
their multiplier on more FPGAs and other sizes. In our first
work [2], we only implemented the 128-bit version of the
multiplier from [19]. Since this first work, we added a 256-
bit version of their multiplier. Our implementation results
of the multipliers from [19] are reported in Table III and
denoted MA16. They are very close to the original results
from [19]. For 256 bits, we also need 37 DSP slices, and we
have very close frequencies on the same FPGAs. Only our
internal schedule is slightly different: for one MMM our im-
plementation requires 37 cycles instead of 35, but the interval
between 2 multiplications is reduced to 28 cycles instead of 29.
Our re-implementation of the multiplier from [19] is similar
to the original one. Thanks to all the details provided in [19],
we were able to reproduce their results with a good accuracy.
This was not possible for other works.

Iterative Digit-Digit Montgomery Multiplication (IDDMM)
was proposed in [20] for 256-bit to 1024-bit generic primes.
This solution was inspired from CIOS. For comparisons, we

use their results for 256-bit multipliers on Virtex-5 with 64-bit
internal datapath (solution denoted below MO64).

In [21], a modified IDDMM was proposed on Virtex 7. For
comparisons, we use their results for 256-bit multipliers with
32-bit (denoted AM32) and 64-bit (AM64) internal datapaths.

Systolic architectures have been proposed for MMM in [22]
and frequently optimized: [23], [24] and [25]. For compar-
isons, we use some results from [26] where systolic CIOS
implementations are reported for 128 and 256-bit multipliers.
Internal decompositions into 8 and 16 words have been pro-
posed and are denoted below MR8 and MR16.

Using the CIOS and FIOS (Finely Integrated Operand
Scanning) algorithms from [14], the work presented in [27]
recently proposed area-efficient MMMs for ECC on low-power
IGLOO 2 FPGAs. For comparisons, we use their results with
CIOS (denoted MAS1) and FIOS (denoted MAS2). Their units
embed both MMM and modular addition/subtraction.

Other solutions have been proposed for ASIC implemen-
tations where small multipliers (such as DSP slices) cannot
be used efficiently. For instance, the Multiple-Word Radix-
2 Montgomery Multiplication (MWR2MM) proposed in [28]
uses iterations with products of very small 2 or 4-bit words
by the full multiplicand. The works [29], [30], [31] and [32]
provide interesting results for ASIC implementations. Below,
we only target FPGA implementations with DSP slices. Then,
we do not consider this type of MMM variant.

III. FINELY-PIPELINED MODULAR MULTIPLIERS

A. Fine pipeline for speeding-up GF(P ) multipliers

We use the CIOS algorithm from [14] without final subtrac-
tion from [13], see Algo. 1, because it is simple and regular.
In the outer loop (index i), the internal computations have
sequential dependencies which are difficult to map in DSP
slices without “bubbles” in the pipeline at a high frequency.
Two typical solutions in the literature mitigate this dependency
problem: i) using a more complex algorithm with relaxed
dependencies (e.g. [12]); ii) reusing some hardware resources
in different tasks with a more complex control (e.g. [27]).

Internal values are represented on m bits, instead of n for
“raw” GF(P ) elements due to the Montgomery domain. Based
on the CIOS algorithm from [14] without final subtraction
from [13], we select R > 4P (where R = 2m). Then m
is slightly larger than n. In most of FPGAs, hardwired units
are not wide enough for cryptographic sizes (128 or 256 bits
in our applications). In our target FPGAs, BRAMs words
are at most 36-bit wide while DSP slices are 18 × 18 or
18×25 bits units. Then processing each GF(P ) element would
require many parallel BRAMs and DSP slices. But using
many BRAMs is useless since the number of intermediate
GF(P ) elements is small in ECC and HECC (up to 10 and
20 respectively). In FPMM, we decompose m-bit elements
into w-bit smaller words processed sequentially (w � m).
We denote s the number of w-bit words required for each
operand with m = sw. This processing scheme efficiently
fits DSP slices and BRAMs in our FPGAs. It also reduces
the interconnect area in a complete cryptoprocessor. Finally,
it leads to higher clock frequencies.



3

We use CIOS for its simplicity and regularity properties
combined to a finely-pipelined architecture to overlap internal
latencies in the hardwired pipeline of DSP slices. A physical
FPMM supports σ logical multipliers for independent MMMs
simultaneously. In FPMM, operand loading and result output
are limited to one LM per cycle (see Figure 1).

The behavior for σ = 3 LMs and s = 2 words per element
is illustrated in Figure 1 (C means cycle):

• C1: load w-bit words (a0, b0) for the first operation;
• C2: load (a1, b1) and start A×B in LM1;
• C3: load (c0, d0) for the second operation;
• C4: load (c1, d1) and start C ×D in LM2;
• C5: load (e0, f0) for the last operation;
• in next cycles, all LMs compute σ independent products;
• Cδ: output the w-bit word AB0 of the result;
• Cδ + 1: output the word AB1 of the result;
• the next 4 cycles output products CD and EF .

After loading the operands (e.g. a0,...,s−1, b0,...,s−1), all
pipeline stages in each DSP slice perform intermediate com-
putations for all independent MMMs at different clock cycles.

We denote λ the latency between the loading of the first
word of the operands and the output of the last word of the
result (i.e. δ + 1 cycles in our example).

The interval between two successive MMMs in the same
LM, denoted τ , is less than λ. New operands can be loaded
in the first stage of the pipeline while the last stages are
finishing the current MMM. In our example on Figure 1, this
corresponds to τ = δ − 1 cycles.

In the CIOS Algo. 1, the computations at iteration i of the
outer loop are decomposed into 3 dependent tasks:

• Task 1: lines 3–5 compute the multiplication of word ai
by B (with accumulation of previous iteration i− 1);

• Task 2: line 6 computes the “reduction quotient” qi for
the Montgomery algorithm;

Task 1

Task 3

Task 2

Input : A =
∑s−1

i=0 ai 2
iw , B =

∑s−1
j=0 bj 2

jw ,
P =

∑s−1
j=0 pj 2

jw such that 0 ≤ A,B < 2P

Requires: 4P < 2m and P ′ = −P−1 mod 2w

Output : T ≡ (AB 2−m) mod P , 0 ≤ T < 2P
begin

t0...s−1 ← 0
1 for i = 0 to s − 1 do
2 d← 0
3 for j = 0 to s − 1 do
4 (d, uj)← tj + ai × bj + d

5 us ← d
6 qi ← (u0 × P ′) mod 2w

7 c← 0
8 for j = 0 to s − 1 do
9 (c, tj−1)← uj + qi × pj + c

10 (c, ts−1)← us + c

11 return T =
∑s−1

j=0 tj 2
jw

Algorithm 1: CIOS algorithm without final subtraction
(based on [14] and [13]).

Fig. 1. Illustration of operands transfers and computations in FPMM for
σ = 3 and s = 2. Operands pairs (A,B), (C,D) and (E,F ) and resulting
products AB, CD and EF are decomposed into w -bit words.

0

Task 2

Task 3

Task 1

RAM RAM

Fig. 2. FPMM architecture, without all control details, for σ = 3 and s = 4
(i.e. 128-bit MMM). Blue, green and purple boxes are hardware blocks for
each task in Algo. 1. Yellow boxes are DSP slices (with internal pipeline),
and grey boxes are registers. Critical path for the outer loop is in red.

• Task 3: lines 8–10 compute the product qi × P (with an
accumulation of the value computed in task 1).

Between task 3 at iteration i and task 1 at iteration i + 1,
we discard the least significant word (see Sec. III-F for imple-
mentation details) accordingly to the Montgomery algorithm.

Our FPMM architecture, presented in Fig. 2, is designed to
fit this decomposition into 3 tasks. Each task is handled by a
dedicated block.

With pipelined DSP slices, the result from task 3 is not
immediately available in task 1 for the next iteration i + 1.
We need to wait for the pipeline depth. Our FPMM solution
is inspired from hyper-threading to overlap this delay. With
σ independent MMMs in one FPMM, we can always fill all
stages without any “bubbles” in the pipeline. Hyper-threading
principle is illustrated in Fig. 3 for a 3-stage iterative pipeline.
In the top of Fig. 3, only 1 MMM (in green) is computed in
the pipeline, leading to idle stages. In the bottom of Fig. 3,
idle stages are used to compute 2 other independent MMMs
(in red and blue) at the same time and all stages are used after
the initial latency.

B. Selection of parameters s and w

Both s and w impact the performances. s is the number
of iterations in both outer and inner loops in Algo. 1. In our



4

time

Fig. 3. Illustration of hyper-threading principle in a 3-stage iterative pipeline
for σ = 1 (top) and σ = 3 (bottom). Colors represent different independent
operations.

case, the minimal possible value for s is 2 (this ensures the
correct use of the CIOS principle). A larger s leads to a larger
latency λ (it grows as O(s2)). The decomposition into w bits
requires w × w bits partial products. w must be as large as
possible to efficiently fill the operand width in the DSP slices
and reduce s. Currently, we do not consider “rectangular” DSP
configurations such as 18 × 25 bits (we plan to see how we
can exploit those asymmetric operators in the future). We use
18× 18 bits DSP slices (designed for two’s complement). For
unsigned integers, one has to set the MSB to 0 and only use
the 17 LSBs (as stated in the FPGA documentation). Then w
should be 17 bits or a multiple of 17 to use the full capacity
of the DSP slices. We explored several values for w : 17, 34,
51 and 68 bits, with respectively 1, 4, 9 and 16 DSP slices
for w × w bits partial products.

For w = 17 bits, we need only one DSP slice per block (3
in total for one FPMM). One BRAM is large enough to store
both operands (e.g. A and B) for each LM. But the latency λ
is very large due to a large s .

For w larger than 36 bits, we need several BRAMs per
operand (with a very low memory usage, for instance HECC
with w = 68 only requires 2 words). w larger or equal to 51
bits leads to huge circuits (at least 9 DSP slices per block)
and a lower frequency. Then we do not consider large w
parameters.

We select w = 34 bits. We need 4 DSP slices in each block
for tasks 1 and 3 as illustrated in Fig. 2. A complete FPMM
requires 11 DSP slices. All words are small enough to fit into
one single BRAM. The capacity of the smallest target BRAM
is 9 Kb on Spartan FPGAs. The 2 BRAMs in a FPMM allow
to store more than 200 w -bit words. They can store at least 50
pairs of 128-bit HECC operands or 25 pairs for 256-bit ECC.
In practice, the number of logical multipliers σ is way smaller
than those bounds (see Subsection III-C). Setting w = 34 bits
is the most efficient solution in our FPGAs for both 128-bit
HECC (s = 4) and 256-bit ECC (s = 8).

Internal loops in tasks 1 and 3 are processed in s cycles.
One extra cycle is required for final carry propagation in each
task: line 5 for task 1 and line 10 for task 3 in Algo. 1. We
used this s + 1 cycles schedule in our previous work [2]. In
Section III-F, we propose a new improvement to remove this
extra cycle in tasks 1 and 3.

For the block dedicated to task 2, we showed in [2] that only
3 DSP slices are required to compute qi due to the reduction
modulo 2w . In Section III-E, we propose an improved version
of this hardware block with only one DSP slice.

C. Selection of parameter σ

Parameter σ must be at least greater than 2 for pipelining
several logical multiplications in the operator. The outer loop
(index i) in Algo. 1, task 1 → task 2 → task 3 → task 1,
colored in red on Figure 2, has a duration of α cycles.
The minimal value for α is 15 cycles, coming from the
FPMM internal architecture and configuration of DSP slices
in hardware blocks for tasks 2 and 3. This value only depends
on words size w . It does not depend on the field size (e.g.
128, 256 bits) and on the number s of words.

The inner loops in tasks 1 and 3 require s+ 1 cycles each
to load and start the partial products. In order to fill all stages
without “bubbles”, one needs to select σ such that:

σ =

⌈
α

s + 1

⌉
.

If σ is too big, result from task 3 must be delayed to wait
until task 1 starts all intermediate computations in all LMs.
Then σ(s+1)−α extra registers must be inserted. This would
lead to a larger FPMM without any speed gain. If σ is too
small, there are α− σ(s + 1) “bubbles” in the pipeline. This
leads to under-utilizing some hardware resources.

The 128-bit architecture, s = 4 and w = 34, without
the improvement from Section III-F, is illustrated in Fig. 2.
Fortunately, s + 1 = 5 leads to a minimal σ = 3 without need
to increase α (no extra register).

For 256-bit, s = 8 and w = 34, the minimal α is not a
multiple of s + 1 = 9. To stay close to the minimal α = 15,
two σ values are possible: 1 and 2. With σ = 1, we have
the same architecture but 6 “bubbles” in the pipeline (40 %
of time is then wasted). With σ = 2, we have to add 3 extra
w -bit registers between task 3 and task 1. Then there is no
“bubble” in the pipeline.

Parameter σ = 3 or 2, respectively for 128 or 256-bit
MMM, is the smallest possible value. However, a larger σ (and
larger circuit due to extra registers) may lead to a better speed-
area trade-off. We explore different values for σ in Section V.

D. Differences with our first FPMM published in [2]

Our first FPMM [2] was manually implemented only for
128-bit GF(P ) fields for the fixed parameters w = 34 bits,
s = 4 words and σ = 3 LMs. The prime P was a constant
fixed at design time. Implementations were done on Virtex-4,
Virtex-5 and Spartan-6 FPGAs. It was more efficient than state
of the art. But it was not possible to explore various sizes and
parameters by hand.

The current paper presents the tool (see Section IV) we
developed for generating various FPMMs, in VHDL, with
several major improvements:
• Various widths n of GF(P ) elements specified at design

time (128 and 256 bits examples are reported below);
• Flexible prime P defined at run time for a fixed GF(P )

width n (see subsection III-H);
• Various values of the parameter σ;
• Area reduction with 9 DSP slices instead of 11 (see

optimization in subsection III-E);



5

MSW
LSW

0

0

0

0
time

j=0 j=1 j=2 j=3 j=4 j=0 j=1 j=2 j=3 j=4

j=0 j=1 j=2 j=3 j=0 j=1 j=2 j=3 j=4j=4

b
e
fo
re

a
ft
e
r

Fig. 4. Schedule example for 2 MMMs (colors) before and after latency
reduction (rectangles are w -bit words computed at iterations of index j).

• Reduced latency λ of s × s cycles instead of s × (s + 1)
(see optimization in subsection III-F);

• Frequency increased up to 20 % (and now close to the
maximal frequency of the DSP slices or BRAMs) with
improved control;

• Alternative architectures inside block for task 1 (see
subsection III-G);

• More supported FPGA families.
As in [2], we still support architectures with either BRAMs

or DRAMs for operands memories.

E. Reduction of the number of DSP slices in block 2

The block dedicated to task 2 computes the “reduction
quotient” qi from the Montgomery algorithm for each iteration
of the outer loop (line 6 in Algo. 1). One w × w bits partial
product modulo 2w must be computed for each qi. For w = 34,
this only requires 3 DSP slices instead of 4 due to the reduction
modulo 2w (see [2] for details). These 3 DSP slices were used
with different configurations.

We analyzed the schedule of all internal operations. We
were able to optimize the control and spread the three 17×17
multiplications at different cycles in only one DSP slice
without any penalty on the global latency α. Now the only
DSP slice uses 3 different configurations at different cycles.
The DSP slice inputs are also selected among several possible
internal values at the right cycle by the new internal control.

This optimization reduces the number of DSP slices from
3 to 1 in block 2 (from 11 to 9 in a complete FPMM). It
requires a few new registers (less than 10 bits in total), 2 new
w -bit multiplexers, but it does not reduce the frequency.

F. Latency reduction

In the FPMM from [2], inner loops in tasks 1 and 3 both
require s cycles for operand loading plus 1 extra cycle for the
carry propagation into the MSW for task 1 (us at line 5 in
Algo. 1) and task 3 (ts−1 at line 10). It introduces a “bubble” in
the DSP slices pipeline at the transition between 2 consecutive
MMMs in 2 LMs as illustrated on top of Fig. 4.

We propose a modification in the control to remove this
“bubble” as illustrated on the bottom of Fig. 4. Our modifica-
tion targets the carry propagation in lines 5 and 10 in Algo. 1.
Modified CIOS algorithm is described in Algo. 2, and the new
control now produces:
• At the end of task 1 (line 4 in Algo. 2):

ai ×B + Ti−1 + u(p)s

• At the end of task 2 (line 5 in Algo. 2):

qi =
(
(ai ×B + Ti−1) mod 2w × P ′

)
mod 2w

• At the end of task 3 (line 7 in Algo. 2):

ai ×B + Ti−1 + qi × P︸ ︷︷ ︸
Ti×2w

+u(p)s + c(p)︸ ︷︷ ︸
t
(p)
s−1

Where all variables with (p) as exponent are the values
computed in the previous independent MMM.

Task 3

Task 1

Task 2

Input : A =
∑s−1

i=0 ai 2
iw , B =

∑s−1
j=0 bj 2

jw ,
P =

∑s−1
j=0 pj 2

jw such that 0 ≤ A,B < 2P

Requires: 4P < 2m and P ′ = −P−1 mod 2w

Output : T ≡ (AB 2−m) mod P , 0 ≤ T < 2P
begin

t0...s−1 ← 0; d← 0; c← 0
1 for i = 0 to s − 1 do
2 for j = 0 to s − 1 do
3 vj ← tj + ai × bj
4 (d, uj)← vj + d

5 qi ← (v0 × P ′) mod 2w

6 for j = 0 to s − 1 do
7 (c, tj−1)← uj + qi × pj + c

8 ts−1 = t
(n)
−1

9 return T =
∑s−1

j=0 tj 2
jw

Algorithm 2: Proposed CIOS algorithm without final
subtraction (based on [14] and [13]) modified for latency
optimization. Value t

(n)
−1 in line 8 is the value of t−1

computed at iteration i in the next LM.

In the original CIOS Algo. 1, computations of w ×m bits
partial products (ai ×B and qi × P ) in inner loops (index j)
require 4 clock cycles, plus 1 extra clock for carry propagation
(words of index j = s = 4).

In our optimized Algo. 2, the result ts−1 of the first LM
at iteration j = 4 and the result t−1 of the second LM at
iteration j = 0 share the same w -bit word. This optimization
is possible as the LSW t−1 of the result is always zero and is
discarded in MMM. We use this word during each outer loop
iteration to store intermediate values for the next LM. In the
following, (c) and (n) denote respectively the values computed
in the current and next LM.

Below, we show that sharing one w -bit word between
successive LMs to store two different intermediate values
throughout intermediate computations does not modify the
expected results. We need to verify that t(n)−1 = t

(c)
s−1 < 2w

thanks to the properties of the MMM algorithm. We also verify
that overlapping the MSW ts−1 of the current LM with the
LSW t−1 of the next LM does not create “hidden” carries
between results of successive independent MMMs.

In Algo. 2, carries d and c are propagated between succes-
sive LMs. As in CIOS Algo. 1, we define us = d after the
last iteration of the first inner loop (lines 2 to 4 in Algo. 2),
and ts−1 = us + c after the last iteration of the second inner
loop (lines 6 and 7 in Algo. 2). To compute Ti in the current
LM, we need the value t

(n)

−1, computed at iteration j = 0 of
the second inner loop in the next LM:

t
(n)
−1 =

(
u
(n)
0 + q

(n)
i × p0 + c(c)

)
mod 2w . (1)



6

Due to the propagation of carry words us between successive
LMs, we have

u
(n)
0 =

(
T

(n)
i−1 + a

(n)
i × b(n)0 + u(c)s

)
mod 2w . (2)

However, the “reduction quotients” qi are computed before the
propagation of the us carry words, and then

q
(n)
i =

(
(T

(n)
i−1 + a

(n)
i × b(n)0 × P ′

)
mod 2w . (3)

Putting together equations (1), (2) and (3), we obtain:

t
(n)
−1 = (T

(n)
i−1 + a

(n)
i × b(n)0 + u(c)s + q

(n)
i × p0 + c(c)) mod 2w

=
(

(T
(n)
i−1 + a

(n)
i × b(n)0 + q

(n)
i × p0)

+(u(c)s + c(c))
)

mod 2w .

(4)

Due to Montgomery algorithm, the LSW is equal to 0:

Ti−1 + ai × b0 + qi × p0 ≡ 0 mod 2w .

Then, from equation (4), the value t(n)−1 is now

t
(n)
−1 =

(
u(c)s + c(c)

)
mod 2w .

Value u(c)s is computed as:

u(c)s =

⌊
T

(c)
i−1 + a

(c)
i ×B(c) + u

(p)
s

2m

⌋
.

From properties of MMM algorithm, we have: 2m > 4P
0 ≤ B, Ti−1 < 2P < 2m−1

0 ≤ ai < 2w
(5)

Then the value of u(c)s is bounded by

0 ≤ u(c)s < 2w−1. (6)

Similarly, the value of c is

c(c) =


s−1∑
j=0

(
u
(c)
j 2jw

)
+ u(p)s + q

(c)
i × P + c(p)

2m

 .
From bounds in Eq. (5) we have:

0 ≤ c(c) ≤ 2w−2. (7)

We now use the bounds for u(c)s and c(c) in equations (6)
and (7) to bound the value of t(n)−1 :

0 ≤ t(n)−1 < 2w .

We then have:

t
(n)
−1 =

(
u(c)s + c(c)

)
mod 2w

= u(c)s + c(c)

= t
(c)
s−1,

and the result of MMM is

T (c) = t
(n)
−1 2(s−1)w +

s−2∑
j=0

t
(c)
j 2jw

=

s−1∑
j=0

t
(c)
j 2jw ,

which is less than 2m as 0 ≤ tj < 2w , ∀j ∈ [0, s − 1].
Results for independent MMMs in successive LMs then do
not overlap, and are the same as in original algorithm. �

This optimization removes the “bubble” but requires a mod-
ified architecture and control to deal with the overlap indicated
at line 8 of Algo. 2 and illustrated in Fig. 4. Fortunately, it
leads to a more regular control without any measurable area
overhead. The latency reduction impacts the FPMM pipeline
configuration. We now have: σ = dα/se cycles instead of
dα/(s + 1)e.

G. Optimization of the DSP slices configuration

All the DSP slices in [2] are configured with a 3-stage
pipeline as illustrated in Fig. 2. However, the first DSP slice
in task 1 (top left in Fig. 2) does not use the hardwired adder.

We provide two FPMM variants depending on the configu-
ration of the first DSP slice:
• Fast version with a 3-stage pipeline to reach a higher

frequency (only this version was available in [2]);
• Small version with only 2-stage pipeline. The total latency

decreases by one cycle, but the frequency in the DSP slice
also drops a little. This optimization reduces the delay for
operands loading in the 3 next DSP slices and allows us
to remove 3 w -bit registers.

Both variants have some interest depending on the param-
eters and the target FPGA (see examples in Sec. V).

H. Flexible P definition at run time

Unlike most of MMM literature solutions, our new FPMM
allows us to change P at run time. The parameters n, m, w ,
and s are fixed at design time, but P and P ’ can be defined
and loaded at run time in the configured FPGA.

Our new FPMM has now two running modes:
• Setup: P and P ’ are loaded and all LMs are reset;
• Run: MMMs are performed as described above for the

current P .
FPMM in “run” mode reads 3 w -bit words from P at every

clock cycle in task 3. This would require at least 2 w -bit
dual-port BRAMs (with a very few words). Storing P in the
operands BRAMs is not possible since they are used at every
cycle for the LMs. Only w bits are required to store P ’.

We chose to store P in w shift registers of depth s bits
(each one uses only one LUT since s is small). For P ’, we
use a single w -bit register (in regular flip-flops).

In “setup” mode, P and P ’ are loaded into dedicated
registers (respectively using A and B FPMM inputs). This
only requires s cycles and a few additional LUTs and flip-
flops.



7

Simul.

Sage

CAD Tools

FPGA Final
Report

inputs

Synth.
Implem.

generated
vhdl

programs + models

1

4

5

3

3

4

4

4 4

5 5

3

4
2

FPMM generator

Fig. 5. FPMM generator, in green, and its utilization flow. Commercial CAD
tools are in blue and the Sage mathematical program in grey.

I. Validation

At the arithmetic level, the only difference between our
FPMM and the original CIOS without final addition is the
latency reduction presented and proved in Sec. III-F. At the
architecture and implementation levels, we performed very
intensive simulations for the validation of our operators (see
Sec. IV). We used predefined operands and millions of random
ones with success.

IV. VHDL GENERATOR

We developed a tool dedicated to the automatic generation
of FPMMs for many parameter combinations. Our tool, avail-
able on Unix platforms as open source [3], is based on Bash
scripts and Python programs.

The generator input is a text file with the complete FPMM
specification: width m of operands, internal decomposition
parameters (s,w), number σ of LMs, target FPGA, operand
storage in BRAMs or DRAMs, enable/disable latency reduc-
tion optimization (see III-F), fast or small version (see III-G).
After verification of the specification consistency, the genera-
tor produces a set of VHDL files ready for implementation of
the selected FPMM on the target FPGA. The generator also
reports some computed properties such as τ and λ.

In order to help design space exploration, we also provide
in [3] scripts for synthesis, implementation and validation
steps. The complete flow, illustrated in Fig. 5 (with steps
in numbered circles), currently supports the following Xilinx
tools: ISE 14.7, ISim simulator and SmartXplorer.

Steps 1 and 2 respectively correspond to the user specifica-
tion and VHDL generation.

FPGA synthesis and implementation are performed in
step 3. SmartXplorer selects the best implementation after
many runs of the place and route tool (set to 100 by default).

Step 4 validates the mathematical and functional behavior of
the produced FPMM through very intensive simulations (with
millions of random and selected operands). The theoretical
expected results are computed by the internal math library
from the Sage open source mathematical software available
at the URL http://www.sagemath.org/. This library uses state
of the art software algorithms to compute the modular multi-
plication. In order to intensively test the generated operators,

our tool also generates VHDL codes for simulating the ob-
tained FPMMs and automatically compare their results to the
mathematical reference from Sage at bit level and cycle level.

Finally, the last step produces a final report with the main
implementation (time and area) and validation results.

Users can easily adapt our generator and flow for their CAD
tools and target FPGAs.

V. IMPLEMENTATION RESULTS AND COMPARISONS

A. Exploration of FPMMs

Input : n, version ∈ {fast, small}
Output : FPMM parameters and performances for

various m, w , s , σ, α
begin

1 if version = fast then
2 ε← 8

3 else
4 ε← 7

5 for w ∈ {17, 34, 51, 68} do
6 s ←

⌈
n+2
w

⌉
7 if latency reduction then
8 θ ← s

9 else
10 θ ← s + 1

11 m← s × w

12 αmin ← 2×
⌈
w
17

⌉2
+ 4×

⌈
w
17

⌉
− 1

13 σmin ←
⌈
αmin

w

⌉
14 for i = 0 to 4 do
15 σ ← σmin + i
16 α← σ × θ
17 λ← α× σ × (s − 1) + αmin + s + ε
18 τ ← α× s
19 Λ(k)← τ

⌊
k−1
σ

⌋
+ θ (k − 1 mod σ) + λ

20 for target ∈ {V4,V5,S6,V7} do
21 IMPLEMENT(version,w , s, σ, θ, target)
22 Report results in Database

Algorithm 3: Exploration of FPMM parameters for a
given maximal size n of primes P . Λ(k) is the total latency
for k MMMs in FPMM (in cc).

In Algo. 3, we describe the exploration of FPMM parame-
ters for a given size n of prime P and a given configuration
of the DSP slices (i.e. fast or small, see Sec. III-G). In this
algorithm, ε is the delay in clock cycles between the loading
of the operands words a0 and b0 and computing the first u0
at end of task 1 in one LM. Delay ε is composed by:
• 2 cc to write a0 and b0 to operands memories;
• 2 cc to read a0 and b0 from operands memories to Task 1;
• 3/2 cc in first DSP in Task 1, in fast/small version resp.;
• 1 cc to compute u0.
For each size n of P , we explored several architectures

for FPMM, based on various decompositions of operands into
w -bit words (line 5 to 21 in Algo. 3). From width w of

http://www.sagemath.org/


8

words, FPMM version and the selected optimisations, we can
determine the main characteristics of each explored FPMM:
• width m of operands in FPMM (line 11 in Algo. 3);
• minimal duration αmin of the outer loop (line 12 in

Algo. 3);
• minimal number σmin of LMs (line 13 in Algo. 3).
We implemented explored FPMMs on 4 different FPGAs

for various numbers σ of LMs (line 14 to 21 in Algo. 3),
We also evaluated their performances in terms of latency λ
(line 17 in Algo. 3) and computation time Λ for 8 MMMs.

B. FPGA specific optimizations of FPMM

We implemented many FPMMs on Virtex-4, 5, 7 and
Spartan-6 from Xilinx: denoted V4, V5, V7, S6 for
XC4VLX100, XC5VLX110T, XC7VX690T and XC6SLX75.
These FPGAs embed different types of DSP slices, listed in
Table I. Reported maximum frequencies come from Xilinx
official documentation: [33] for V4; [34] for V5; [35] for S6;
and [36] for V7.

Internal pipelines of DSP slices in our FPMMs are opti-
mized for each FPGA in order to reach the highest frequency
allowed by the hardware. The best configurations of DSP slices
for each FPMM implemented on a specific FPGA are selected
after implementation of various possible internal pipelines in
each of these DSP slices.

C. Discussions and Comparisons

Below we report implementation results for some 128 and
256 bits multipliers (more complete results are available in our
generator website [3]). For area metrics, we report the number
of DSP slices, logic slices, LUTs, flip-flops (FFs) and BRAMs.
For timing aspects, we report the latency λ for one MMM (in
cycles), the clock frequency and the computation time for 8
independent MMMs to illustrate internal parallelism benefits
(based on the HECC application from [37]).

FPMM specifications are abbreviated by 1 letter, 2 digits and
1 letter: i) F/S for fast/small version; ii) σ in {3, 4} or {2, 3, 4}
resp. for n = 128 or 256 bits; iii) s or s+1 cycles for the delay
between 2 LMs with or without latency reduction; iv) B/D for
BRAM/DRAM operands storage. For instance, F45B means a
fast version with σ = 4 LMs, s + 1 = 5 cycles between LMs
(i.e. no latency reduction) and BRAMs.

Figure 6 presents area/time trade-offs for all 128-bit FPMMs
on V4 and V7. Remember that all FPMMs use w = 34 bits
and require 9 DSP slices. On V7, the smallest FPMM is S44B
while F44B and F44D are the fastest ones with and without
BRAMs. On V4, the smallest one is still S44B, the fastest

TABLE I
PROPERTIES OF DSP SLICES EMBEDDED IN SELECTED FPGAS.

FPGA type of FPGA speed max. freq.
DSP slice reference grade MHz

Virtex-4 DSP48 XC4VLX100 -12 500
Virtex-5 DSP48E XC5VLX110T -3 550

Spartan-6 DSP48A1 XC6SLX75 -3 390
Virtex-7 DSP48E1 XC7VX690T -3 741

510 540540 570570 600600 630630 660
area [LUTs]

250250250

300300300

350350350

400400

tim
e 

[n
s]

+26%

+72%

F35B
F35D

F44B

F44D

F45B

F45D

S35B S35D

S44B S44D

S45B S45D

V7

400400 500500 600600 700700700 800800
area [LUTs]

400400

450450

500500

550550

600600

tim
e 

[n
s]

+116%

+61%

F35B F35D

F44B
F44D

F45B
F45D

S35B
S35D

S44B S44D

S45B S45D

V4

Fig. 6. LUTs vs. computation time (8 MMMs) trade-offs for 128-bit FPMMs
on V7 (top) and V4 (bottom). Red lines are Pareto fronts of trade-offs space.

one is F44B but now F44D is not anymore on the Pareto
front. Without our generator, it would be difficult to identify
the best specification for one application.

When exploring FPMMs for different FPGA families, it is
also very difficult to predict the impact of some parameters.
On a recent V7, the fastest solution uses DRAMs while on an
older V4, it uses BRAMs. On V7 (based on LUT-6), the area
variations among all FPMMs specifications are only 26 % but
116 % on V4 (based on LUT-4).

Table II reports a selection of the most interesting FPMMs
on more FPGAs for both 128 and 256-bit finite fields. Bold
values indicate the best trade-off metrics and BRAM capacity
is denoted 	 for 9Kb and ⊕ for 18Kb.

Our generator helps cryptographic applications designers to
explore many trade-offs and select the best FPMM for each
FPGA and optimization target (area vs. speed).

Table III reports results for recent efficient multipliers, with
generic primes, from the state of the art (see Sec. II): MA16 we
reimplemented from [19] (on all FPGAs), MR8/16 from [26]
(on A7 for Artix-7), AM32/64 multipliers from [21] (on V7),
and MO64 multiplier from [20] (on V5). We also report the
recent, very small, multipliers MAS1/2 from [27] on IGLOO 2
(I2) but we do not have this FPGA for comparison.

Comparing the raw results from Tables II and III is not easy.
Then, we illustrate the main differences between our FPMMs
and state of the art multipliers using figures.

Figure 7 compares the computation time for several inde-
pendent 128-bit multiplications. For only one or two MMMs,
MA16 is more efficient than FPMM. But for more operations,
FPMM is always faster. Our multipliers lead to a stair-shaped
evolution since before reaching σ MMMs in one FPMM,
launching a new multiplication is almost free: it only adds



9

TABLE II
IMPLEMENTATION RESULTS FOR A SELECTION OF THE MOST

INTERESTING 128 AND 256-BIT FPMMS.

n FPMM FPGA slice / LUT / FF BRAM DSP freq. λ time 8M
spec. MHz cc ns

F44B 512 / 424 / 766 2⊕ 9 387 75 391
S44B

V4
486 / 389 / 745 2⊕ 9 320 74 468

F44B 257 / 397 / 728 2⊕ 9 483 75 313
S44B

V5
242 / 369 / 703 2⊕ 9 397 74 378

F44D 241 / 382 / 757 0 9 349 75 433
S44B 203 / 321 / 671 2	 9 320 469
S44D

S6
199 / 416 / 721 0 9 334

74
449

F44B 325 / 545 / 725 2⊕ 9 528 286
F44D 306 / 600 / 758 0 9 633

75
239

12
8

bi
ts

S44B
V7

287 / 523 / 683 2⊕ 9 481 74 312

F28B 523 / 455 / 786 2⊕ 9 370 143 1445
F48B 611 / 504 / 829 2⊕ 9 387 255 1383
S28B

V4
534 / 422 / 766 2⊕ 9 317 142 1682

F28B 240 / 433 / 751 2⊕ 9 497 143 1076
F48B 282 / 480 / 794 2⊕ 9 502 255 1065
S28B 245 / 408 / 730 2⊕ 9 397 142 1346
S48B

V5

232 / 414 / 667 2⊕ 9 398 254 1342
F28B 205 / 335 / 743 2	 9 320 1671
F28D 209 / 415 / 777 0 9 349

143
1533

S28B
S6

175 / 358 / 690 2	 9 320 142 1668
F28B 296 / 556 / 743 2⊕ 9 528 1013
F28D 314 / 634 / 778 0 9 598

143
895

F48D 291 / 674 / 787 0 9 552 255 969

25
6

bi
ts

S28B

V7

301 / 552 / 703 2⊕ 9 480 142 1112

s extra cycles.
For 8 MMMs and 128-bit generic primes on V7, our best

FPMM (F44D) is 2 times faster than the best state of the art
multiplier (MA16). F44D is also much smaller than MA16: 9
DSP slices instead of 21 and 600 LUTs instead of 1182.

Figure 8 depicts the schedule for 8 independent MMMs in
various 128-bit multipliers. On the right, we report the number

TABLE III
RESULTS FOR 128 AND 256-BIT STANDALONE MULTIPLIERS FROM
RECENT LITERATURE (∗ DENOTES ESTIMATION BASED ON PAPER

VALUES).

n Ref. FPGA slice / LUT / FF BRAM DSP freq. λ time 8M
MHz cc ns

12
8

bi
ts MA16

V4 879 / 1201 / 1311 6⊕

21

252

27

663
V5 440 / 1027 / 1310 6⊕ 292 571
S6 540 / 1600 / 1280 6	 210 795
V7 455 / 1182 / 1305 6⊕ 350 478

MR8 A7 206 / 255 / 487 0 19 198 33 1333∗

25
6

bi
ts

MA16

V4 1466 / 1998 / 2204 10⊕

37

250

37

932
V5 698 / 1860 / 2172 10⊕ 292 798
S6 741 / 1941 / 2159 10	 177 1319
V7 661 / 1770 / 2172 10⊕ 372 626

AM32
V7

- / 1917 / - 0 9 225 114 4049∗

AM64 - / 2343 / - 0 32 161 76 3776∗

MO64 V5 - / 699 / 333 4⊕ 33 68 24 2814∗

MR16
A7

402 / 846 / 1123 0 29 146 66 3617∗

MR8 352 / 809 / 870 0 31 106 33 2490∗

MAS1 - / 505 / 257 1 1 583 18656∗

MAS2
I2

- / 680 / 341 2 2
250

312 9984∗

00 2 4 6 8 10 12 14 16
number of MMM

0

200

400

600

800

1000

tim
e 

[n
s]

MR8
MA16

F44D

F44B
S44B

V7

Fig. 7. Computation time for several numbers of MMMs and 128-bit
multipliers on a Virtex-7. MA16 and MR8 are results from the state of the
art ([19] and [26] respectively). The multipliers S44B, F44B and F44D are
our solutions defined in Sec. V-C.

74
78
82

86
138
142

146

312

150
S44B

D 9 1.0
B 2
S 287 0.9
L 523 0.9
F 683 0.9
f 481 0.8

75
79
83
87

139
143
147

286

151
F44B

D 9 1.0
B 2
S 325 1.1
L 545 0.9
F 725 1.0
f 528 0.8

75
79
83
87

139
143
147

239

151
F44D

D 9 1.0
B 0
S 306 1.0
L 600 1.0
F 758 1.0
f 633 1.0

0 100 200 300 400 500
time [ns]

27
47

67
87

107
127

147

478

167
MA16

D 21 2.3
B 6
S 455 1.5
L 1182 2.0
F 1305 1.7
f 350 0.6

Fig. 8. Schedule details and area/time metrics for various efficient 128-bit
multipliers on V7. Output timings are in purple (in cycles) and in blue for
the last of 8 MMMs (in ns).

of DSP slices, BRAMs, logic Slices, LUTs and FFs, as well as
the frequency. Green ratios in the last column are normalized
w.r.t. the F44D results. The area variations among S44B,
F44B and F44D are smaller than ±10 %. MA16 is larger and
slower. Figure 8 clearly illustrates why our finely-pipelined
architecture is efficient for multiple independent MMMs.

Exploring various DSP slice configurations using our gen-
erator allows us to almost reach the maximum frequency of
the DSP slices or BRAMs. For instance, MA16 operates at
350 MHz while F44D reaches 633 MHz (V7 DSP slices have a
maximum frequency about 740 MHz). Our generator allows us
to discard the F44B specification since it reaches the maximum
frequency of the BRAMs (about 530 MHz).

In Table IV we present the achievable throughput
(MMM · s−1) per area ratio (TPAR) as a global efficiency
metric for state-of-the-art multipliers and some of our most
efficient FPMMs. For instance, respectively 129k and 37k
MMMs can be computed per second per logic slice for our
FPMM and for MA16 from [19] on Virtex-7 and 128-bit
operands. Figure 9 illustrates TPAR for MA16 from [19] and
our best trade-offs on Virtex-7 and 128-bit operands. In this
figure, the further from center means the higher TPAR, and
thus the best hardware efficiency. Our finely-pipelined solu-
tion clearly leads to arithmetic units with a better utilization



10

DSP

BRAM

slice LUT

FF
2M

4M

458k
917k

65k

129k

33k

66k

26k
52k

0

F44B

F44D

MA16

S44B

MR8

Fig. 9. Illustration of hardware efficiency, in MMM · s−1 per hardware
resource unit (further from center is better).

TABLE IV
THROUGHPUT PER AREA RATIO (TPAR) FOR RECENT STATE-OF-THE-ART
MULTIPLIERS AND OUR BEST FPMMS ON VARIOUS FPGAS. MEAN TPAR

IS COMPUTED FOR ALL HARDWARE RESOURCES EXCEPT BRAMS.

n FPGA mult. slice / LUT / FF BRAM DSP mean
(×103) (×106) (×106) (×106)

12
8

bi
ts

V4
MA16 14.3 / 10.5 / 9.6 2.1 0.6 0.16
F44B 47.2 / 57.0 / 31.5 12.1 2.7 0.70

V5
MA16 33.2 / 14.2 / 11.2 2.4 0.7 0.19
F44B 117.4 / 76.0 / 41.4 15.1 3.4 0.90

S6
MA16 19.4 / 6.6 / 8.2 1.7 0.5 0.13
S44D 104.9 / 50.2 / 29.0 - 2.3 0.62
F44D 90.5 / 57.1 / 28.8 - 2.4 0.65

A7 MR8 29.1 / 23.5 / 12.3 - 0.3 0.10

V7
MA16 38.4 / 14.8 / 13.4 2.9 0.8 0.22
F44D 129.2 / 65.9 / 52.1 - 4.4 1.20

25
6

bi
ts

V4
MA16 6.1 / 4.5 / 4.1 0.9 0.2 0.06
F28B 11.1 / 12.7 / 7.4 2.9 0.6 0.17
F48B 9.9 / 12.0 / 7.3 3.0 0.7 0.18

V5

MO64 n.a. / 4.1 / 8.5 0.7 0.1 0.03
MA16 14.9 / 5.6 / 4.8 1.0 0.3 0.77
F28B 32.4 / 17.9 / 10.3 3.9 0.9 0.23
F48B 27.8 / 16.3 / 9.9 3.9 0.9 0.23

S6
MA16 8.5 / 3.2 / 2.9 0.6 0.2 0.05
F28D 26.1 / 13.1 / 7.0 - 0.6 0.16

A7
MR16 5.5 / 2.6 / 2.0

-
0.1 0.02

MR8 9.1 / 4.0 / 3.7 0.1 0.03

V7

AM64 n.a. / 0.9 / n.a.
-

0.1 0.03
AM32 n.a. / 1.0 / n.a. 0.2 0.11
MA16 20.1 / 7.5 / 6.1 1.3 0.4 0.10
F28D 29.8 / 14.7 / 12.0 - 1.0 0.27

of the hardware resources without “bubbles” in the pipeline
for simple and regular algorithms such as the CIOS.

For 256 bits, only the MA16 multiplier is at most 1.5 times
faster but it requires 4.1 times more DSP slices and 3.9 times
more LUTs. All other multipliers are both slower and larger.

D. Applications to HECC

In [37], we used our first 128-bit FPMMs from [2] to design
cryptoprocessors for HECC over GF(P ). Below, we present

TABLE V
FPGA IMPLEMENTATION RESULTS FOR COMPLETE 128-BIT HECC

CRYPTOPROCESSORS, USING F44B FPMM, ON VIRTEX-4 (V4),
VIRTEX-5 (V5), SPARTAN-6 (S6) AND ZYNQ-7 (Z7). HECC

ARCHITECTURE A2 EMBEDS ONLY ONE FPMM, WHILE ARCHITECTURES
A3 AND A4 INTEGRATE TWO FPMMS. SEE [37] FOR DETAILS ON THESE

HECC CRYPTOPROCESSORS.

FPGA archi. w̃ slice / LUT / FF BRAM DSP freq. time
type bits MHz ms

V4
A2 34 1081 / 863 / 1689 4 9 327 0.54
A4 34 2447 / 1699 / 3255 7 18 328 0.39
A3 136 3492 / 3959 / 5251 9 18 290 0.37

V5
A2 34 558 / 783 / 1653 4 9 386 0.45
A4 34 1019 / 1413 / 3182 7 18 378 0.34
A3 136 1657 / 2658 / 5170 9 18 356 0.30

S6
A2 34 382 / 911 / 1619 4 9 298 0.59
A4 34 809 / 1565 / 3120 7 18 276 0.46
A3 136 1182 / 3128 / 5040 9 18 238 0.45

Z7
A2 34 463 / 855 / 1619 4 9 347 0.50
A4 34 747 / 1475 / 3020 7 18 360 0.36
A3 136 1143 / 3147 / 5033 9 18 322 0.33

new results for these HECC cryptoprocessors where we use
our new flexible FPMMs. Table V provides implementation
results for 3 cryptoprocessors based on the architectures
from [37] and our new F44B FPMM (see above). These
architectures are composed with
• arithmetic units: adder(s)/subtractor(s), F44B FPMM(s);
• 1 or 2 central data memories to store intermediate values;
• 1 interconnect between memories and arithmetic units;
• 1 central control unit with a program memory.
Architecture A2 corresponds to a small architecture with

only 1 adder/subtractor unit, 1 FPMM and 1 data memory. A3
corresponds to a parallel architecture with 2 adder/subtractor
units, 2 FPMMs and 1 data memory. Finally, A4 is a clus-
tered architecture, with 2 adder/subtractor units, 2 FPMMs
and 2 data memories (see [37] for schematics). In Table V,
w̃ is the width of the interconnect. More details on these
architectures can be found in [37].

Thanks to our FPMMs, our HECC cryptoprocessors reach
high frequencies with reduced area compared to the best
equivalent state-of-the-art ECC cryptoprocessors. For example,
compared to the very efficient ECC solution for generic primes
from [19], our smallest cryptoprocessors are at least 2 times
smaller for the same computation time.

Compared to our first HECC cryptoprocessors published
in [37], our new architectures based on the new F44B are
both smaller and faster.

VI. CONCLUSION AND FUTURE PROSPECTS

We propose finely-pipelined modular multipliers (FPMMs)
for FPGA implementations with DSP slices. FPMM internal
control, inspired from hyper-threading, allows us to more
efficiently fill the DSP slices pipeline. Our first FPMMs
presented in [2] were limited to 128 bits and led to larger
and slower circuits. In this paper, we propose more advanced
FPMMs and a tool for generating them for various sizes



11

and FPGAs, leading to both faster and smaller circuits. For
instance, we get 2 to 3 times smaller designs for the same
speed compared to the state of the art [19]. Our generator is
available as open source at [3] (with some VHDL codes and
implementation results for many parameters).

In the future, we plan to extend our tool to support other
FPGA vendors and rectangular DSP slices (e.g. 25× 18 bits).
For other types of applications, we also plan to investigate
other field sizes (e.g. n < 100 or n > 400 bits) with other
w values. Finally, we plan to study FPMM architectures with
protections against side channel and fault injection attacks.

ACKNOWLEDGMENT

This work was done in the HAH project (http://www.
h-a-h.cominlabs.u-bretagneloire.fr/) partially funded by Labex
CominLab, Labex Lebesgue and Brittany Region. We sin-
cerely thank Xilinx for University Program donations. We also
thank the anonymous Reviewers for their valuable comments.

REFERENCES

[1] D. Koufaty and D. T. Marr, “Hyperthreading technology in the netburst
microarchitecture,” IEEE Micro, vol. 23, no. 2, pp. 56–65, Mar. 2003.

[2] G. Gallin and A. Tisserand, “Hyper-threaded multiplier for HECC,” in
Asilomar Conf. on Signals, Systems and Computers. IEEE, Oct. 2017,
camera ready at https://hal.archives-ouvertes.fr/hal-01620046/.

[3] ——, “VHDL generator for hyper-threaded modular multipliers,” https:
//sourcesup.renater.fr/htmm/, May 2018.

[4] T. Guneysu and C. Paar, “Ultra high performance ECC over NIST primes
on commercial FPGAs,” in Workshop on Cryptographic Hardware and
Embedded Systems (CHES), vol. 5154, Aug. 2008, pp. 62–78.

[5] G. R. Blakley, “A computer algorithm for calculating the product A*B
modulo M,” IEEE Trans. on Comp., vol. C-32, no. 5, pp. 497 – 500,
May 1983.

[6] S. Ghosh, D. Mukhopadhyay, and D. Chowdhury, “High speed Fp multi-
pliers and adders on FPGA platform,” in Conf. Design and Architectures
for Signal and Image Processing (DASIP), Oct. 2010, pp. 21–26.

[7] K. Javeed, X. Wang, and M. Scott, “Serial and parallel interleaved
modular multipliers on FPGA platform,” in Internat. Conf. on Field
Programmable Logic and Applications (FPL), Sep. 2015, pp. 1–4.

[8] ——, “High performance hardware support for elliptic curve cryptog-
raphy over general prime field,” Microprocessors and Microsystems,
vol. 51, pp. 331–342, Jun. 2017.

[9] P. Barrett, “Communications authentication and security using public key
encryption: A design for implementation,” Ph.D. dissertation, University
of Oxford, 1984.

[10] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Speeding up Barrett
and Montgomery modular multiplications,” 2009. [Online]. Available:
https://homes.esat.kuleuven.be/∼fvercaut/papers/bar mont.pdf

[11] P. L. Montgomery, “Modular multiplication without trial division,” Math.
of Comp., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[12] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” in Symp. on Computer Arithmetic (ARITH). IEEE,
Jul. 1995, pp. 193–199.

[13] C. D. Walter, “Montgomery exponentiation needs no final subtractions,”
Electronics Letters, vol. 35, no. 21, pp. 1831–1832, Oct. 1999.

[14] C. K. Koc, T. Acar, and B. S. Kaliski, Jr., “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp.
26–33, Jun. 1996.

[15] C. McIvor, M. McLoone, and J. McCanny, “FPGA Montgomery multi-
plier architectures - a comparison,” in IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM), Apr. 2004, pp. 279–282.

[16] ——, “FPGA Montgomery modular multiplication architectures suitable
for ECCs over GF(p),” in IEEE Internat. Symp. on Circuits and Systems
(ISCAS), vol. 3, May 2004, pp. 509–512.

[17] M. McLoone, C. McIvor, and J. McCanny, “Coarsely integrated operand
scanning (CIOS) architecture for high-speed Montgomery modular mul-
tiplication,” in IEEE Internat. Conf. on Field-Programmable Technology,
Dec. 2004, pp. 185–191.

[18] D. Suzuki, “How to maximize te potential of FPGA resources for
modular exponentiation,” in Workshop on Cryptographic Hardware and
Embedded Systems (CHES), Sep. 2007, pp. 272–288.

[19] Y. Ma, Z. Liu, W. Pan, and J. Jing, “A high-speed elliptic curve
cryptographic processor for generic curves over GF(p),” in Internat.
Workshop on Selected Areas in Cryptography (SAC), vol. 8282, Aug.
2013, pp. 421–437.

[20] M. Morales-Sandoval and A. Diaz-Perez, “Scalable GF(p) Montgomery
multiplier based on a digit-digit computation approach,” IET Computers
& Digital Techniques, vol. 10, no. 3, pp. 102–109, May 2016.

[21] D. Amiet, A. Curiger, and P. Zbinden, “Flexible FPGA-based architec-
tures for curve point multiplication over GF(p),” in Euromicro Conf. on
Digital System Design (DSD), Aug. 2016, pp. 107–114.

[22] C. D. Walter, “Systolic modular multiplication,” IEEE Trans. on Comp.,
vol. 42, no. 3, pp. 376–378, Mar. 1993.

[23] T. Blum and C. Paar, “High-radix Montgomery modular exponentiation
on reconfigurable hardware,” IEEE Trans. on Comp., vol. 50, no. 7, pp.
759–764, Jul. 2001.

[24] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware implementa-
tion of a Montgomery modular multiplier in a systolic array,” in Internat.
Parallel and Distributed Processing Symp., Apr. 2003, pp. 184–191.

[25] C. McIvor, M. McLoone, and J. McCanny, “High-radix systolic modular
multiplication on reconfigurable hardware,” in IEEE Internat. Conf. on
Field-Programmable Technology, Dec. 2005, pp. 13–18.

[26] A. Mrabet, N. El-Mrabet, R. Lashermes, J.-B. Rigaud, B. Bouallegue,
S. Mesnager, and M. Machhout, “A scalable and systolic architectures of
Montgomery modular multiplication for public key cryptosystems based
on DSPs,” Journal of Hardware and Systems Security, vol. 1, no. 3, pp.
219–236, Sep. 2017.

[27] P. M. Massolino, L. Batina, R. Chaves, and N. Mentens, “Area-optimized
Montgomery multiplication on IGLOO2 FPGAs,” in Internat. Conf.
Field Programmable Logic and Applications (FPL), Sep. 2017, pp. 1–4.

[28] A. F. Tenca and C. K. Koc, “A scalable architecture for Montgomery
multiplication,” in Workshop on Cryptographic Hardware and Embedded
Systems (CHES), vol. 1717, Aug. 1999, pp. 94–108.

[29] A. F. Tenca, G. Todorov, and C. K. Koc, “High-radix design of a
scalable modular multiplier,” in Workshop on Cryptographic Hardware
and Embedded Systems (CHES), vol. 2162, May 2001, pp. 185–201.

[30] A. F. Tenca and C. K. Koc, “A scalable architecture for modular
multiplication based on Montgomery’s algorithm,” IEEE Trans. on
Comp., vol. 52, no. 9, pp. 1215–1221, Sep. 2003.

[31] A. F. Tenca and L. A. Tawalbeh, “An efficient and scalable radix-4
modular multiplier design using recoding techniques,” in Asilomar Conf.
on Signals, Systems Computers, vol. 2, Nov. 2003, pp. 1445–1450.

[32] M. Huang, K. Gaj, and T. El-Ghazawi, “New hardware architectures for
Montgomery modular multiplication algorithm,” IEEE Trans. on Comp.,
vol. 60, no. 7, pp. 923–936, Jul. 2011.

[33] Virtex-4 FPGA Data Sheet 302: DC and Switching Characteristics,
Xilinx, Sep. 2009, v3.7.

[34] Virtex-5 FPGA Data Sheet 202: DC and Switching Characteristics,
Xilinx, Dec. 2014, v5.4.

[35] Spartan-6 FPGA Data Sheet 162: DC and AC Switching Characteristics,
Xilinx, Jan. 2015, v3.1.1.

[36] Virtex-7 T and XT FPGAs Data Sheet 183: DC and AC Switching
Characteristics, Xilinx, Apr. 2017, v1.27.

[37] G. Gallin, T. O. Celik, and A. Tisserand, “Architecture level optimiza-
tions for Kummer based HECC on FPGAs,” in Internat. Conf. on
Cryptology in India (IndoCrypt), Dec. 2017.

PLACE
PHOTO
HERE

Gabriel Gallin received the Master Degree in Com-
puter Science in Paris, France, in 2013. He de-
fended his PhD in Computer Science in 2018 in the
IRISA laboratory in France. His research interests
include computer arithmetic, computer architecture
and digital security with applications in applied
cryptography.

http://www.h-a-h.cominlabs.u-bretagneloire.fr/
http://www.h-a-h.cominlabs.u-bretagneloire.fr/
https://hal.archives-ouvertes.fr/hal-01620046/
https://sourcesup.renater.fr/htmm/
https://sourcesup.renater.fr/htmm/
https://homes.esat.kuleuven.be/~fvercaut/papers/bar_mont.pdf


12

PLACE
PHOTO
HERE

Arnaud Tisserand (PhD’97. M’00, SM’06) is se-
nior researcher at CNRS (French National Center
for Scientific Research) in computer science in Lab-
STICC laboratory. His research interests include
computer arithmetic, computer architecture, digital
security, VLSI and FPGA design, design automation,
low-power design and applications in applied cryp-
tography, scientific computing, digital signal pro-
cessing. He is senior member of the IEEE (SSCS,
CAS).


	Introduction
	State of the Art in Modular Multiplication
	Finely-Pipelined Modular Multipliers
	Fine pipeline for speeding-up GF(P) multipliers
	Selection of parameters s and w
	Selection of parameter 
	Differences with our first FPMM published in GalTis17:asilomar
	Reduction of the number of DSP slices in block 2
	Latency reduction
	Optimization of the DSP slices configuration
	Flexible P definition at run time
	Validation

	VHDL Generator
	Implementation Results and Comparisons
	Exploration of FPMMs
	FPGA specific optimizations of FPMM
	Discussions and Comparisons
	Applications to HECC

	Conclusion and Future Prospects
	References
	Biographies
	Gabriel Gallin
	Arnaud Tisserand


