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Design and Performance of Wireless Data Gathering
Networks Based on Unicast Random Walk Routing

Gwillerm Froc, Issam Mabrouki, and Xavier Lagrange

Abstract—Wireless environment monitoring applications with
significantly relaxed quality-of-service constraints are emerging.
Hence, the possibility to use rough low knowledge routing in sensor
networks to reduce hardware resource and software complexity
is questionable. Moreover, low knowledge handling allows better
genericity, which is of interest, for instance, for basic operation
enabling system set-up. In this framework, this paper revisits
stateless unicast random walk routing in wireless sensor networks.
Based on random walk theory, original closed-form expressions
of the delay, the power consumption and related spatial behaviors
are provided according to the scale of the system. Basic properties
of such a random routing are discussed. Exploiting its properties,
data gathering schemes that fulfill the requirements of the appli-
cation with rather good energy efficiency are then identified.

Index Terms—Data gathering, quality of service (QoS), random
walk, routing, wireless sensor networks.

I. INTRODUCTION

O
VER the last decade, research into wireless sensor net-
works has been burgeoning leading to first developments

and products that are about to deeply modify the way society
interacts with the physical world. This research relies on con-
tinued technological progress in small, cheap and low power
consuming sensors, actuators, radio front-ends and processors.
It enables a wide range of applications including disaster relief,
intelligent buildings, logistics, safety and industrial and envi-
ronment monitoring as overviewed in [1].

However, not all of the wireless sensor applications have
the same requirements and QoS constraints. Yet, referring to
[3]–[5] for example, it is worth noting that many environment
monitoring applications work under infrequent updates of a
few minutes or longer and can tolerate data gathering delay
of one second up to a few tens of seconds, or can withstand
temporary gaps in the collected data set like in the farm’s soil
moisture wireless sensor system depicted in [5]. Thus, for such
Wireless Data Gathering Networks (WDGN), constraints on
latency and collected data quality can be significantly relaxed.
Nevertheless, the implications of these relaxed constraints have
not been examined specifically in the literature although this
should allow room for rough but low complex solutions.
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Dealing with routing, stateless mechanisms are “rough but
low complex” and thus may be helpful for low cost WDGN.
Futhermore, they are generic which is also of interest in a tran-
sient way for state-based routing when the topology is unknown.
For instance, it may be useful when networks have dynamic de-
vices that need to be frequently updated or when the network is
often extended [6].

Therefore, in the context of relaxed QoS constraints, this
paper revisits random walk options for routing by evaluating
unicast random walk routing schemes. To model the system,
known results from the random walk theory are applied on
a square lattice. This latter includes traps to account for the
presence of the collectors. Original analytical closed-form
expressions, valid whatever the scale is, are derived for delays,
spatial properties and energy consumption. It is then possible
to study performance issues and basic properties according to
the sensor – collector density ratio which scales the random
walk. We find that load balancing is achieved, the mean delay
can be acceptable with not-so-large scale and meet the system
requirements when WDGN are considered. Moreover, suitable
data gathering schemes are deduced at system level. It is shown
that these schemes can be energy-efficient.

The rest of this paper is organized as follows. Section II
draws up main features of WDGN and justifies the use of uni-
cast random walk routing. In Section III we present the model
to describe unicast random walk routing. Then in Section IV,
the performance statistics are derived. Results are discussed in
Section V and suitable data gathering schemes are proposed
at system level. Lastly, the conclusion sums up the results
and points out how fruitful could be the framework this paper
defines.

II. UNICAST RANDOM WALK ROUTING FOR WIRELESS DATA

GATHERING NETWORKS AND RELATED WORK

Here, the features of WDGN are introduced. It is shown how
the related requirements suggest the use of multihop unicast
routing to convey the data. The pertinence of random schemes
to choose the next relay node at each hop is also discussed.

The WDGN considered are made up of sensors and collec-
tors. There are typically between 10 to 1000 sensors from which
information is collected within between 1 and a few 10s of sec-
onds for every gathering cycle. The data size is about 1–10
bytes. The gathering cycles occur from time to time with a pe-
riod of a few 10s of minutes. The monitoring can tolerate tem-
porary gaps in the gathered data set. The collectors act as sinks.
They can have more computing resource than sensors and can
communicate with the remote application. Since they are more
complex and costly, their number has to be low.

Under these assumptions, we want to identify transport
schemes that would allow (i) a low system cost and (ii) a
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system lifetime as long as possible. The low cost constraint
(i) implies that hardware and software resources to implement
protocols should be reduced as far as possible. At first, the
lifetime constraint (ii) is satisfied by scaling down the acti-
vation of the system to the gathering cycles. At the hardware
level, this requires only a clock and a timer. Now, regarding
the gathering cycles, to convey the data from a source to a
destination, analyses show that, in an homogeneous system,
the multihop strategy is better since the communication energy
consumption dominates the energy consumption induced by
the circuitry [7]–[9]. This means envisaging strategies with
relaying capable sensors. So, jointly considering (i) and (ii)
infers that the routing has to be based on an energy efficient
low complex multihop scheme. Now, to be consistent with the
energy consumption minimization, we do not allow multiple
copies of a message. This leads to unicast multihop routing.

Here two issues arise. First, energy minimization of the
routing and low complexity are quite antinomic. Indeed, the
minimization energy problem applies to a large state space that
accounts for time evolving parameters such as propagation or
data rates [9]. Hence, to solve it, decisions must be taken from
a large amount of shared information. This requires a great
deal of hardware, software and updating signalling exchanges
which induces an energy overhead and is contrary to the low
complexity requirement (ii). In addition, it has been underlined
that the energy depletion should be distributed over the set of
sensors to avoid the burning node effects and to ensure uniform
QoS over time and space [10]–[12]. This argues for non-de-
terministic and more specifically random walk approaches for
routing. Indeed, the use of random walk approaches is common
to reduce complexity in large scale systems because it enables
stateless operations. It has already been suggested for routing
in wireless systems. In [13] constrained random walk multipath
routing is proposed to allow load balancing in wireless sensor
networks where nodes switch between active and inactive states
at random times to save energy. More efficient than flooding,
gossiping techniques to spread information in possibly uncon-
nected networks [14], [15] are also related to random walk
approaches since, at each hop, messages are forwarded to their
neighbors with a certain probability. However, the results pre-
sented are strongly dependent on the connectivity of the system
and they have to be analyzed in light of percolation theory [16]
first. Moreover, the generation of multiple copies of a given
message to propagate the information is allowed. However,
our study is focused on the randomness of the routing scheme
assuming that the network is connected and allows only one
copy of a given message to circulate. Rumor routing [17] aims
at building a path between query and related event by flooding
both event and query information up to a certain extent. Then,
the generated agents are unicasted until they link both domains
or die. When the agent forwarding policy follows a random
scheme, rumor routing is a kind of unicast random walk routing
where the cross section of the event-query intersection (a path
between source and destination) is enhanced by the event and
query flooding extension. However, results are discussed based
on simulations that do not account for strict random agent
forwarding scheme. Therefore, specific insights into unicast
random walk routing cannot be revealed. It may be that often,
the performance of random walk approaches are considered as

too poor [1]. Note that in the relaxed constraints context this
paper addresses, we specifically want to exploit the fact that
lower performance are acceptable. Moreover, recently Zhong
[18] pointed out how effective random walk schemes could be
in dynamic and decentralized settings.

III. RANDOM WALK MODELLING

This section presents the model used to study unicast random
walk routing (URWR). The network is represented by an in-
finite square lattice. The transmission of messages is allowed
only between nearest neighbors. URWR then corresponds to a
random walk over an infinite square lattice for which basic sta-
tistics have already been derived [20]. So here, we just recall the
formalism and general expressions of basic statistics for both
homogenous systems and systems perturbated by a central data
gathering scheme which allows us to account for the presence
of collectors.

A. Random Walk Parameters Definition

Let us consider a graph where is a countable set
of nodes wirelessly connected pairwise by a set of undirected
edges to represent communication links between nodes. Every
node can be the source or the destination of a message, as well
as a relay for communications between any other pair of nodes.
A message called random walker is randomly forwarded from
relay node to relay node until it reaches its destination. We as-
sume that time is slotted and that a 1-hop transmission consumes
1 time slot.

To describe the random walk, the transition function of the
random walk is introduced. It defines at a given node the prob-
ability to reach node . As a probability, it is a non-neg-
ative real and verifies .

Let be the probability for the packet to be at node
after hops, given that it has been issued at node . It is called
the node occupation probability. Let be the probability
for the packet to arrive at node for the first time on the th
hop, given that the walk started at node . It is referred as the
first-passage probability. These probabilities are key parameters
from which main results can be deduced. They are defined for

. For , they are set down to

(1)

Then, it is useful to introduce the generating function formalism
[21] that capture probabilities for all defined

(2)

being a complex variable small enough to ensure the conver-
gence of the series. Basic statistics such as the expectation and
the variance can be derived from .

Let then and be respectively the gen-
erating function of the node occupation probability and of the
first-passage probability. At fixed , satisfies the nor-
malization condition

(3)
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Illustrating the law of total probability, and
are related to each other according to the relation

(4)

Now, how likely does the walk evolve in the future under
some initial conditions? It is possible to describe the walk
through a set of equations called the evolution laws, governing
the walk evolution. Indeed, , which completely
determines the node occupation probability distribution over
the nodes of at fixed , can be described as the solution
of two equivalent evolution laws superficially different but
mathematically equivalent because of the constancy with time
of the transition probabilities and our ability to identify first
and last hops in an -hop walk

(5)

(6)

Now, let us introduce the discrete linear transition operator

that is acting on an unknown function as

(7)

Then, if we define a -dependent source term , the evolution
law (5) can be identified to the nonhomogeneous discrete linear
differential equation

(8)

in the special case , where is the variable and is a
parameter. is then just the Green function of (8).

Since the general solution of a nonhomogeneous discrete
linear differential equation can be constructed by the convolu-
tion of its Green function with the source term

(9)

it can be deduced that it is still possible to derive solutions for
-dependent random walk potentials from basic one related to

. This arises especially for nonhomogeneous random
walks whose transition functions are resulting from added
perturbation terms to spatial homogeneous transition functions.
Below, we exploit this technique to derive from the homoge-
neous random walk, the case of a central data gathering scheme
where all sensor nodes send their data to collector nodes that
behave as trapping sites.

B. Homogeneous Random Walk on a Lattice

In the previous paragraph, no hypothesis, neither on the
structure of state space nor on transition function , has
been assumed while establishing evolution laws (5) and (6). In
this section, the random walk problem is specified further by
translating WDGN requirements into mathematical constraints.
Some restrictions are introduced to ease the derivation of the
closed-form solution of the evolution laws.

As a starting point, it is assumed that all nodes are of same
nature and behave similarly in an homogeneous environment.

Fig. 1. � �� regular square sensor lattice. Collectors are introduced at the
origin of the elementary cells in the case of central data gathering scheme.

Every node acts simultaneously as source, destination as well as
relay for the other ones. Next, it is considered that the random
walk takes place on an infinite regular structure made up of the
repetition of an elementary cell being a finite square lattices
of size as presented in Fig. 1. Moreover, only equally
probable nearest neighbor transitions are allowed. Such assump-
tions are of threefold interest. First, the regularity of the struc-
ture can fit the averaged characteristics of WDGN (e.g., mesh or
grid networks). Second, the model is simple enough to allow an
analytical study of the random walk problem while still being
useful to incorporate the specific key issues of wireless sensor
networks such as the data forwarding policy. Third, more com-
plex situation can be considered as a perturbation of this basic
scheme. This is the case when collector nodes are present, which
will be studied bellow.

The transition function is then

(10)

where and denote the unit vectors of the orthonormal ref-
erence. is interpreted modulo . Spatial homogeneity has
been assumed. It means that the data forwarding model depends
only on the relative position of the nodes. Hence it translates in
transition function that verifies

(11)

where is interpreted modulo , i.e., periodically. So, it
can be deduced that the node occupation probability generating
function also verifies the spatial homogeneity prop-
erty, and is then really determined by the single-point function

on which the following developments are based.
In other respects, since there is no directional bias on any hop,

(12)

and the considered random walk is deemed symmetric.
The regular structure of the random walk allows to define

discrete Fourier transforms and ensures that can be
explicitly derived. The detail calculation can be found in [20].
To sum up, the first step is to define the Fourier series
and associated with the transition probabilities
and the site occupation probability respectively. Then,
taking the Fourier series of both sides of (5), one finds that

. Inverting back , one has

(13)
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Multiplying both sides of (13) by , summing over , in-
verting the integration and summation orders, and summing the
resulting geometric series in the integrand, we have

(14)

Then, substituting in (14) the expression of the Fourier Series
of that is given by (10), one obtains

(15)

C. Central Data Gathering Scheme

To model data gathering schemes that distinguish between
sensors and collectors, a sink node located at the origin is intro-
duced. A packet arriving at the sink node never leaves. However,
by introducing two types of nodes, lattice nodes are no longer
equivalent and the spatial homogeneity assumed in case of the
homogeneous walk is broken down. To solve the problem in
this non-homogeneous case, we make use of the perturbation
method considering that the random walk problem associated
with the central data gathering scheme is resulting from adding
perturbations to the one associated with the homogeneous walk,
for which an explicit solution of the node occupation probability
generating function has been provided in (15). Then, from (9) a
solution can be deduced.

Let and denote the transition functions asso-
ciated with the central data gathering scheme and the perturba-
tion term respectively. The perturbation term is produced from
adding the sink node, recalling that a packet arriving to the sink
node never leaves. As is the transition function of the ho-
mogeneous walk, one has

(16)

with

if
else

(17)

and

if
else.

(18)

Now, the node occupation probability generating function
associated to the central data gathering scheme denoted by

has to be evaluated.
Theorem 3.1: can be expressed in function of

, as follows:

(19)

Proof: This proof is based on the resolution of the evolu-
tion law verified by , through the aid of (9). Indeed,
from (5), satisfies

(20)

Plugging (16) into (20) and substituting the expression of the
perturbation term embodied in (17), we find

(21)

The left-hand side of (21) can be recognized as the transition
operator acting on . Therefore, refering to (9),

can be expressed as the convolution of Green func-
tion with the right-side of (21). We obtain

(22)

Using (6), we can eliminate the sum in (22) and get

(23)

This relation enables us to infer the value of in func-
tion of once we know . By setting
in (23), it follows that

(24)

Using this expression of in (23) leads to (19).

IV. UNICAST RANDOM WALK ROUTING PERFORMANCE

The objective of this section is to evaluate the performance of
Unicast Random Walk Routing (URWR). Beyond basic random
walk results presented above, we specifically derive original
closed-form expressions that apply even for small scale systems.
First, to exhibit in a synthetic way the general system behavior,
we define and look at data gathering delays averaged over the
network considering all sensors as equivalent. Next, the spatial
dependency of the data gathering delay is scrutinized. Then, the
impact of URWR on energy consumption is studied. The re-
sults are discussed and from the properties of the random walk
on such system, data gathering schemes that reduce the energy
consumption are proposed.

A. Data Gathering Delay Averaged Over the Network

The data gathering delay is the time or the number of hops
it takes for a message issued from an arbitrary sensor node

to reach the sink node for the first time where it

is trapped. We denote this random variable. Let

be the mean of over the entire set of sensors. We call
it System Data Gathering Delay in the following. Here, it is
looked at the mean, or in mathematical parlance, the expecta-

tion, and the variance of . The equivalence of the sensor
nodes is ensured assuming a uniform traffic generation distribu-
tion, that is, a packet has the same probability of being generated
at any sensor node, with probability .
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First, the generating function is determined. Then, expres-

sions of the expectation and the variance of are exhibited.
It is shown that they are relevant even for small system sizes.

1) Generating Function: Let be the probability that
a packet initially issued at any sensor node will be trapped at the
sink node on the th hop

Now, we express in function of .

As a starting point, let and be respec-
tively the first passage probability of arriving at the sink node
on the th hop, given that the packet has been issued at sensor
node , and its generating function. Using the law of total prob-
ability, it is possible to decompose the event that a packet will
be trapped at the sink node on the th hop, which has the prob-

ability , into the mutually exclusive events that
the packet is initially generated at sensor node with probability

, and then arrives at the sink node for the first time after

hops, which has the probability . It comes

Multiplying both sides by and summing over , we obtain

(25)

Then using (4) that translates the law of total probability and
links to , next, applying Theorem 3.1
that relates to , one finds

(26)

and (25) becomes

(27)
Using successively the symmetric property (12) of the node oc-
cupation probability generating function associated with the ho-
mogeneous walk and the normalization condition (3), the sum
embodied in (27) can be simplified as follows:

(28)

Plugging (28) into (27), we obtain

(29)

2) Mean of System Data Gathering Delay:

Result 4.1: The mean or expectation of System Data Gath-
ering Delay has the following closed-form expression

(30)

where is an -dependent holomorphic function de-
fined by (59) in Appendix A.

Proof: The mean of System Data Gathering Delay is

(31)

Substituting in (31) the expression of given by (29),

would not lead directly to an explicit expression for . So,
instead, we extract a closed form considering the Taylor series
expansion of as . Indeed, (62) in Appendix A
provides an asymptotic expansion of . Setting
in it, we have

Using this expression in (29), it follows that

(32)

Since is holomorphic at , it is described at this
point by its Taylor’s series. So, differentiating (32) with respect
to and taking the limit as we get Result 4.1.

Some general remarks can be drawn from previous results.
First, from the first order Taylor’s series expansion given by
(32), the value of at point is equal to unity,
which represents the probability the packet is ever trapped by the
sink node. This means that the data gathering operation based
on URWR is certain. Second, refering to Result 4.1, the mean of
System Data Gathering Delay is finite and depends only on .
To study this dependence, has to be estimated. Two

ways are possible. First, is exactly estimated by nu-
merical calculation of . Alternatively the behavior of

can be studied by an asymptotic analysis of .
Plugging into (30) the asymptotic expansion of given
by (64) in Appendix B, we get the asymptotic expansion of

as

(33)

where and are constants lower than 1 (cf. Appendix B).
Since series is fast decreasing, the convergence speed of

the approximation given by (33) is quite strong and as shown in
Table I, it holds true even for small values of .
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TABLE I
ERROR INDUCED BY THE USE OF APPROXIMATED MEAN AND VARIANCE OF

SYSTEM DELAY RELATIVELY TO EXACT VALUES FOR VARIOUS �

3) Variance of the System Data Gathering Delay : The

variance of is a key parameter as far as quality of
service is concerned. It is evaluated in this paragraph.

Result 4.2: If is the first derivative of with

respect to , has the closed-form expression

(34)

Proof: The variance of System Data Gathering Delay is

(35)

Then, plugging into (29) the asymptotic expansion of
given by (62) provides an asymptotic expansion of
near . The limits of the first and second derivative of

are respectively the first-order and the second-order
of the series to be used to get (34).

Result 4.3: As increases, verifies

(36)

Proof: In appendix A, it has been shown that, as in-
creases, . By substituting this expres-
sion in (34), an equivalent for the variance can be derived. Then,
since according to asymptotic develop-
ment (64), it can be deduced that the main contribution in the
variance comes from the first term of (34) which is equivalent
to .

For various , Table I compares the approximated variance
given by (36) with respect to the exact computation. It indicates
that even for small the approximation makes sense.

Beyond the accuracy of the equivalent (36) of the variance of
System Data Gathering delay, it is remarkable that it is just close
to the square of its mean (30).

4) Discussion: The expression of the mean of System Data
Gathering Delay given by (33) is of importance: it captures the

mean behavior of the system and applies for small . The ex-
pression of the variance (34) and the equivalent (36) deduced as

increases, refine the idea designers can have about the QoS
of the system. Indeed, first, their expressions also stand even for
small values of . Next, this equivalent of the variance is just
the square of the mean. Now, the stochastic process under study
consists of a uniform memoryless generation of a walker over
the network on which URWR – that is a succession of memory-
less processes – applies until the walker is trapped at a collector
node. So, the existence of an equivalent of the variance that is
just the square of the mean and that holds good for small
let us infer that, as a good approximation, an exponential prob-
ability distribution can be assumed for the System Data Gath-
ering Delay. It is thus possible to define the percentile the delay
is below a given threshold.

Thus, the results derived from the infinite lattice model give
insight of the behavior of wide range systems in which collec-
tors are, in average, regularly spread. Moreover, they allow to
properly dimension the scale of the collector distribution while
targeting a given level of QoS like the percentile the delay is
below a given threshold or the mean delay. This scale can also
be interpreted as the typical granularity above which the system
should be structured which is known to enhance performance
[22].

The results can now be translated into numerical figures for
WDGN. As pointed out in II, WDGN gather about 10 bytes in-
formation per message from every node. There are a few 100s
of nodes. The data gathering should last a few seconds or a few
10s of seconds. The amount of data to be carried at system level
is thus about 100 kbits. Hence targeting IEEE802.15.4-like de-
vices that offer 250 kbps at 30 m range the system works then at
low load. As a consequence, there is no need to optimize mes-
sage scheduling nor to implement tight synchronization over
the system and basic asynchronous approaches like CSMA/CA
to access the medium are quite appropriate. Then, assuming
that the physical layer capabilities can ensure full connectivity
adapting its coding rate according to the range dispersion for in-
stance, the typical delay to transmit 1 bit per hop equals 4 .
Therefore, the time to send a message – the time slot duration –
is 320 . This is high enough to neglect the circuits and MAC
delays. To gather data from a sensor node within 1 s, in average,
the number of hops should not exceed .
This occurs for scales verifying according to Fig. 2.
As discussed above, considering an exponential probability dis-

tribution for , deeper characterization of the quality of ser-
vice can be provided looking at the probability the mean delay
is under a given bound. The percentile , , to be
under bound requires to wait . Curves for dif-
ferent are presented in Fig. 2. Admissible vary from 58 to
6, i.e., network size varies from 3664 to 36 nodes while System
Data Gathering Delay is within 5 s 80% of the time or within
0.1 s 99% of the time respectively. Between, targeting 1 s delay
99% of the time requires . It is worth noting that while

, delays lower than those given by
can often be expected. These figures show that although the per-
formance dispersion is significant, the results are within 1 s up
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Fig. 2. Mean of system data gathering delay ���
�
� in hop unit (�). As a

good approximation, related standard deviation equals the mean. Other curves
indicate the delay one has to wait to be sure at 80% (�), 90% (�) and 99% ( )
that the message has hit the sink. The horizontal line marks the 3125 coordinates.

to 10 s for networks with few 10s up to several 100s of nodes.
This is fully in range with WDGN requirements.

B. Spatial Distribution of Mean Data Gathering Delay

This paragraph focuses on the spatial properties of the data
gathering delay. As mentioned previously, the data gathering
delay is the time or the number of hops it takes for a message
issued from an arbitrary sensor node to reach the
sink at the origin for the first time where it is trapped.

Result 4.4: The spatial behavior of the data gathering delay
has the closed-form expression

(37)

where is the -dependent holomorphic function de-
fined by (59) in Appendix A.

Proof: The probability that this message is trapped after
hops is the first-passage probability

The Mean Data Gathering Delay is

(38)

Then, substituting (26) in (38) leads to

(39)

The asymptotic expansion of the Green function
as is given in Appendix A. It can be derived first that

(40)

So, next, can be expanded as

(41)

Fig. 3. Spatial distribution of mean delay���� ����� in hop unit, for a message
originating from sensor at � � �� � � � coordinates on a regular 18� 18 square
lattice cell to hit one of the collectors located at cell vertices.

is holomorphic at . Then, differen-
tiating (41) with respect to and setting leads to (37).

In (37), the expression increases for and
decreases for . Moreover in Appendix A it has been
shown that and dependencies of vary independently
and that they decrease for values lower than and increase

for values greater than . Hence, has an absolute

maximum at , i.e., in the center of the cell. Here,
for even values of , the maximum delay is

(42)
It is then interesting to compare this maximum with the System
Data Gathering Delay given in (33), by evaluating parameter

. Remarking that

defined in Appendix B-C and for which an asymptotic
expansion has been derived in (78), next, using the asymptotic
expansion of made explicit in (64), an asymptotic ex-

pansion can be found for . Then, plugging this latter

and the asymptotic expansion (33) of in the expression
of leads to

(43)

1) Discussion: The difference between the maximum
Mean Data Gathering Delay and the System Data Gathering
Delay quantifies the dispersion of the delay according to the
different locations of the sensor nodes. Relation (43) indicates
that it evolves as while, referring to (36) and (64),
the standard deviation of the stochastic process related to the
System Data Gathering Delay varies as . In other
words, at the first order, the dispersion induced by the memo-
ryless property of the URWR transport noticeably exceeds the
effect of the spatial dispersion of sensor nodes.

Fig. 3 represents in hop unit for which
corresponds to a 324 nodes network. At the maximum, the mean
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number of hops before the message reaches the sink is 731 cor-
responding to a 0.23 s delay considering 10 bytes messages at
250 kbps data rate. Under the same conditions, Fig. 2 shows
that System Data Gathering Delay corresponds to 661 hops (i.e.,
0.21 s) while it has to be waited for 1522 hops, i.e., 0.48 s in
order to be able to capture the data message 90% of the cases.
Hence, over lattices that have a few hundreds of nodes, the delay
dispersion according to sensor location is still relatively low
(10% of the System Data Gathering Delay) particularly com-
pared to the variance of URWR stochastic process. Thus per-
formance features are relatively uniform as far as sensor nodes
location is concerned.

C. Energy Consumption

The main focus of this paper is to discuss the capability of
URWR to lower complexity keeping the lifetime of the system
as long as possible. This section examines the latter point by
evaluating the contribution of URWR to the power consump-
tion, i.e., the contribution originating from the multiple random
receipts and transmissions at the relay nodes. In this context, the

mean number of hops a message that carries one data
unit undergoes before hitting a collector gives a measure of the
mean contribution of URWR to the energy consumption. How-
ever, dealing with long life time systems, to evaluate possible
burning node effects for example, the spatial distribution of the
energy consumption is also of key interest.

1) Mean Number of Visits of a Packet at a Sensor Node: At a
relay node , the contribution of URWR to the energy consump-
tion is proportional to the number of visits of a message walker.

Result 4.5: The mean number of visits of a packet to sensor
node before being trapped at a sink node is

(44)

Proof: Let us define at sensor node the random variable
, which takes the value 1 if sensor node is visited by

the packet on the th hop, and zero otherwise. Denoting
and the probability and related generating function
respectively that sensor node is visited at hop , we have

The number of times sensor node is visited during the walk is
nothing but the random variable whose expectation
(mean number of visits) can be derived as follows:

Now, it remains to make explicit generating function
. Using the law of total probability, it is possible to

decompose the event that a packet generated at any sensor
node will visit sensor node on the th hop, which has the

probability , into the mutually exclusive events

that the packet is initially generated at sensor node with
probability , and then visits sensor node after hops,

which occurs with probability . Thus, we obtain

Multiplying both sides by , summing over all , we get

(45)

However, from Theorem (3.1), can be expressed

(46)
Then, plugging (46) into (45), using the symmetric property
of rendered by (12) and normalization condition (3),

can be rewritten as

(47)

By taking the limit of both sides of (47) as (through real
values) from below, we obtain (44).

Result 4.5 does not provide an explicit expression of the mean
number of visits. However, it is possible to infer a closed-form
by expanding function close to . Indeed, since
the mean number of visits is defined as the limit of function

as , a zero-order Taylor’s series expansion
of with the point of expansion is sufficient to
obtain an explicit formula.

Result 4.6: The mean number of visits of a packet to sensor
node before being trapped at a sink node has the closed-form

(48)

being the function defined by (59) in Appendix A.
Proof: The asymptotic expansion of as

(62), is established in Appendix A. From it, it can be deduced
that is holomorphic, and hence, it can be
represented by its first-order Taylor’s series expansion with the
point of expansion as follows:

(49)

Plugging (49) into (47), taking the limit as , provides
Result 4.6.

2) Discussion: Some general remarks can be drawn from
Result 4.6. First, the mean number of visits and the mean Data
Gathering Delay are related to each other as follows:

(50)

This can be explained by the fact that with a uniform traffic dis-

tribution, fraction represents the space
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TABLE II
MEAN PERFORMANCE OF URWR, SPR, A-URWR AND A-SPR FOR 10 BYTES

MESSAGE SENT AT 250 KBPS ON A 18� 18 SQUARE LATTICE

average number of visits of a packet issued from sensor node
to each sensor node in the network. In particular, this represents
also the space average number of returns of the packet to the ini-
tial sensor node . However, represents the time average
number of visits of a packet issued anywhere in the network
to the sensor node . Therefore, the equality between the space

average number of returns, , and the time

average number of visits, , expresses simply the ergodicity

property of the system.
Second, note that the mean number of visits depends on both

the scale of the network and the position of sensor node .
This is predictable since the sensor nodes in the vicinity of the
sink node are not equivalent to those in the middle of the cell.
However, looking at (50) and the closed-form expression of
given by (43) it can be deduced that the spatial deviation of

with respect to the mean number of visits described by

varies slowly in a few units range. Hence,
URWR achieves to approach quite well the uniform load bal-
ancing property throughout the network.

Moreover, from (50) one can observe that like ,
has an absolute maximum in the center of the cell. The

asymptotic expansion of at this maximum can be evalu-

ated. Since for which an asymptotic ex-
pansion has been derived in (78), plugging this latter and the
asymptotic expansion (64) of in (42), one finds

Then, another conclusion is that over the scales of interest (
), the mean number of visits increases slowly with and

remains in the [1.33, 2.51] range. For example, back to a 18 18
network, from Fig. 3 on which (50) is applied, the maximum
mean number of visits equals to in the center
of the cell against a mean number of visits averaged over the
system that equals .

V. GENERAL DISCUSSION

In the previous paragraph, the performance of URWR to carry
a message from a source to a sink have been quantified in terms
of delay and power consumption. It has been shown that as far as
typical sink density of WDGN is concerned, though dispersive,
URWR scheme fulfils the delay requirements. Futhermore, it

has been shown that URWR achieves good load balancing prop-
erties. Now, URWR figures can be interestingly compared to the
figures of deterministic routing schemes. For instance, applying
Shortest Path Routing (SPR) on same square lattice model, the
delay to transmit a message from a source to the closest sink at

the origin, is and if is odd, the mean delay is

also gives a measure of the energy consumption in-
duced by SPR protocol. At a sensor node, the averaged power

consumption can be expressed as

Thus, for a 10 bytes message transmitted at 250 kbps on a

18 18 lattice, as presented in Table II, equals 9 hops
against 661 for URWR. This leads to a delay that is 2.88 ms
while we have to wait 0.21 s in average for URWR or even up
to 1 s to get the information 99% of the time. Then, in terms of
mean delay and mean contribution to the energy consumption,
URWR is about 30 times less efficient than SPR.

Now, a point is that beyond the data retrieval from a given
sensor node, WDGN aim at gathering information from the
overall set of sensor nodes to get a general overview of the
evolution of the physical parameters over the covered area. In
multihop networks, retrieval paths from different sensors have
a significant fraction of links in common. Hence the better
option may not be to generate as many messages as there are
sensors nodes. Aggregation can particularly suited at least to
reduce overheads or collision managment efforts. We call this
scheme A-URWR for Aggregating URWR.

Using A-URWR, reminding that the mean number of visits
at any node is close to unity, it appears that, in average, just 1
message walker would be sufficient to scan a significant part
of the sensor nodes. To get deeper insight on this property, the
mean number of distinct nodes the message visits before being
trapped at a collector can be evaluated. It is the mean number

of distinct nodes a random walker has visited on a square
lattice with no trapping site after steps. It has been shown
that for , [20].

Applying this result, on a 18 18 square lattice, since
equals 661, there are at least 246 distinct nodes visited in av-
erage. This corresponds to 76% of the nodes contained in a cell.
So, here, the generation of 1 aggregating message walker per
cell allows to gather data from a large majority of sensor nodes.
It is to be noted that the aggregation of sensor data in a single
message walker is formally equivalent with respect to the delay
to the gathering of data by means of a mobile sink as introduced
in [23].

Using aggregation, the performance of data gathering over
the network can be estimated summing the numbers of data
units carried at each hop over the set of paths . One gets the
estimator . Just 1 message, i.e., 1 path, is
necessary to scan a significant part of the network. Futhermore,
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while aggregating, the mean message size is half its maximum
size. Considering that, at most, the message contains as many
data units there are distinct visited nodes, one has

(51)

Dealing with Aggregating-SPR (A-SPR), it comes that

(52)

It is just the number of sensor nodes times the mean delay.
Then, assuming 10 bytes data units transmitted at 250 kbps on
a 18 18 lattice, as presented in Table II, the delay to convey
the aggregated data from the source to a collector is 0.93 s and
26.02 s for A-SPR and A-URWR respectively. Thus, as com-
pared to SPR approach, URWR with aggregation reduces by a
factor 2 the loss of performance. Note that increasing the density
of collectors by 4.6 reduces the relative loss to a factor about 10
(9.92) and allows URWR to perform as SPR.

Until now, the analysis has focused on the impact of the
collector–sensor nodes ratio. For the designer, it indicates
how it has to be adjust to meet a given level of performance.
However, upon URWR, enriched design can also be built up to
modulate futher the performance at system level. For instance,
the generation of independent message walkers can
be envisioned. This would geometrically increase the mean
fraction of visited sensors at each gathering cycle, and mean-
ingfully reduce the presence of gaps in the collected data set at

limited energy consumption increase. Indeed, if
is the fraction of visited node by a message, the total fraction
of visited nodes is and the energy consumption
varies as . For , about 95% of
the nodes would have been visited with 30% energy expense
increase. Multiple generation would also decrease typical delay
since with 0.63 probability, the delay is lower than typical
System Data Gathering Delay as discussed in Section IV-A2
and since the data payload would be distributed among inde-
pendant messages that would thus be shorter. The generation
of several walkers could happen in a stochastic way in order to
keep with no-knowledge schemes or upon some data buffers
or timers status. Second, since the extension of the delay for
a message while enabling aggregation along the random walk
of the message walker is high compared to the case without
aggregation, activating aggregation or not or up to a certain ex-
tend would be of interest. This would just require the presence
of a dedicated flag in the message header for instance. Thus,
gathering schemes based on URWR could provide different
levels of latency. These features are under investigation and
their analysis will be provided in an independent paper.

VI. CONCLUSION

In this paper it has been pointed out that the scale of WDGN
is quite small and that the required quality of service can be sig-
nificantly relaxed compared to what is usually expected from
wireless sensor networks. These relaxed constraints make room

for rough protocols. Then, to reduce the cost by reducing com-
plexity, operation modes based on low or even no system knowl-
edge have been discussed. In particular, a stateless random walk
option as routing scheme has been revisited. The typical quality
of service parameters such as delay, spatial properties and en-
ergy consumption have been examined with special attention to
asymptotic behaviors by providing analytical expressions valid
even for small scale systems. From the analysis of these ex-
pressions, the properties of unicast random walk routing have
been derived. The performance as compared to deterministic ap-
proaches like shortest path routing has been quantified in terms
of delay and energy consumption. Data gathering schemes at
system level that fulfil the WDGN requirements in terms of
delay with sustainable energy consumption have been proposed.

Results have been obtained in the light of the random
walk theory. We have considered basic assumptions since
our focus was to capture the properties of pure and simple
random routing. So, edge effects, interdistance node dispersion,
non-planar topologies, interference or the impact of medium
access control protocols have not been addressed. However, the
random walk theory provides tools that could be used to enrich
our model. For example, the modification of the combinatory
induced by the edges can be taken into account by introducing a
finite lattice with appropriate boundary conditions. Parameters
like interdistance node dispersion, non-planarity or interfer-
ence can be handled until a certain degree of regularity is
identified. Otherwise, effects inducing time inhomogeneity like
collisions at the medium access control level can be analyzed
by extending the discrete random walk to the time continuous
random walk. Thus, beyond the applicability of low-knowledge
based schemes for small scale systems, like in joint optimized
routing and data gathering in WDGN, the model this paper
defines can also be viewed as a first step to be enriched, to
statistically model and understand networks with a high number
of degrees of freedom and from which a direct handling of the
geographic position is of importance.

APPENDIX A
ASYMPTOTIC ANALYSIS OF CLOSE TO

Singularity of at : Here the expression of
generating function is simplified and its singularity
at point is studied.

From the expression (15) of , factorizing the de-
nominator of the summand and using the addition theorems of
trigonometric functions, we obtain

(53)

where functions and are defined as

(54a)

(54b)
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To simplify , the first step is to note from (54a) that
for . Hence, using the exponential

representation of function, can be rewritten as

is the smallest root of whose
discriminant is nonnegative. Thus, we find

(55)

Using partial fraction decomposition, we can write as

Noting that , it is then possible to expand each
sum involved in by using successively the expansion

and the identity

for
otherwise,

which can be derived by remarking that the vectors
form an orthogonal basis over the set of -dimensional com-
plex vectors. Therefore, we obtain

(56)

Finally, by substituting (56) into (53), we obtain

(57)

Remark that the summand involved in (57) is holomorphic over
for all . However, it diverges

at when . Thus, the singularity of at
comes only from the first term of the sum given by (57).

It is convenient therefore to separate out this singular part from
the non-singular parts denoted of

(58)

with

(59)

Looking at expression, considering terms in pair
with terms, it can be remarked that the imaginary parts
cancel out and noting that if exists, ,
then in any case, is simply real.

Otherwise, from (59), spatial behavior of can be put in
light. dependency of varies as i.e., is even with
respect to line , decreasing for and increasing
for . Since in our model, the two dimensions are studied
indiscriminately, and can be exchanged, and the same be-
havior is expected for . This can be verified studying the
dependency in (59). Because components vary independently
in , it can be concluded that has an absolute minimum at

.
Now, dealing with the behavior of according to , as men-

tioned above is holomorphic. Its first derivative with
respect to can be calculated from . Indeed, remarking that

dependencies of appear at the denominator or in powered
function at the numerator, can be factorized by and we
find (60), shown at the bottom of the page. From (60), an equiv-
alent of the ratio can be derived at .

Let us look at the first term of the summand. Since one has
, and for all

, then, the first term vanishes exponentially
towards zero as increases.

Dealing with the second term of the summand, the depen-
dency is even with respect to line , continuous and decreasing
over . Then, applying the integral test on this restricted
set primitive being , it can
be shown that the sum of the second term over this set converges
and the equivalent can be derived. Coming back to

the overall sum over , is an equivalent.
The third term can be expressed as

with standing for . The singularity of for
indicates that the main contribution of the sum of the third term
comes from small values of . Then summing the expansion
in series of this second term arround these small values provides
an approximation that captures the essential of the behavior. The
expansion in series leads to and approx-
imating the sum over by twice the infinite sum
for the first term, which is all the more true as is high, we find

(60)
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that . Finally, it can be deduced that
as goes toward infinity

(61)

Asymptotic Expansion as : To obtain the
asymptotic expansion of as , let us succes-
sively expand the first term of involved in (58) and
then function close to . After expanding function

, it can be deduced that

Using now the Taylor’s Theorem, can be represented
by its zero-order Taylor series expansion at point

Finally, combining this asymptotic expansion with the one of
the first term of , we obtain

(62)

APPENDIX B
ASYMPTOTIC EXPANSION OF AS

Setting and in (59), we obtain after simplification

(63)

In this section, we will show that series has the fol-
lowing asymptotic expansion as

(64)

where is the Euler constant ( ), and ,
are two constants

This asymptotic expansion is obtained by writing

and then evaluating the asymptotic expansion of each sum.
Asymptotic Expansion of as : Let ,

real, be the function defined as

.

We can show that is indefinitely differentiable, in particular

Remark also that can be expressed as

(65)

Therefore, using the Euler-Maclaurin summation formula [21]

(66)

where is an indefinitely differentiable function, and since
, we obtain

(67)

Now, it remains to expand the second sum in (65). It can be
recognized as the Harmonic series . According
to [21], has the following asymptotic expansion

(68)

where is the Euler constant. By plugging (67) and (68) into
(65), we find

(69)
Asymptotic Expansion of as : Let ,

real, be the function defined as

.

We can show that is indefinitely differentiable, in particular
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Note that can be expressed as

Using once again the Euler-Maclaurin formula, we get

The integral can be calculated by hand. It has the value

so that

(70)

Asymptotic Expansion of as : We defined
as

being a positive scalar. For , if is held odd, since
term equals term, one can recognize that

. If is even, the term would have to be
added separately to the sum up-bounded by . In fact, as
discussed in the following, this term can almost be neglected.

Studying , note that the terms corresponding to values
of close to the lower bound, i.e., , contributes more
significantly than the ones corresponding to values of close to
the upper bound, i.e., . Indeed, if is held close to

and is very large, then remains lower than 1, so
vanishes exponentially to 0 as while the other

terms of the summand of go to a constant. Whereas,
when is held close to 1, goes to 1 as and the
summand of diverges.

In order to approximate when is large, we use a
method described in [21]. It consists of breaking the sum into
two disjoint ranges and to be examinated separately.
The summation over -the smallest here- is the “domi-
nant” part, in the sense that it includes enough terms to deter-
mine the significant digits of the sum when is large. The sum-
mation over the other range is the “tail” end, which con-
tributes little to the overall total. Note that if is even, the

term that would have to be added separately to the
sum up-bounded by pertains to the ”tail” and it is under-
stood how it can be neglected.

Thus, if we separate out the dominant and the tail ranges for
, one has

(71)

where is defined as

As long as is held in the dominant range, fraction goes to
zero as . Therefore, can be developed according
to the following asymptotic expansion as

(72)

where

(73)

and

This asymptotic expansion is valid as long as .
Therefore, it is allowed to take the summation of both sides of
(72) over . We obtain

We have now to find a good bound on the sum
. Indeed, we have

However, converges, then we obtain

leading to

(74)

Therefore, (71) can be rewritten as

(75)

Now, we evaluate the tail range contributions. It suffices to
find good bounds on and .
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As long as is held in , converges to as .
So, goes to . Hence, decreases faster
than any power of as . It can be then deduced that

Thus,

Similarly, when , we can show that

Since vanishes faster than any power of , in particular
faster than , then we can write

Thus, we obtain (75) in the form of

converge as for . being related
limits, since the exponential function grows faster than any
power of , it can be written

(76)

So, computing for and one gets

(77)

Otherwise, has the following asymptotic expansion as

(78)
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