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ABSTRACT 

In this paper we propose a bayesian approach for multi- 
path channel time delay estimation when the signal is re- 
ceived by a square-law detector. Two different methods 
are presented. The first one is applied when t.he signal is 
supplied at the output of the detector. On cert,ain approxi- 
mations, the derivation of the MAP (Maximum A Posteri- 
ori) estimator leads to optimize a l1-norm criterion. In the 
second method, the signal is observed after demodulation 
and matched-filtering. We introduce a Bernoulli-Gaussian 
model to account for the sparse properties of the channel 
impulse response and solve the deconvolution problem us- 
ing Monte-Carlo simulations. Comparisons between both 
algorithms are presented on simulations. They show that 
the second method leads to more accurate estimators, while 
justifying the validity of the approximations used in t,he first 
one. 

1. INTRODUCTION 

Many problems can be modeled as a linear system where 
the observed output signal r(t)  is the convolution of the 
input signal e ( t )  with a sparse spike time series h ( t ) .  De- 
pending on the.domain of application, the function h( t )  can 
be for instance the reflectivity sequence of a seismic trace 
[8 ] ,  or a propagative channel multipath impulse response as 
in oceanic acoustic tomography [15]. In such cases, h ( t )  can 
be written as 

P 

h ( t )  = 1 a p S ( t  - .PI, (1)  
p= 1 

where a p  and rP are respectively the attenuation and the 
delay associated to the p t h  path, and P is the number of 
paths. In applications such as ocean acoustic tomography 
[15], e ( t )  is known by the receiver. Then the problem of 
estimating the (ap ,  ~ ~ ) ~ = l  , p ,  and possibly the number P of 
paths, can be addressed via maximum likelihood estimation 
(see e.g. [a ]  [9]). Unfortunately, the log-likelihood criterion 
shows local maxima, and it requires the knowledge of the 
number of paths. 

To overcome these limitations, we propose a bayesian 
approach [13] which allows to include information upon the 
parameters by means of a priori distributions. Here we take 
into account the fact that the paths amplitudes (ap)p=l,p 

and the noise have gaussian distributions. In this work, 
we present two different deconvolution methods. The first 
one addresses the case where the only available signal is 
obtained at  the output of a square-law detector. On cer- 
tain approximations, the derivation of the MAP estima- 
tor leads to a very simple l1-norm criterion. In the second 
method the signal is complex-valued, and is obtained af- 
ter demodulation and matched-filtering. We introduce a 
Bernoulli-Gaussian model to account for the sparse p r o p  
erties of h ( t )  and solve the deconvolution problem using 
Monte-Carlo simulations. 

The reason for considering both approaches stems from 
the fact that the first method involves linear approxima- 
tions of the non-linear transforms in the square-law detec- 
tor. The simulation results demonstrate the superiority of 
the Bernoulli-Gaussian model. However we show that pro- 
cessing the signal a t  the output of the quadratic receiver 
is quite robust to the above approximations, and thus can 
be used when only the output of the square-law detector is 
available. 

The problem is presented in section 2.  In section 3 et 4,  
the two different bayesian methods are developped. Results 
and comparison are discussed in section 4. 

2. FORMULATION OF THE PROBLEM 

Let s ( t )  denote the transmitted signal, r(t)  the received sig- 
nal, and v ( t )  an additive gaussian white noise with variance 
cz, independent from h ( t ) .  At the transmitter side s ( t )  is 
modulated by a carrier with pulsation w .  Then, the received 
signal r(t)  is in the form: 

At the receiver side, r ( t )  goes through the square-law de- 
tector according to the scheme of the figure l ,  where 9 ( t )  = 
s ( - t )  is the impulse response of the matched-filter. 

Let g ( t )  denote the complex signal obtained at  the out- 
puts of the matched-filters. It can also be written in the 
form: 
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Figure 1: Structure of the receiver. 

p =  1 

g p  = op  cos(w.rP + 4 )  + i ap sin(wTp + 4). 
Finally, t,he sampled observation in the observation in- 

P 

dn) = EPd. - .PI + b(n), (4) 

terval, say [I, NI, x = ( ~ ( n ) ) , = ~ , ~ ,  can be written 

p =  1 

where b( n)  is a complex circular gaussian random variable, 
with variance gi = 40; (g is normalized with g(0)  = 1). - 

3. L1 N O R M  D E C O N V O L U T I O N  AT THE 
O U T P U T  OF THE R E C E I V E R  

3.1. T h e  received signal y ( t )  

In this first approach we consider, as already in 1111, the 
case where t.he only available signal is obtained at  the out- 
put of t,he quadratic receiver, and denoted y ( t ) .  With a 
view to getting a simple expression of this signal, we con- 
sider two approximations. First, the product terms between 
the signal of interest and the noise are neglected, which is 
generally justified because of t,he high SNR at  the output of 
the mat.ched filter. Moreover, the product terms associated 
wit.h two distinct paths are neglected, which is generally a 
sat.isfactory approximation when the autocorrelation func- 
tion of s ( t )  is sharp. Then, y(t) can be written as: 

d t )  = ( h  * .)(t) + 4 t )  
P 

= a p z ( t  - TP) + c ( t ) ,  (5) 
p =  1 

with ~ ( t )  = g 2 ( t )  and a p  = Iap12. 

3.2. T h e  I1-norm cr i ter ion 

-4ssuming t.hat the noise b ( t )  and the attenuations c y p  [12] 
have gaussian dist,ributions: 

a p  - J W l U 3 ,  (6) 
b ( t )  - N O , g : ) ,  ( 7 )  

a p  - & ( 1 / 2 d ) ,  (8)  

€ ( t )  - & ( 1 / 2 4 ) .  (9) 

it comes that aP and e ( t )  have exponential distributions: 

Without prior information upon the time delays, we assume 
that they are uniformly distributed in the observation in- 
terval: rp - U[~,NI .  

Then, the posterior likelihood minimization problem is: 

In order to optimize the criterion, the time scale is dis- 
cretized in the same way as in [3] [6]. Finally, we get the 
problem in the form 

In this criterion, X = U : / & ,  S, is the matrix of convolu- 
tion with the sampled g( t ) ,  y is the data vector, and h is 
the vector of the amplitudes of the paths on the sampled 
time scale. Moreover let us remark that the spike train 
can be solved with higher resolution than the received data 
sampling intervalle [3] [14]. 

Also, let us note that the criterion (11) as already been 
considered in the litterature. In [14], the l1-norm term 
11 y - S,h is justified by the spike preservation proper- 
ties, and the penalty term X 11 h I l l  by the fact that h( t )  is 
sparse. Moreover, X appears as the weighting factor selected 
to balance the conflicting priorities of data accountability 
and addresssing the a priori assumption that h ( t )  IS . sparse 
[IO]. But in such methods the choice of the value of the 
parameter X is often a problem. Here, the bayesian formu- 
lation of the problem leads to a simple interpretation of A,  
as the inverse of a signal to noise ratio. Thus, it is generally 
possible to estimate X in a simple way. 

This criterion can be also rewritten in the form: 

with 

A = (  : ; ) , a n d c = (  K )  
The minimization of the criterion (12) is implemented 

according to the algorithm presented in [I], that uses the 
simplex method applied to a linear programming formula- 
tion of the problem. Also, with a view to adaptative track- 
ing of time-varying channels parameters, the convex crite- 
rion I/ c - Ah I l l  can be minimized by means of a simple 
gradient algorithm. 

4. BERNOULLI-GAUSSIAN 
D E C O N V O L U T I O N  

4.1. Model  presentat ion 

Instead of deconvolving the signal after quadratic detec- 
tion, we consider here the complex signal at the output 
of the matched filters. In this case, we are faced to a de- 
convolution problem in the presence of gaussian noise. The 
convolutional model ( 3 )  can be rewritten as: 
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When no prior is available upon h the deconvolution is 
equivalent to the maximization of the likelihood function 
given by: 

where S, denotes the convolution matrix deduced from g .  
The maximum likelihood estimate is not an appropriate 
solution, although it can be shown that it is the minimum 
variance unbiased estimator. 

A major drawback of maximum likelihood deconvolu- 
tion is that it does not take into acount the fact that h(n) 
is a sparse sequence of arrival time. A possible way to reg- 
ularize the problem is to introduce a Bernoulli variable q to 
indicate the presence of a path. Then h(n) can be modeled 
by a Bernoulli-Gaussian process defined by: 

where 

q = P ( q ( n )  = 1) = 1 - P ( q ( n )  = 0) (17) 

is the prior probability of finding a path at  each sample n. 
Stricly speaking a pure Bernoulli-Gaussian is obtained when 
a: = 0. However, as the likelihood of a Dirac distribution is 
not defined we introduce a non-zero variance a: << a:. In 
geophysics this model is commonly used to characterize the 
reflectivity of the subsurface, and a; describes small hetero- 
geneity in the sedimentary layers 141. In nuclear science ai 
models some background disturbance noise a t  the receiver. 

4.2. The MCMC approach 

I n  that framework, the problem is to study the post.erior 
likelihood p ( h ,  qlx). Using Bayes rule and omitting the 
constant t.erm p ( 3 )  this density can be writ.ten as: 

P(h, qlx) P(Xlh)P(hlq)P(q). ( 18) 

After some easy calculations the posterior log-likelihood be- 
comes: 

with D = diag(q). Let us not.ice that given a vector q, L is 
a quadrat.ic function of h and so its maximum can be ob- 
tained in closed form. Unfortunately the st,udy of C for the 
2 N  possible q sequences is computationnally untractable as 
soon as N becomes large. 

To overcome this difficulty it is possible t.0 use simula- 
tion methods. For the application we are interested in, sup- 
pose we are able to generat.e a sequence of independent sam- 
ples {(hem), q")), m = 1 , . . . , M }  according to p((h, q)lX). 
Then we can use these samples to make inference on the 
missing variables such as calculating conditionnal expecta- 
tions q q l ~ ]  and qhI1EJ. 

Therefore our problem comes down to the simulation 
of (h,q) according to their posterior distribution. However 

generating high dimension variables remains a difficult task 
as soon as the distributions are non-standard. Here the 
convolution introduces time dependency of the missing vari- 
ables conditionally on the observation, and no direct simu- 
lation scheme is possible. One way of solving this problem 
is to use MCMC methods. The basic principle is to gener- 
ate a Markov Chain whose equilibrium distribution is the 
target distribution. The most popular MCMC algorithms 
as well as details concerning their convergence properties 
can be found in [13]. 

4.3. The Gibbs sampler 

One simulation scheme is to simulate the missing variables 
one sample at  a time. Indeed it can be shown (see [5]) 
that conditionally on {h( j ) ,q ( j ) , j  # n}, (h(n),q(n)) can 
be written as a mixture of gaussian distributions. This 
motivates the choice of a Gibbs sampler. The algorithm 
proceeds as follows: 

1. Initialization : random choice of (h('),q(')) ; 
2. At iteration m 5 M ,  for n = 1 , .  . .  , N : 

e choose site i ; 

simulate (h(i),q(i)) according to 
P(h(4, s(9ln, hb), q ( j ) ,  j # 2 ) .  

At each iteration, the sites are visited using a random per- 
mutation of (1, .. . , N}. The behavior of the algorithm can 
be divided into two periods: first a burning period of MO 
iterations and then a steady state period where it can be 
assumed that the drawn sampled are distributed according 
to their posterior distribution. 

Then, we calculate for each sample 1 5 n 5 N 

M 

Then we use the following decision rule: 

if Q(n) > 0.5 set {(n) = 1 and &(n) = Q ( n ) H ( n )  

e else set G(n) = 0 and h(n) = 0 . 

5.  RESULTS 

We now apply these two methods to numerical data. Let 
s ( t )  be a M.L.S. (Maximium Length Sequence) [12] of length 
n = 2' - 1 = 511 symbols with values kl/@. The auto- 
correlation of the M.L.S. is a triangular shape, carried by 
the interval [-I<, K], where I< is the symbol duration. We 
assume that y ( t )  is sampled at  a rate 6 = K / 6 .  

We simulate two arrival times 7 1  and 7 2  with amplitudes 
1, for a SNR equal to 30 dB, ie a: = The results are 
presented for 2 values of the difference 1 71 - 7 2  I. Fig- 
ure 2 shows an example of the signals obtained at different 
locations of the detector. 

For each scenario, the performances are tested on 100 
traces, corresponding to 100 independent realizations of the 
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6. CONCLUSION 

11 MCMC 
- I i-1 - i-2 I I< K/2 I i /2  

PO, 100 96 100 100 
PO2 91 88.5 98.5 97.5 

- 0 5  a ' 8 " " " 
0 5 10 15 20 25 30 35 40 I5 50 

3 , , , , , , ,  ~, 

Figure 2: (a) Real part of ~ ( t )  ; (b) Imaginary part of g ( t )  ; 
(c) Output real signal y ( t ) .  

noise. Figure 3 represents the image of the results obtained 
with each method. 

The 21-norm method is implemented using standard Nag 
fortran routines 171. The parameter X is chosen equal to 
l/2aE. For the Bernoulli-Gaussian deconvolution algorithm, 
the model parameters are respectively U: - = 4.10-3, uf = 1, 
ri = and '7 = 0.04. We run the Gibbs sampler for 
M = 500 iterations and discard the first 100. 

Figure 3: Results obtained on the 100 traces with I TI - 7 2  I= 
IC/2: (a) Z1-norm method ; (b) MCMC method. 

In this paper we have presented two methods for time delay 
estimation. We have seen that a t  the output of the square- 
law detector a very simple approximate MAP criterion can 
be considered, that yields good results in terms of path de- 
tection and delay estimation. Moreover when the complex 
data a t  the output of the matched-filter are available, bet- 
ter accuracy can be achieved via MCMC simulations of the 
parameters posterior distribution. 
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