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The deformation behaviour of 150 nm thick W/Cu nanocomposite deposited on polyimide substrates has
been analysed under equi-biaxial tensile testing coupled to X-ray diffraction technique. The experiments
were carried out using a biaxial device that has been developed for the DiffAbs beamline of SOLEIL
synchrotron source. Finite element analysis has been performed to study the strain distribution into the
cruciform shape substrate and define the homogeneous deformed volume. X-ray measured elastic strains in
tungsten sub-layers could be carried out for both principal directions. The strain field was determined to be
almost equi-biaxial as expected and compared to finite element calculations.
fr (P.-O. Renault).
1. Introduction

The continued interest in nanostructures over the past decades is
due to the fact that electronic, optical, mechanical and magnetic
properties may differ from those of their bulk counterparts [1] and
also to their wide range of applications in various fields. In particular,
thin metal films on polymer substrates are in use in many
technological applications, based on stretchable microelectronics
[2,3] and polymer metallization [4]. In aeronautics, metal/polymer
composites are very interesting because of their mechanical flexibil-
ity, light weight and low thickness. The combination of different
materials in form of nanolayered systems are known to improve the
mechanical properties of thin coatings [5]. Noticeably, the combina-
tion of the high thermal conductivity of copper (Cu) and the low
thermal expansion coefficient of tungsten (W) makes W–Cu compo-
sites attractive for thermal management applications [6]. In addition
to their electrical properties, these metal composites present
interesting mechanical strength resulting from the compromise
between the high strength of W and the ductility of Cu [7].
Nevertheless, during fabrication and service, large mechanical
stresses may develop and lead to mechanical failure (cracking and
delamination). These stresses result from deposition process, micro-
structural changes, thermal mismatch, or external loading during
service. Therefore, understanding mechanical properties of thin films
is essential for ensuring the reliability of such structures. Tensile
testing coupled to X-ray diffraction (XRD) has been widely employed
as a method for studying the mechanical behaviour of supported
metal thin films [8–14]. Uniaxial tensile testing commonly used
imposes a biaxial stress state with a transversal component that is
determined by Poisson's ratio mismatch between the substrate and
the deposited film [15]. In order to control both stress components
and then mimic realistic loadings, we have developed within the
framework of an ANR project (2005–2009) a unique biaxial tensile
machine for synchrotron measurements and for this kind of samples.
Noticeably, bulge and ring on ring tests can be used to investigate the
behaviour of thin films under plane stresses [16–18]. Due to the
thermal expansion mismatch between film and substrate, a stress
states can also be applied to the film by annealing the thin film/
substrate set at elevated temperatures [19–21]. However, these
techniques are restricted to equi-biaxial loading. Our new tensile
device allows both equi-biaxial loading and controlled non-equi-
biaxial loading. This machine is now available and optimized at the
DiffAbs beamline of the French synchrotron radiation facility (SOLEIL,
Saint Aubin) thanks to in-situ controlled biaxial tests on W thin films
[22]. Synchrotron XRD allows faster andmore accuratemeasurements
on small diffracting volumes of material with high resolution [23]
compared to laboratory setup using conventional X-ray sources. In
this paper, we present the latest results of in-situ tests carried out on
W/Cu multilayered thin films deposited onto a polyimide cruciform
substrate.
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Fig. 2. Schematic representation of the cruciform substrate (only the central part in
which the point O presents the structure centre), dimensions are in mm.
2. Experimental

2.1. The biaxial tensile machine

The tensile machine has been designed to allow for loading along
two normal axes cruciform substrates coated by the studied films. A
polymeric substrate with a low elastic modulus (around 3 GPa) is
chosen to optimize the stress concentration in metallic films having
higher elastic modulus (around 400 GPa for W). Here we used 125-
μm-thick polyimide substrate (sofimide® from MICEL). Fig. 1 shows
the machine installed in DiffAbs-SOLEIL beamline with a centre-
coated specimen.

The machine is composed of four identical module components.
Each module contains a motor, a force sensor and a cylindrical fixation.
The weight of the device is 3.5 kg and its size is 19×19×8.5 cm³ with a
free space at the centre. The machine can apply loads up to 200 N. The
cruciform substrates were coated at their centre only and gripped by a
cam rotating in the cylinder fixation.

2.2. Finite elements (FE) design and modelling of the substrate

The use of this new experimental set-up requires the design of the
cruciform specimen geometry. In order to achieve homogeneous
stress condition on a few square millimetres, the specimen geometry
is optimised based on FE-simulation. Indeed, the required substrate
geometry must allow obtaining small deformations (to study the
elastic domain) within an area of the specimen centre wide enough to
achieve XRD measurements. We have to keep in mind that the X-ray
beam size can be of about 1×1 mm² and, thus the irradiated area can
be about 5 times larger. The mechanical behaviour of the polyimide
cruciform substrate has been modelled using the software CAST3M
(from the French atomic energy commission CEA in french). The
branches of the chosen specimen are 20 mm in width and 5 mm toe
weld as illustrated in Fig. 2.

Two-dimensional FE-calculations were performed under plane
stress conditions because of the specimen's small thickness. The
element type used for this study was triangular with 6 nodes and the
central area was meshed finer than the rest of the structure. A linear
elastic behaviour was adopted to assess the mechanical behaviour of
the cruciform substrate biaxially loaded. This represents a good
approximation of the real behaviour of the specimen since small
strains involve, in general, linear stress–strain relation as experimen-
tally determined in tensile tests. Actually, strain measurements by
Fig. 1. Photography of the biaxial tensile machine with a gripped cruciform specimen.
The W/Cu thin film can be seen at the centre of the sofimide substrate.
digital image correlation for sofimide® revealed a polynomial form of
the stress–strain curves as reported by D. Y.W. Yu and F. Spaepen for a
similar polyimide (supplied by Dupont de Nemours and named
Kapton®) [24]. However, the behaviour is linear up to a strain of 0.8%, a
value below which the experimental study was carried out. Young's
modulus (Es) and Poisson's ratio (νs)were determined to be Es=2.7±
0.1 GPa and νs=0.34 respectively in this deformation range, values
that were used in FE-calculations.

The strain distributions of the two components ε11 and ε22 in the
specimen centre (on which the metal thin film is deposited) under a
50 N equi-biaxial loading are illustrated in Fig. 3a and b respectively.
Due to the symmetry of the specimen, those two figures are the same
by a rotation of 90°. The centre of the specimen seems to exhibit a
region in which the strain is homogeneous. This is checked thanks to
sections along three different axes (Fig. 2). Strain components along
the axis at 45° are equal and remain constant on a distance larger than
6 mm (Fig. 4a). Along axes 1 and 2, the distance reduces to 4 mm. As
shown in Fig. 4b, the strain components along axis 1 (at the right of
the figure) are equal for roughly 2 mm in distance. Similarly, they are
equal for a distance of 2 mm along axis 2 (at the left of the figure).
Hence, the strain field can be considered as uniform in the centre of
the cruciform specimen over a distance of 4 mm. We conclude,
according to the FE analysis, that for a 50 N equi-biaxial loading, a
0.34% homogeneous strain is generated in a central area of 4 mm in
radius. It is worth to be noted that FE calculations have been
performed onto bare polyimide substrate. The thin film may modify
the strain field in the substrate. Keeping in mind that the total film
thickness is only 150 nm and by using a simple bi-layer elastic model,
the influence of the coating on the total strain field can be estimated to
be about 7–8%. This is the reason why we assume that the FE strain
calculations of the bare substrate are representative of the strains in
the coated substrate.
2.3. Sample preparation and characterization

The samples have been prepared and their structure has been
characterized at the University of Poitiers. The in-situ tensile tests
were carried out at SOLEIL synchrotron facility on W/Cu thin films.

The W/Cu multilayer thin films were produced at room temper-
ature by physical vapour deposition (PVD) with an Ar+-ion-gun
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Fig. 3. FE strain field of a cruciform substrate under a 50 N equi-biaxial loading a)ε11 and b)ε22.
sputtering beam at 1.2 keV on a 125-μm-thick cruciform polyimide
substrate (sofimide® from MICEL). The base pressure of the
deposition chamber was 7×10−5 Pa while the working pressure
during film growth was approximately 10−2 Pa. The system investi-
gated here comprises 37 periods of 4 nm each, composed of 3 nm W
and 1 nm Cu. The total film thickness was evaluated to be about
150 nm. Texture analysis was carried out using XRD and it was shown
that W crystallites of W/Cu composites exhibits a strong {110}-fibre
texture. Global residual stress determined by Stoney curvature
method was −1.5 GPa while in grain W stress analysed by XRD
using the sin²ψ method was −4 GPa.
2.4. In-situ tensile testing on W/Cu film

The biaxial tensile machine is installed on the 6 circle diffractom-
eter at the Diffabs-SOLEIL beamline. The X-ray energy and beam size
have been set to 8 keV and 0.3(V)×1(H) mm2 respectively. Several
equi-biaxial loadings (labelled as TX where X referred to the number
of the tensile loading) were applied to the composite thin film/
substrate (forces in N: 9.60, 14.75, 24.40, 34.50, 39.80 and 44.50). The
first applied load (9.60 N in the present case) is required for the
installation of the specimen to avoid sample drift during the increase
of the applied load. Thanks to the specimen size, this force does not
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Fig. 4. FE strain components variations under a 50 N equi-biaxial loading (i.e. sections of
Fig. 3) along a) 45° axis, b) axes 1 and 2 defined in Fig. 2 (the origin of the x-axis in the
two figures represents the structure centre).
generate high deformations especially in the central part (about 0.06%
from FE analysis). Moreover, this state allows X-ray reflectometry
measurements because the specimen surface becomes flat with
loading. Intra-granular strains were obtained by detecting the
diffraction peaks positions shifts for each applied load. X-ray
diffraction measurements have been performed only for W constit-
uent because diffracting volume of Cu constituent is too small for
reliable XRD data analysis in a reasonable experimental time
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Fig. 5. Experimental configuration used for the in-situ tensile tests. ψ is the angle
between the specimen surface normal S3 and the diffracting plane normal. ϕ is the
rotation angle of the specimen around its surface normal. S1 and S2 are the loading
directions.
acquisition. Themeasurements have been performed for five different
ψ angles and along two normal directions ϕ=0° and ϕ=90° (Fig. 5).

Diffraction measurements were performed on {211} crystallo-
graphic planes of W which correspond to the best compromise
between high Bragg diffraction angle and strong peak intensity.
Indeed, the higher 2θ angles are, the better the accuracy on strains is.

3. Results and discussion

We employ in the following the logarithm strain usually (and
correctly) approximated by the engineering strain in the elastic
domain. The lattice strain εhkl corresponding to a {hkl} diffracting
planes is given by:

εhkl = ln
dhkl
d 0ð Þ
hkl

 !
= ln

sinθ 0ð Þ
hkl

sinθhkl

 !
≈−cotan θð Þ:Δθ ð1Þ

where dhkl
(0) is the reference lattice spacing and θhkl

(0) is the associated
reference diffracting angle. In the present case, the corresponding
reference loading is the first loaded state, i.e. 9.60 N. dhkl and θhkl are
the lattice spacing and the scattering angle respectively for the loaded
states. In-grain elastic strain measured by XRD depends on {hkl}
planes orientation defined by the in-plane azimuth angleϕ and the tilt
angle ψ (Fig. 5).

For a non-equi-biaxial loading and for non-textured materials, the
measured strains along the two axes corresponding to the two
directions ϕ=0° and ϕ=90° can be written respectively as [25]:

ε0;ψ =
1
2
Shkl2 σ11 sin2ψ + Shkl1 σ11 + σ22ð Þ ð2aÞ

ε90;ψ =
1
2
Shkl2 σ22 sin

2ψ + Shkl1 σ11 + σ22ð Þ ð2bÞ

where σ11and σ22are the macroscopic stresses applied to the thin
film, 1

2 S
hkl
2 and Shkl1 are the X-ray elastic constants (XECs) [25,26].

Mechanical grain interaction models such as Reuss, Voigt and the
self-consistent scheme are commonly used to calculate the XECs [26].
In the case of a locally isotropic material such asW, all the mechanical
models leads to the same values for X-ray elastic constants, and we
can write that 1

2 S
hkl
2 = 1 + ν

E and Shkl1 = − ν
E where E is the Young's

modulus and ν the Poisson's ratio of the material.
Moreover, when the loading is equi-biaxial (σ11=σ22=σ), the

strains along the two mentioned axes reduce to:

εψ =
1 + ν

E

� �
σ sin2ψ−2ν

E
σ ð2cÞ

These expressions reflect the sin²ψ law which describes a linear
relationship between strain versus sin²ψ which is characteristic of
macroscopically isotropic materials.

Elastic applied strainsmeasured by XRD are plotted as a function of
sin²ψ (Fig. 6). Only the applied elastic strain is reported on Fig. 6, i.e.
the total elastic strain minus the residual elastic strain. All curves are
linear as expected for a locally isotropic material such asW even if it is
textured [15,26]. The ε−sin²ψ plots of Fig. 6a and b are similar. Thuswe
observed similar elastic strains along both directions (ϕ=0° and
ϕ=90°) as expected for an equi-biaxial loading. Besides, all straight
lines intersect at a point close to zero strain which allows determining
Poisson's ratio ν of the W constituent. This point is related to a specific
sample inclination,ψ* angle,where sin2ψ* = 2ν

�
1+ν. Theobtainedvalue

of Poisson's ratio is around 0.29±0.02 forϕ=0° and around 0.28±0.03
for ϕ=90°. Those values are in good agreement with the Poisson's ratio
of the bulk W (0.285). Extracting the slopes and intercepts of ε−sin²ψ
curves (Fig. 6a and b), we can determine the three principal components
of the strain tensor. Indeed, the X-ray strains along the two normal axes
can be written as ε0;ψ = ε11−ε33ð Þ sin2ψ + ε33 for ϕ=0° and
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Fig. 6. X-ray applied strain as a function of sin²ψ for a) ϕ=0° and b) ϕ=90° i.e. along S1
and S2 respectively. The different equi-biaxial loading increments are labelled as TX
where X referred to the number of the tensile loading. T0 is the reference loading state,
T1 is the first applied loading increment (5.2 N), T2 the second (14.8 N), and so on.
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Fig. 7. X-ray applied strain as a function of the load applied to the cruciform specimen
for a) ϕ=0° and b) ϕ=90°.
ε90;ψ = ε22−ε33ð Þ sin2ψ + ε33 for ϕ=90°, where ε11, ε22 and ε33 are
the principal macroscopic strains components.

Thus, in the case of an equi-biaxial loading, ε11 and ε22 are equal
to the sum of the slope and intercept of ε−sin²ψ curves as shown in
Fig. 7a and b corresponding to the measured strain along ϕ=0° and
ϕ=90° respectively.

The X-ray elastic strain values for an incremental load of ΔF=50 N
can be extrapolated from Fig. 7a and b, we found values of 0.33% for
ϕ=0° and of 0.37% for ϕ=90°. These values are in relatively good
agreement with the strain values predicted by FE analysis, i.e. 0.34%
biaxial strains (see Section 3). These results show that a complete
strain transfer can be assumed through the interface between the
polyimide substrate and the metallic thin composite film within the
elastic domain as shown recently for homogeneous thin films under
uniaxial tensile loading [27]. In comparison to the pure W thin film, it
appears that the incorporation of Cu into a W matrix does not affect
the W phase behaviour as long as the studied domain remains in the
elastic regime.
4. Conclusions

A novel biaxial machine has been developed at SOLEIL synchrotron
and used for tensile testing of supported thin films in combination
with XRD. Finite Element analysis showed that this device allows
inducing a biaxial uniform strain field in the centre of the coated
cruciform substrate over a surface of about 4×4 mm² where in-situ
diffraction experiments have been carried out. The results obtained by
studyingW/Cu composite films allowed verifying the homogeneity of
the equibiaxially strained zone and characterizing the elastic
behaviour of nanostructured thin films (under equi-biaxial loading).
The measured XRD elastic strains in W sublayers match rather well
the global strain calculated by the FE analysis. Further work will
include more complex loading history comprising non equi-biaxial
loading and additional X-ray techniques such as reflectometry to
investigate the tungsten/copper period and thus the mechanical
response of the composite at different scales. In addition, X-ray
absorption spectroscopy could be used to study local order in copper
clusters since this phase does not give any diffraction pattern. In situ
measurements during loading will allow following strains in copper.
References

[1] F. Spaepen, D.W.Y. Yu, Scr. Mater. 50 (2004) 729.
[2] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427.
[3] S.P. Lacour, D. Chan, S. Wagner, T. Li, Z. Suo, Appl. Phys. Lett. 88 (2006) 204103.
[4] W.T. Li, R.B. Charters, B. Luther-Davies, L. Mar, Appl. Surf. Sci. 233 (2004) 227.
[5] P.A. Gruber, E. Arzt, R. Spolenak, J. Mater. Res. 24 (2009) 1906.
[6] A. Luedtke, Adv. Eng. Mater. 6 (2004) 142.
[7] P.M. Geffroy, T. Chartier, J.F. Silvain, Ann. Rev. Mater. Sci. 9 (2007) 547.
[8] P.-O. Renault, K.F. Badawi, L. Bimbault, Ph. Goudeau, E. Elkaïm, J.P. Lauriat, Appl.

Phys. Lett. 73 (1998) 1952.
[9] O. Kraft, M. Hommel, E. Arzt, Mater. Sci. Eng., A 288 (2000) 209.

[10] K.F. Badawi, P. Villain, Ph. Goudeau, P.-O. Renault, Appl. Phys. Lett. 80 (2002) 4705.
[11] D. Faurie, P.O. Renault, E. Le Bourhis, Ph. Goudeau, O. Castelnau, R. Brenner, G.

Patriarche, Appl. Phys. Lett. 89 (2006) 061911.
[12] I.C. Noyan, G. Sheikh, J. Mater. Res. 8 (1992) 8.
[13] A. Kretschmann, W.-M. Kuschke, S.P. Baker, E. Arzt, Mater. Res. Soc. Symp. Proc.

436 (1996) 59.
[14] I.C. Noyan, G. Sheikh, Mater. Res. Soc. Symp. Proc. 308 (1993) 3.
[15] D. Faurie, P.-O. Renault, E. Le Bourhis, Ph. Goudeau, Acta Mater. 54 (2006) 4503.



[16] S. Eve, N. Hubert, O. Kraft, A. Last, D. Rabus, M. Schlagenhof, Rev. Sci. Instr. 77
(2006) 103902.

[17] J.J. Vlassak, W.D. Nix, J. Mater. Res. 7 (1992) 3242.
[18] O.R. Shojaei, A. Karimi, Thin Solid Films 332 (1998) 202.
[19] G. Cornella, S.-H. Lee, W.D. Nix, J.C. Bravman, Appl. Phys. Lett. 71 (1997) 2949.
[20] S.P. Baker, A. Kretschmann, E. Arzt, Acta Mater. 49 (2001) 2145.
[21] J. Keckes, J. Appl. Cryst. 38 (2005) 311.
[22] G. Geandier et al., Rev. Sci. Instr. (in press).
[23] D. Faurie, P.O. Renault, E. Le Bourhis, P. Villain, Ph. Goudeau, F. Badawi, Thin Solid

Films 201 (2004) 469.
[24] D.W.Y. Yu, F. Spaepen, J. Appl. Phys. 95 (2004) 2991.
[25] V. Hauk, Structural and Residual Stress Analysis by Non destructive Methods:

Evaluation, Application, Assessment, Elsevier, Amsterdam, 1997.
[26] D. Faurie, O. Castelnau, R. Brenner, P.-O. Renault, E. Le Bourhis, Ph. Goudeau,

J. Appl. Cryst. 42 (2009) 1073.
[27] G. Geandier, P.-O. Renault, E. Le Bourhis, Ph. Goudeau, D. Faurie, C. Le Bourlot, Ph.

Djémia, O. Castelnau, S.M. Chérif, Appl. Phys. Lett. 96 (2010) 041905.


	Controlled biaxial deformation of nanostructured W/Cu thin films studied by X-ray diffraction
	Introduction
	Experimental
	The biaxial tensile machine
	Finite elements (FE) design and modelling of the substrate
	Sample preparation and characterization
	In-situ tensile testing on W/Cu film

	Results and discussion
	Conclusions
	References


