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ARTICLE

Colossal barocaloric effects near room temperature
in plastic crystals of neopentylglycol
P. Lloveras 1, A. Aznar1, M. Barrio 1, Ph. Negrier2, C. Popescu 3, A. Planes4, L. Mañosa 4,

E. Stern-Taulats5, A. Avramenko5, N.D. Mathur 5, X. Moya 5 & J.-Ll. Tamarit 1

There is currently great interest in replacing the harmful volatile hydrofluorocarbon fluids

used in refrigeration and air-conditioning with solid materials that display magnetocaloric,

electrocaloric or mechanocaloric effects. However, the field-driven thermal changes in all of

these caloric materials fall short with respect to their fluid counterparts. Here we show that

plastic crystals of neopentylglycol (CH3)2C(CH2OH)2 display extremely large pressure-

driven thermal changes near room temperature due to molecular reconfiguration, that these

changes outperform those observed in any type of caloric material, and that these changes

are comparable with those exploited commercially in hydrofluorocarbons. Our discovery of

colossal barocaloric effects in a plastic crystal should bring barocaloric materials to the

forefront of research and development in order to achieve safe environmentally friendly

cooling without compromising performance.
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P lastic crystals (PCs), also known as orientationally disordered
crystals, are materials that lie at the boundary between solids
and liquids1. They are normally made of nearly spherical small

organic molecules whose centres of mass form a regular crystalline
lattice1, unlike liquid crystals that normally comprise highly aniso-
tropic organic molecules with no long-range positional order2. The
globular shape of these molecules provides little steric hindrance for
reorientational processes, such that plastic crystals tend to be highly
orientationally disordered away from low temperature3. This dyna-
mical disordering often implies high plasticity under uniaxial stress,
and hence the materials are known as plastic crystals4. On cooling,
plastic crystals typically transform into ordered crystals (OCs) of
lower volume via first-order phase transitions, whose latent heats
arise primarily due to thermally driven large changes of orientational
order, and this has led to proposals for passive thermal storage5,6.
Here we exploit commercially available samples of the prototypical
plastic crystal neopentylglycol (NPG), i.e., 2,2-dymethyl-1,3-propa-
nediol. This material is an alcoholic derivative of neopentane
C(CH3)4 made from cheap abundant elements, and enjoys
widespread use in industry as an additive in the synthesis of paints,
lubricants and cosmetics.

We achieve colossal pressure-driven thermal changes (bar-
ocaloric effects) near room temperature that are an order of
magnitude better than those observed in state-of-the-art bar-
ocaloric (BC) materials7–17 and comparable to those observed
in the standard commercial hydrofluorocarbon refrigerant
R134a18 (Table 1). Our BC effects are colossal because the first-
order PC-OC transition displays an enormous latent heat that is
accompanied by an enormous change in volume, such that
moderate applied pressure is sufficient to yield colossal thermal
changes via the reconfiguration of globular neopentylglycol
molecules (whose steric hindrance is low3). Moreover, reversi-
bility is achieved at temperatures above the hysteretic transition
regime. Our higher operating pressures do not represent a
barrier for applications because they can be generated by a
small load in a large volume of material via a pressure-
transmitting medium, e.g., using a vessel with a neck containing
a driving piston, whose small area is compensated by its dis-
tance of travel. Therefore, our demonstration of colossal BC
effects in commercially available plastic crystals should imme-
diately open avenues for the development of safe and envir-
onmentally friendly solid-state refrigerants.

Results
PC-OC phase transition in NPG at atmospheric pressure. At
room temperature and atmospheric pressure, NPG adopts an
ordered monoclinic structure (P21/c) with four molecules per
unit cell19 (Fig. 1a). On heating, the material undergoes a
reversible structural phase transition to a cubic structure
(Fm�3m) with four molecules per unit cell that adopt an
orientationally disordered configuration at any typical instant20

(Fig. 1a). The first-order structural phase transition yields sharp
peaks in dQ/|dT| (Q is heat, T is temperature) recorded on
heating and cooling (Fig. 1a), with a well-defined transition
start temperature T0 ~ 314 K on heating (Supplementary Fig. 1).
By contrast, as a consequence of the nominally isothermal
character of the PC-OC transition21, the temperature ramp rate
influences the transition finish temperature on heating, and the
transition start and finish temperatures on cooling (e.g., by up
to ~5 K for 1–10 K min−1, Supplementary Fig. 1). Integration of
the calorimetric peaks yields a large latent heat of |Q0|= 121 ±
2 kJ kg−1 on heating, and |Q0|= 110 ± 2 kJ kg−1 on cooling
(Fig. 1a). These values of |Q0| are independent of the tem-
perature ramp rate (Supplementary Fig. 1), and in good
agreement with previous experimental values1,22,23 of |Q0| ~
123–131 kJ kg−1.

Integration of (dQ/|dT|)/T and Cp/T (Fig. 1b), permits the
evaluation of entropy S′(T)= S(T)−S(250 K) over a wide
temperature range (Fig. 1c), as explained in the Experimental
Section (Cp is specific heat at atmospheric pressure). The large
entropy change at the transition (|ΔS0| ~ 383 J K−1 kg−1 on
heating and |ΔS0| ~ 361 J K−1 kg−1 on cooling) is in
good agreement with previous experimental values1,21–23 of
|ΔS0| ~ 390–413 J K−1 kg−1. This large value of |ΔS0| arises due to
a non-isochoric order-disorder transition in molecular config-
urations, such that it exceeds values of |ΔS0| << 100 J K−1 kg−1

for first-order structural phase transitions associated with changes
of ionic position24–27 and electronic densities of states24,27,28.
Consequently, the configurational degrees of freedom that are
accessed via the non-isochoric order-disorder transition in our
solid material yield entropy changes that compare favourably
with those associated with the translational degrees of freedom
accessed via solid-liquid-gas transitions in various materials29,
including the hydrocarbon fluids used for commercial
refrigeration18.

Table 1 Barocaloric effects near first-order phase transitions

Compound T
[K]

|ΔS|
[J K−1 kg−1]

|p|
[GPa]

Reversible Ref.

NPG 320 445 0.25 Yes This work

NPG 320 500 0.52 Yes This work

Ni49.26Mn36.08In14.66 293 24 0.26 partially 7

LaFe11.35o0.47Si1.2 237 8.6 0.20 partially 8

Gd5Si2Ge2 270 11 0.20 partially 9

Fe49Rh51 308 12 0.25 partially 10

Mn3GaN 285 22 0.14 partially 11

(MnNiSi)0.62(FeCoGe)0.38 330 70 0.27 yes 12

BaTiO3 400 1.6 0.10 yes 13

(NH4)2SO4 219 60 0.10 yes 14

(NH4)2SnF6 105 61 0.10 yes 15

[TPrA]Mn[dca]3 330 30 0.007 yes 16

AgI 390 60 0.25 yes 17

Fluid R134a 310 520 0.001 yes 18

Isothermal entropy change |ΔS| at temperature T due to changes of hydrostatic pressure |p| (the nearby values of transition temperature T0 appear in Supplementary Table 1). All entries for barocaloric
solids denote data derived from quasi-direct measurements30. For the fluid hydrofluorocarbon R134a (1,1,1,2-tetrafluoroethane, i.e. CH2FCF3), the value of |ΔS| represents the full condensation of the fluid
at 310 K and 0.001 MPa, when exploited in a typical vapour-compression refrigeration cycle18
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On heating through the transition, x-ray diffraction data
confirm the expected changes in crystal structure19,20 (Supple-
mentary Figs. 6 and 7). The resulting specific volume V undergoes
a large ~4.9% increase of ΔV0 = 0.046 ± 0.001 cm3 g−1 across the
transition, for which (∂V/∂T)p=0 > 0 (Fig. 1d), presaging large
conventional BC effects that may be evaluated30 by using the
Maxwell relation (∂V/∂T)p=−(∂S/∂p)T to calculate the isother-
mal entropy change ΔS p1 ! p2ð Þ ¼ �R p2

p1
∂V=∂Tð Þpdp due to a

change in pressure from p1 to p2. Near the transition, the
volumetric thermal expansion coefficients for the OC and the PC
phases are both ~10−4 K−1, implying the existence of additional15

BC effects ΔS+ that are large and conventional at temperatures
lying on either side of the transition. These additional BC effects
are evaluated here using the aforementioned Maxwell relation, for
changes in pressure |p−patm| ~ |p| where atmospheric pressure
patm ~ 0 GPa, to obtain ΔS+(p)=−[(∂V/∂T)p=0]p, where
(∂V/∂T)p is assumed to be independent of pressure13,15,17

(Supplementary Fig. 4 shows the error in (∂V/∂T)p to be ~20%
for the PC phase, which implies an error in the total entropy
change ΔS of ~3%).

Two contributions to |ΔS0| may be identified as follows. One
is the configurational entropy31,32 given by M−1Rln Ω, where

M= 104.148 g mol−1 is molar mass, R is the universal gas
constant, and Ω is the ratio between the number of configurations
in the PC and the OC phases. The other is the volumetric
entropy31,32 ð�α=�κÞ ΔV0, where the coefficient of isobaric thermal
expansion �α (Supplementary Fig. 4), and the isothermal
compressibility �κ (Supplementary Fig. 5), have both been
averaged across the PC-OC transition. Molecules of (CH3)2C
(CH2OH)2 display achiral tetrahedral symmetry33 (point group
Td, subgroup C3v), yielding one configuration in the OC phase
and 60 configurations in the PC phase (10 molecular orientations
that each possesses six possible hydroxymethyl conformations).
Therefore the configurational entropy is M−1Rln 60 ~ 330 J K−1

kg−1, and the volumetric entropy is ~60 J K−1 kg−1 (data from
Fig. 1d and Supplementary Fig. 3a). The resulting prediction of |
ΔS0| ~ 390 J K−1 kg−1 agrees well with the experimental values
reported above, and the previously measured experimental
values1,21–23 reported above.

PC-OC phase transition in NPG under applied pressure.
Measurements of dQ/|dT| under applied pressure (Fig. 2a, b)
reveal that the observed transition temperatures vary strongly
with pressure (Fig. 2c), with dT/dp= 113 ± 5 K GPa−1 for the
start temperature on heating, and dT/dp= 93 ± 18 K GPa−1 for
the start temperature on cooling, for pressures p < 0.1 GPa (black
lines, Fig. 2c). These values of dT/dp are amongst the largest
observed for BC materials (Supplementary Table 1), and indicate
that the first-order PC-OC transition of width ~10 K (Fig. 2a, b)
could be fully driven in either direction using |Δp| ~ |p| ~ 0.1 GPa.
At higher pressures, values of dT/dp fall slightly, but remain large
(Fig. 2c).

Integration of (dQ/|dT|)/T at finite pressure reveals that the
entropy change |ΔS0| decreases slightly with increasing pressure
(Fig. 2d). This decrease arises because the additional entropy
change ΔS+(p) increases in magnitude on increasing temperature
in the PC phase [(∂V/∂T)p=0 at 370 K is ~240% larger than
(∂V/∂T)p=0 at 320 K, Fig. 1d], whereas it is nominally
independent of temperature in the OC phase near the transition.
The fall seen in both dT/dp and |ΔS0| implies via the
Clausius–Clapeyron equation dT/dp= ΔV0/ΔS0 that there is a
reduction in |ΔV0| at finite pressure (Fig. 2e), as confirmed using
pressure-dependent dilatometry (Supplementary Fig. 3a) and
pressure-dependent x-ray diffraction (Supplementary Fig. 3b).

In order to plot ΔS(T,p), we obtained finite-pressure plots of
S′(T,p)= S(T,p)−S(250 K,0) (Fig. 3a, b) by integrating the data in
Fig. 2a, b and Fig. 1b, and displacing each corresponding plot by
ΔS+(p) at 250 K, as explained in the Experimental Section. (Note
that ΔS+(p) was evaluated below T0(p= 0) to avoid the forbidden
possibility of T0(p) rising to the temperature at which ΔS+(p) was
evaluated at high pressure.) From Fig. 3a, b, we see that the
entropy change associated with the transition ΔS0(p) combines
with the smaller same-sign additional entropy change ΔS+(p)
away from the transition, yielding total entropy change ΔS(p).

BC performance. By following isothermal trajectories in our plots
of S′(T,p) obtained on cooling (Fig. 3b), we were able to evaluate
ΔS(T,p) on applying pressure (Fig. 3c), as cooling and high
pressure both tend to favour the low-temperature low-volume
OC phase. Similarly, by following isothermal trajectories in our
plots of S′(T,p) obtained on heating (Fig. 3a), we were able to
evaluate ΔS(T,p) on decreasing pressure (Fig. 4c), as heating and
low pressure both tend to favour the high-temperature high-
volume PC phase.

Discrepancies in the magnitude of ΔS(T,p) on applying and
removing pressure (Fig. 3c) are absent in the range ~314-342 K,
evidencing reversibility. Our largest reversible isothermal entropy
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change |ΔS| ~ 510 J K−1 kg−1 arises at ~330 K for |p| ~ 0.57 GPa,
and substantially exceeds the BC effects of |ΔS| ≤ 70 J K−1 kg−1

that were achieved using similar values of |p| in a range of
materials near room temperature (Fig. 4a), namely magnetic
alloys7–12,34, ferroelectric13,35,36 and ferrielectric15 materials,
fluorides and oxifluorides14,37–40, hybrid perovskites16, and
superionic conductors17,41,42. Moreover, our largest value of
|ΔS| substantially exceeds the values recorded for
magnetocaloric30,43–46, electrocaloric30,47,48, and elastocaloric30,49

materials, and is comparable to the values observed in the standard
commercial hydrofluorocarbon refrigerant fluid R134a18, for which
|ΔS|= 520 J K−1 kg−1 at ~310 K for much smaller operating
pressures of ~0.001 GPa (Fig. 4a). We can also confirm that
NPG compares favourably with other BC solids7–12,31 when
normalizing the peak entropy change by volume30 to yield |ΔS| ~
0.54 J K−1 cm−3 (the NPG density is 1064 kg m−3 at ~320 K).
(While finalizing our manuscript, which is based on our 2016
patent, we learned about the pre-print of ref. 50, which lists
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literature values of thermally driven entropy changes for PC-OC
transitions in NPG and other plastic crystals at atmospheric
pressure, and suggests they could be used in barocalorics.)

The large variation of transition temperature with pressure
(Fig. 2c) permits large entropy changes of |ΔS| ~ 445 J K−1 kg−1

to be driven with relatively moderate pressure changes of
|p| ~ 0.25 GPa (Fig. 3c), yielding giant BC strengths30 of
ΔSj j= pj j ~ 1780 J K−1 kg−1 GPa−1. Larger pressures extend the
reversible BC effects to higher temperatures (Fig. 3c), causing the
large refrigerant capacity RC to increase (Fig. 4b) despite the
slight reduction in |ΔS0(p)| (Fig. 2d). The BC effects in NPG are
so large (Fig. 4a) that unpractical changes of pressure would be
required to achieve comparable RC values in other BC materials.

By following adiabatic trajectories in S′(T, p) (Fig. 3a, b), we
established both the adiabatic temperature change ΔT(Ts,p) on
applying pressure p at starting temperature Ts (Fig. 3d), and the
adiabatic temperature change ΔT(Tf,p) on removing pressure p to
reach finishing temperature Tf (Fig. 3e). On applying our

largest pressure (p ~ 0.57 GPa), an adiabatic temperature increase
of ΔT ~ 30 K with respect to Ts ~ 318 K is necessarily reversible
above the thermally hysteretic regime, such that an equivalent
temperature change of opposite sign is achieved on pressure
removal. These BC effects substantially exceed both the BC effects
of |ΔT| ≤ 10 K that were achieved in inorganic materials7–10,12

by exploiting room-temperature phase transitions with similar
values of |p|; and substantially exceeds the BC effects of |ΔT| ~ 9 K
that were achieved51 away from a phase transition with a smaller
value of |p|= 0.18 GPa in organic poly(methyl methacrylate) at
Ts ~ 368 K.

Discussion
To exploit our material in BC cooling devices, the non-monolithic
working body and its intermixed pressure-transmitting medium
may exchange heat with sinks and loads via fluid in a secondary
circuit, heat pipes or fins52. The requisite high pressures could be
generated in large volumes using small loads and small-area
pistons, just as small voltages can generate large electric fields in
the many thin films of an electrocaloric multilayer capacitor53,54.
To improve the BC working body, it would be attractive to
decrease the observed hysteresis using both chemical and physical
approaches, enhance the limited thermal conductivity e.g., by two
orders of magnitude via the introduction of graphite matrices55,
and combine different plastic crystals that operate at quite dif-
ferent temperatures1,52,56. More generally, our observation of
colossal and reversible BC effects in NPG should inspire the study
of BC effects in other mesophase systems that lie between liquids
and solids, most immediately other organic plastic crystals whose
PC-OC transitions display large latent heats and large volume
changes52.

After acceptance of our paper, ref. 50 by Li et al. was published
in Nature. In the published version they reported a barocaloric
entropy change of 389 J K−1 kg−1 for NPG. This value is
lower than our value because these authors used lower pressure,
and only considered the contribution from the PC-OC transi-
tion, while as shown in our manuscript the contributions
beyond the transition are relevant for NPG and can be as large
as ~80 J K−1 kg−1 for our ~0.25 GPa driving pressure.

Methods
Samples. NPG of purity of 99% was purchased as a powder from Sigma-Aldrich.
The typical grain size was ~100 µm, as determined using optical microscopy.

Techniques. Measurements of dQ/|dT|= dQ=dt
dT=dtj j were performed at atmospheric

pressure in a commercial TA Q100 differential scanning calorimeter (DSC), at
±1–10 Kmin−1, using ~10–20 mg samples of NPG (t is time).

Measurements of specific heat Cp were performed at atmospheric pressure in a
commercial TA Q2000 DSC, at ±5 Kmin−1, using ~20 mg samples of NPG. Values
of Cp were obtained by recording heat flow out of/into the sample as a function of
temperature, and comparing it with the heat flow out of/into a reference sapphire

sample under the same conditions57. Latent heat Q0j j ¼ R T2

T1

dQ
dT dT

��� ��� across the PC-
OC transition was obtained after subtracting baseline backgrounds, with start
temperature T1 freely chosen below (above) the transition on heating (cooling), and
finish temperature T2 freely chosen above (below) the transition on heating
(cooling).

Measurements of dQ/dT were performed at constant applied pressure using two
bespoke differential thermal analysers (DTAs). For applied pressures of < 0.3 GPa,
we used a Cu-Be Bridgman pressure cell with chromel-alumel thermocouples. For
applied pressures of < 0.6 GPa, we used a model MV1-30 high-pressure cell
(Institute of High Pressure Physics, Polish Academy of Science) with Peltier
elements as thermal sensors. The temperature of both pressure cells was controlled
using a circulating thermal bath (Lauda Proline RP 1290) that permitted the
measurement temperature to be varied at ~±2 Kmin−1 in 183–473 K. NPG
samples of mass ~100 mg were mixed with an inert perfluorinated liquid (Galden,
Bioblock Scientist) to remove any residual air, and hermetically encapsulated inside
Sn containers. The pressure-transmitting medium was DW-Therm (Huber

Kältemaschinenbau GmbH). Entropy change ΔS0ðpÞj j ¼ R T2

T1
dQ=dTð Þ=TdT

��� ���
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Fig. 4 Barocaloric performance near room temperature. a For NPG, we
show the peak isothermal entropy change |ΔSpeak| for pressure changes of
magnitude |p|, on applying pressure (blue symbols) and removing pressure
(red symbols). For comparison, the green envelope represents state-of-the-
art barocaloric materials (Table 1) that operate near room temperature, and
the orange symbol represents the standard commercial fluid refrigerant18

R134a for which operating pressures are ~0.001 GPa. For NPG alone, we
show the variation with |p| of b refrigerant capacity RC= |ΔSpeak| × [FWHM
of ΔS(T)] and c peak values of the adiabatic temperature change |ΔTpeak|,
on applying pressure (blue symbols) and removing pressure (red symbols)
near room temperature
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across the PC-OC transition was obtained after subtracting baseline backgrounds,
and the choice of T1 and T2 is explained above.

Variable-temperature high-resolution x-ray diffraction was performed at
atmospheric pressure in transmission, using Cu Kα1= 1.5406 Å radiation in a
horizontally mounted INEL diffractometer with a quartz monochromator, a
cylindrical position-sensitive detector (CPS-120) and the Debye-Scherrer geometry.
NPG samples were introduced into a 0.5-mm-diameter Lindemann capillary to
minimize absorption, and the temperature was varied using a 600 series Oxford
Cryostream Cooler. Using the Materials Studio software58, lattice parameters were
determined by pattern matching using the Pawley method for the cubic phase, and
by Rietveld refinement for the monoclinic phase.

Dilatometry was performed using a bespoke apparatus that operated up to
0.3 GPa over a temperature range of ~193–433 K. Molten NPG samples of mass
~1 g were encapsulated inside stainless-steel containers to remove any residual air.
Each container was then perforated by a stainless-steel piston, whose relative
displacement with respect to a surrounding coil could be detected via measurement
of electromotive force59.

Variable-pressure x-ray diffraction measurements were performed at beamline
MSPD BL04 in the ALBA-CELLS synchrotron60, using an x-ray wavelength of
0.534 Å obtained at the Rh K-edge. The beamline is equipped with Kirkpatrick-
Baez mirrors to focus the x-ray beam to 20 μm× 20 μm, and uses a Rayonix CCD
detector. The NPG sample was placed with two small ruby chips at the centre of a
300 μm-diameter hole in a stainless steel gasket, preindented to a thickness of 55
μm. For room-temperature measurements, we used symmetric diamond-anvil cells
(DACs) with diamonds of 700 μm. For high-temperature measurements, we used a
gas-membrane driven DAC equipped with diamonds possessing 400 μm culets,
and varied the temperature using a resistive heater. Temperature was measured
using a K-type thermocouple attached to one diamond anvil, close to the gasket.
The thermocouple was accurate to 0.4% in our measurement-set temperature
range. For all the measurements, NaCl powder was used as the pressure marker61.
The accuracy of pressure readings was ~±0.05 GPa. Indexing and refinement of the
powder patterns were performed using the Materials Studio software, by pattern
matching using the Pawley method.

Construction of entropy curves. Using specific heat data at atmospheric pressure
(Fig. 1b), specific volume data at atmospheric pressure (Fig. 1d), and dQ/|dT|
data at constant pressure (Figs. 1a and 2a, b), we calculated S′(T,p)= S(T,p) − S
(250 K,0) using Eq. (1):

S′ðT; pÞ ¼

R T
250K

COCðT′Þ
T′ dT′þ ΔSþðpÞ T � T1

S ðT1; pÞ þ
R T
T1

1
T′ COC�PCðT′Þ þ dQðT′;pÞ

dT′

��� ���� �
dT′þ ΔSþðpÞ T1 � T � T2

S ðT2; pÞ þ
R T
T2

CPCðT′Þ
T′ dT′þ ΔSþðpÞ T � T2

8>>><
>>>:

ð1Þ
where T1 is the transition start temperature, T2 is the transition finish temperature,
COC is the specific heat of the OC phase, CPC is the specific heat of the PC phase,
and COC-PC = (1−x)COC+ xCPC represents the specific heat inside the transition
region, where the transformed fraction x on crossing the PC-OC transition was
calculated using Eq. (2):

x ¼
Z T

T1

ðdQ=dT′ÞdT′
" #

=

Z T2

T1

ðdQ=dTÞ dT
" #

ð2Þ

All values of specific heat are assumed to be independent of pressure.

Data availability
All relevant data are presented via this publication and Supplementary Information.

Received: 7 February 2019 Accepted: 27 March 2019

References
1. Tamarit, J.-Ll., Legendre, B. & Buisine, J. M. Thermodynamic study of some

neopentane derivated by thermobarometric analysis. Mol. Cryst. Liq. Cryst.
250, 347–358 (1994).

2. De Gennes, P. G. & Prost, J. The Physics of liquid crystals (Oxford University
Press, New York, USA, 1993).

3. Tamarit, J.-Ll., Pérez-Jubindo, M. A. & de la Fuente, M. R. Dielectric studies
on orientationally disordered phases of neopentylglycol ((CH3)2C(CH2OH)2)
(and tris(hydroxymethyl aminomethane) ((NH2)C(CH2OH)3). J. Phys.
Condens. Matter. 9, 5469–5478 (1997).

4. Timmermans, J. Plastic crystals: a historical review. J. Phys. Chem. Solids. 18,
1–8 (1961).

5. Benson, D. K., Burrows, W. & Webb, J. D. Solid state phase transitions in
pentaerythritol and related polyhydric alcohols. Sol. Energy Mat. 13, 133–152
(1986).

6. Barrio, M., Font, J., López, D. O., Muntasell, J. & Tamarit, J.-Ll. Floor radiant
system with heat storage by a solid-solid phase transition material. Sol. Energy
Mater. Sol. Cells 27, 127–133 (1992).

7. Mañosa, Ll. et al. Giant solid-state barocaloric effect in the Ni–Mn–In
magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

8. Mañosa, Ll. et al. Inverse barocaloric effect in the giant magnetocaloric La– Fe
– Si– Co compound. Nat. Commun. 2, 595 (2011).

9. Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2.
Appl. Phys. Lett. 101, 071906 (2012).

10. Stern-Taulats, E. et al. Barocaloric and magnetocaloric effects in Fe49Rh51.
Phys. Rev. B 89, 214105 (2014).

11. Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. Giant barocaloric eect
enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat.
Mater. 14, 73–78 (2014).

12. Samanta, T. et al. Barocaloric and magnetocaloric effects in (MnNiSi)1-
x(FeCoGe)x. Appl. Phys. Lett. 112, 021907 (2018).

13. Stern-Taulats, E. et al. Inverse barocaloric effects in ferroelectric BaTiO3
ceramics. APL Mater. 4, 091102 (2016).

14. Flerov, I. N. et al. Thermal, structural, optical, dielectric and barocaloric
properties at ferroelastic phase transition in trigonal (NH4)2SnF6: A new look
at the old compound. J. Fluorine Chem. 183, 1–9 (2016).

15. Lloveras, P. et al. Giant barocaloric effect at low pressure in ferrielectric
ammonium sulphate. Nat. Commun. 6, 8801 (2015).

16. Bermúdez-García, J. M. et al. Giant barocaloric effect in the ferroic organic-
inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible
pressures. Nat. Commun. 8, 15715 (2017).

17. Aznar, A. et al. Giant barocaloric effects over a wide temperature range in
superionic conductor AgI. Nat. Commun. 8, 1851 (2017).

18. McLinden, M. O. Thermophysical properties of refrigerants. ASHRAE
Handbook: Fundamentals. (ASHRAE, Atlanta, 2009).

19. Zanetti, R. The unit cell and space group of 2,2 dimethyl-l,3 propanediol. Acta
Cryst. 14, 203–204 (1961).

20. Barrio, M., López, D. O., Tamarit, J.-Ll., Negrier, P. & Haget, Y. Degree of
miscibility between non-isomorphous plastic phases: binary system NPG
(neopentyl glycol)-TRIS[tris(hydroxymethyl)aminomethane]. J. Mater. Chem.
5, 431–439 (1995).

21. Kamae, R., Suenaga, K., Matsuo, T. & Suga, H. Low-temperature thermal
properties of 2,2-dimethyl-1,3-propanediol and its deuterated analogues. J.
Chem. Thermodyn. 33, 471–484 (2001).

22. Murrill, E. & Breed, L. Solid-solid phase transitions determined by differential
scanning calorimetry. Part I. Tetrahedral substances. Thermochim. Acta 1,
239–246 (1970).

23. Font, J., Muntasell, J., Navarro, J., Tamarit, J.-Ll. & Lloveras, J. Calorimetric
study of the mixtures PE/NPG and PG/NPG. Sol. Energy. Mat. 15, 299–310
(1987).

24. Bridgman, P. W. Polymorphic transformations of solids under pressure. Proc.
Am. Acad. Arts Sci. 51, 55–124 (1915).

25. Scott, J. F. On the theory of ferroelectric susceptibilities. J. Phys. Soc. Jpn. 58,
4487–4490 (1989).

26. Hull, S. Superionics: crystal structures and conduction processes. Rep. Prog.
Phys. 67, 1233–1314 (2004).

27. Warlimont, H. & Martienssen, W. Handbook of Materials Data, 2nd edn.
(Springer Nature, Schwitzerland, AG, 2018).

28. Planes, A. & Mañosa, L. Vibrational properties of shape-memory alloys. Solid
State Phys. 55, 159–267 (2001).

29. Zemansky, M. W. & Dittman, R. H. Heat and Thermodynamics, 7th edn.
(McGraw-Hill, New York, 1997).

30. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic
phase transitions. Nat. Mater. 13, 439–450 (2014).

31. Sandrock, R. & Schneider, G. M. Differential Scanning Calorimetry (DSC) at
Pressures up to 5 kbar configurational contributions of transition entropies in
the plastic crystals cyclohexane and diamantane. Ber. Bunsenges. Phys. Chem.
87, 197–201 (1983).

32. Jenau, M., Reuter, J., Tamarit, J.-Ll. & Würflinger, A. Crystal and pVT data
and thermodynamics of the phase transitions of 2-methyl-2nitropropane. J.
Chem. Soc. Faraday Trans. 92, 1899–1904 (1996).

33. Guthrie, G. B. & McCullough, J. P. Some observations on phase
transformations in molecular crystals. J. Phys. Chem. Solids. 18, 53–61 (1961).

34. Wu, R. R. et al. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-
In compounds around room temperature. Sci. Rep. 5, 18027 (2015).

35. Mikhaleva, E. A. et al. Caloric characteristics of PbTiO3 in the temperature
range of the ferroelectric phase transition. Phys. Sol. State 54, 1832–1840
(2012).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09730-9

6 NATURE COMMUNICATIONS |         (2019) 10:1803 | https://doi.org/10.1038/s41467-019-09730-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


36. Liu, Y. et al. Giant room-temperature barocaloric effect and pressure-
mediated electrocaloric effect in BaTiO3 single crystal. Appl. Phys. Lett. 104,
162904 (2014).

37. Gorev, M., Bogdanov, E., Flerov, I. & Laptash, N. Thermal expansion, phase
diagrams and barocaloric effects in (NH4)2NbOF5. J. Phys. Condens. Matter.
22, 185901 (2010).

38. Gorev, M. V., Bogdanov, E. V., Flerov, I. N., Kocharova, A. G. & Laptash, N.
M. Investigation of thermal expansion, phase diagrams, and barocaloric effect
in the (NH4)2WO2F4 and (NH4)2MoO2F4 oxyfluorides. Phys. Solid State 52,
167–175 (2010).

39. Gorev, M. V., Flerov, I. N., Bogdanov, E. V., Voronov, V. N. & Laptash, N. M.
Barocaloric effect near the structural phase transition in the Rb2KTiOF5
oxyfluoride. Phys. Solid State 52, 377–383 (2010).

40. Flerov, I. N., Gorev, M. V., Bogdanov, E. V. & Laptash, N. M. Barocaloric
effect in ferroelastic fluorides and oxyfluorides. Ferroelectrics 500, 153–163
(2016).

41. Sagotra, A. K., Errandonea, D. & Cazorla, C. Mechanocaloric effects in
superionic thin films from atomistic simulations. Nat. Commun. 8, 963 (2017).

42. Sagotra, A. K., Chu, D. & Cazorla, C. Room-temperature mechanocaloric
effects in lithium-based superionic materials. Nat. Commun. 9, 3337 (2018).

43. Gschneidner, K. A., Pecharsky, V. K. & Tsokol, A. Recent developments in
magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

44. Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D. 38,
R381–R391 (2005).

45. Franco, V., Blazquez, J. S., Ingale, B. & Conde, A. The magnetocaloric effect
and magnetic refrigeration near room temperature: materials and models.
Annu. Rev. Mater. Res. 42, 305–342 (2012).

46. Smith, A. et al. Materials challenges for high performance magnetocaloric
refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012).

47. Lu, S. G. & Zhang, Q. Electrocaloric materials for solid-state refrigeration.
Adv. Mater. 21, 1983–1987 (2009).

48. Valant, M. Electrocaloric materials for future solid-state refrigeration
technologies. Prog. Mater. Sci. 57, 980–1009 (2012).

49. Mañosa, Ll. & Planes, A. Materials with giant mechanocaloric effects: cooling
by strength. Adv. Mater. 29, 1603607 (2017).

50. Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510
(2019).

51. Rodriguez, E. L. & Filisko, F. E. Thermoelastic temperature changes in poly
(methyl methacrylate). J. Appl. Phys. 53, 6536–6540 (1982).

52. Moya, X., Avramenko, A., Mañosa, Ll., Tamarit, J.-Ll. & Lloveras, P. Use of
barocaloric materials and barocaloric devices. Patent no. PCT/EP2017/076203
(2017).

53. Moya, X., Defay, E., Mathur, N. D. & Hirose, S. Electrocaloric effects in
multilayer capacitors for cooling applications. MRS. Bull. 43, 291–294 (2018).

54. Kar-Narayan, S. & Mathur, N. D. Predicted cooling powers for multilayer
capacitors based on various electrocaloric and electrode materials. Appl. Phys.
Lett. 95, 242903 (2009).

55. Wang, X., Guo, Q., Zhong, Y., Wei, X. & Liu, L. Heat transfer enhancement of
neopentyl glycol using compressed expanded natural graphite for thermal
energy storage. Renew. Energ. 51, 241 (2013).

56. López, D. O., Salud, J., Barrio, M., Tamarit, J.-Ll. & Oonk, H. A. J.
Uniform thermodynamic description of the orientationally disordered
mixed crystals of a group of neopentane derivatives. Chem. Mater. 12,
1108–1114 (2000).

57. O’Neill, M. J. Measurement of specific heat functions by differential scanning
calorimetry. Anal. Chem. 38, 1331–1336 (1966).

58. M.S. Modeling, Materials Studio (Accelrys), version 5.5, http://accelrys.com/
products/collaborative-science/biovia-materials-studio.

59. Landau, R. & Würflinger, A. High pressure apparatus for PVT measurements
of liquids and plastic crystals at low temperatures. Rev. Sci. Instrum. 51,
533–535 (1980).

60. Fauth, F., Peral, I., Popescu, C. & Knapp, M. The new material science powder
diffraction beamline at ALBA synchrotron. Powder Diffr. 28, S360–S370
(2013).

61. Dorogokupets, P. I. & Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-
B1, and NaCl-B2: internally consistent high-temperature pressure scales. High
Pressure Res. 27, 431–446 (2007).

Acknowledgements
This work was supported by the MINECO projects MAT2016-75823-R and FIS2017-
82625-P, the DGU project 2017SGR-42, the UK EPSRC grant EP/M003752/1, and the
ERC Starting grant no. 680032. We acknowledge ALBA for time on MSPD BL04 under
proposal 2016021701. E.S.-T. and X.M. are grateful for support from the Royal Society.

Author contributions
J.L.T., L.M. and X.M. conceived the study. J.L.T., M.B., P.L. and X.M. planned the
research. A.Av. performed the calorimetric measurements at atmospheric pressure. M.B.
performed the dilatometry measurements and the in-lab x-ray diffraction measurements.
P.L. performed the calorimetric measurements under pressure. P.L., A.Az., E.S.-T.
and X.M. performed the synchrotron x-ray diffraction measurements, with support from
C.P. P.N. performed the analysis of the synchrotron x-ray data. Results were discussed by
J.L.T., P.L., L.M., A.P., N.D.M. and X.M. X.M. wrote the manuscript with N.D.M. and
P.L. using substantive feedback from J.L.T., L.M. and A.P. The remaining authors also
contributed to the preparation of the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09730-9.

Competing interests: The use of NPG and other plastic crystals for barocaloric cooling is
covered in the following patent: X.M., A.Av., L.M., J.-Ll.T. and P.L., Use of barocaloric
materials and barocaloric devices, PCT/EP2017/076203 (2017). The remaining authors
declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewer for their contribution to the peer review of this work. Peer reviewer reports are
available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09730-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1803 | https://doi.org/10.1038/s41467-019-09730-9 |www.nature.com/naturecommunications 7

http://accelrys.com/products/collaborative-science/biovia-materials-studio
http://accelrys.com/products/collaborative-science/biovia-materials-studio
https://doi.org/10.1038/s41467-019-09730-9
https://doi.org/10.1038/s41467-019-09730-9
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol
	Results
	PC-OC phase transition in NPG at atmospheric pressure
	PC-OC phase transition in NPG under applied pressure
	BC performance

	Discussion
	Methods
	Samples
	Techniques
	Construction of entropy curves

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




