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Textures in deforming forsterite aggregates up to 8 GPa 
and 1673 K

Caroline Bollinger1,4 · Paul Raterron1 · Olivier Castelnau2 · Fabrice Detrez2,5 · 
Sébastien Merkel1,3  

the seismic anisotropy amplitude observed in the Earth’s 
mantle at depth greater than ~200 km.

Keywords Forsterite · Deformation · High pressure · 
D-DIA · Lattice preferred orientation · Micromechanical 
modeling

Introduction

Olivine is the dominant mineral of the Earth’s upper man-
tle (e.g., Frost 2008) and hence controls its mechanical 
behavior. Mantle deformation translates into lattice pre-
ferred orientations (LPO) in rocks which, in turn, induce 
seismic anisotropy (e.g., Mainprice et al. 2000). In the 
Earth’s upper mantle, anisotropy is regionally depend-
ent (e.g., Gung et al. 2003; Debayle et al. 2005; Yuan and 
Beghein 2013) but, in average, global average anisotropy 
is maximum at about 100 km depth. Some studies report 
a marked decrease at greater depths, with a minimum 
at 220 km (e.g., Debayle et al. 2005; Yuan and Beghein 
2013). Other studies, with other wave types, report a more 
gradual anisotropy decrease at depth greater than 220 km 
(e.g., Gung et al. 2003). In the past, this rapid decrease in 
anisotropy at high depths has been interpreted as a transi-
tion from dislocation creep to diffusion creep (e.g., Karato 
and Wu 1993). Debates emerged in the literature regarding 
this interpretation, however, with evidences of a pressure-
induced transition in olivine dominant slip systems (e.g., 
Mainprice et al. 2005; Ohuchi et al. 2011) which could 
explain the seismic observations. Other debates concerns 
whether mantle olivine LPO could be the result of diffusion 
creep or dislocation-accommodated grain boundary sliding 
(Hansen et al. 2012; Miyazaki et al. 2013). Hence, there is 
a need for a better understanding of the effect of pressure 

Abstract We report results from axisymmetric deforma-
tion experiments carried out on forsterite aggregates in the 
deformation-DIA apparatus, at upper mantle pressures and 
temperatures (3.1–8.1 GPa, 1373–1673 K). We quantified 
the resulting lattice preferred orientations (LPO) and com-
pare experimental observations with results from micro-
mechanical modeling (viscoplastic second-order self-con-
sistent model—SO). Up to 6 GPa (~185-km depth in the 
Earth), we observe a marked LPO consistent with a domi-
nant slip in the (010) plane with one observation of a domi-
nant [100] direction, suggesting that [100](010) slip system 
was strongly activated. At higher pressures (deeper depth), 
the LPO becomes less marked and more complex with no 
evidence of a dominant slip system, which we attribute to 
the activation of several concurrent slip systems. These 
results are consistent with the pressure-induced transition 
in the dominant slip system previously reported for olivine 
and forsterite. They are also consistent with the decrease in 
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(P) and temperature (T) on the deformation-induced LPO 
in olivine.

The low P (~1.0 GPa), low stress (σ, <300 MPa), high 
T (~1500 K) deformation of olivine aggregates leads to 
textures compatible with slip in [100](010) (A-type fab-
ric), which is consistent with extensive data on naturally 
deformed mantle rocks (Ismail and Mainprice 1998; Tom-
masi et al. 2000). In parallel, there is a vast literature dem-
onstrating that the addition of water and/or stress can lead 
to other types of fabrics, compatible with other slip systems 
(e.g., Jung and Karato 2001; Katayama et al. 2004; Jung 
et al. 2006). Experiments also indicate a change of oli-
vine and forsterite dominant deformation mechanism with 
increasing pressure (e.g., Couvy et al. 2004; Mainprice 
et al. 2005; Durinck et al. 2005; Raterron et al. 2007, 2009, 
2011, 2012; Ohuchi et al. 2011; Ohuchi and Irifune 2014). 
Hence, the olivine fabric diagram obtained at low pressure 
cannot be easily translated at high pressure.

The effect of hydrostatic pressure on the fabric diagrams 
of olivine and forsterite, olivine pure Mg-end-member 
(Fo100), remains to be understood. Ohuchi et al. (2011) 
report a transition in dry olivine at ~7 GPa from A-type 
textures toward B-type (induced by [001](010) slip) or 
C-type (induced by [001](100) slip) textures, in contrast 
with the study of Jung et al. (2009) who placed such transi-
tion at ~3 GPa. Forsterite compression texture at 3.6 GPa 
and 1573 K does not show such transition (Nishihara et al. 
2014). Under wet conditions, a transition to C-type tex-
tures is reported for olivine at pressures above ~10 GPa 
(Ohuchi and Irifune 2014). Such studies, however, present 
a limited number of points and reported P/T range, with 
very few data available for pure forsterite. As such, there is 
a need to clarify the effect of pressure and temperature of 
deformation textures in forsterite. Here, we use the defor-
mation-DIA apparatus (D-DIA, Durham et al. 2002; Wang 
et al. 2003) to plastically deform forsterite polycrystals up 
to 8 GPa and 1673 K and extract the development of LPO 
in the aggregates as a function of P and T. Experimental 
textures are then compared with results of the visco-plastic 
second-order self-consistent model (SO, Ponte Castañeda 
2002; Detrez et al. 2015) in order to estimate the dominant 
slip systems in each condition.

Methods

Sample preparation and D‑DIA experiment

Deformation experiments were performed in the D-DIA 
apparatus at the X17B2 beamline of the National Synchro-
tron Light Source (Upton, NY, USA). In this study, we 
plastically deformed polycrystals of forsterite at pressures 
ranging from 3.1 to 8.1 GPa and temperature between 1373 

and 1673 K at constant uniaxial strain rates in the range 
−2.4 × 10−5 to 5.5 × 10−5 s−1 (Table 1).

The forsterite starting material was prepared by crushing 
one gem quality single crystal in an alumina-mortar, grinding 
it to a fine-grained powder at the optical scale (average grain 
size 10 µm). The starting crystal was synthesized at room 
pressure by the Czochralski (CZ) process (e.g., Takei and 
Kobayashi 1974). It was dry, i.e., no hydroxyls were detect-
able using Fourier’s transform infrared spectroscopy (FTIR, 
see Raterron et al. 2007). FTIR measurements after the runs 
show that most of the samples contain more than 200 ppm H/
Si, according to the Paterson calibration (Paterson 1982).

Specimens were loaded into the D-DIA deformation 
cell in between two machinable alumina end plugs, which 
become hard pistons at run conditions. Two types of exper-
iments were performed. Runs #65, #68, #69, #70 were car-
ried out with one sample of pure forsterite powder in the 
compression column. Runs #80, #81, #82, #87, #88, #89 
and #90 were performed with two powder samples, one 
of pure forsterite and one of San Carlos olivine atop one 
another, separated by a thin layer of alumina sandwiched in 
between Re foils. Both forsterite and olivine powders were 
mixed with a small fraction (5 wt%) of natural enstatite 
(En84Fs13Wo3) powder, in order to buffer the orthopyrox-
enes (Opx) activity (aOpx = 1) and limit grain growth dur-
ing the runs (McDonnell et al. 2000).

More details about samples, experiments and rheology 
analysis are available in previous papers (Bollinger et al. 
2012, 2014, 2015). Here, we present the final analysis of 
the dataset, focusing on LPO development in the forsterite 
aggregates.

Deformation protocol

A total of 13 D-DIA experiments were performed, resulting 
in 26 steady-state deformation conditions in axial compres-
sion (see Bollinger et al. 2014, 2015). Most experiments 
were performed following the same protocol. The cell is 
first pressurized at room T and then brought to high T by 
supplying power to the graphite heater. Hydrostatic condi-
tions are maintained at high T for 1 h at the onset of the run. 
This ensures the sintering of pistons and specimens, and 
the restoration of specimen damages as well as the relaxa-
tion of internal stress resulting from cold compression.

Axisymmetric deformation of the cell assembly is ini-
tiated by displacing the vertical D-DIA anvils at a fixed 
rate until the desired sample strain (typically several %, 
see Fig. 1) at constant strain rate is achieved. Several tem-
perature and/or sample strain-rate conditions are usually 
tested during each run (Table 1). At the end of the run, T is 
quenched by turning off the power supply and both D-DIA 
vertical anvils are stopped. P is then decreased gradually to 
room-P for 1 to 2 h.



Most deformation experiments were performed in axial 
compression, by advancing the vertical anvils and reducing 
the sample length. One test during runs #65 was performed 
in lateral compression, by retracting the vertical anvils and 
extending the sample length. In axial compression, the sam-
ple volume is kept constant while shortening the sample. 
It is hence analogous to a “compression” experiment per-
formed under ambient pressure. In lateral compression, the 
sample volume is kept constant while lengthening the sam-
ple. It is hence analogous to a “tension” experiment per-
formed under ambient pressure. From a mechanical point 
of view, however, the sample is being submitted to stress 
by the lateral anvils, hence the term “lateral compression.”

X‑ray measurements and LPO analysis

Taking advantage of the ten-element energy-dispersive 
multi-detector of the X17B2 beamline (Weidner et al. 

2010), P and σ are measured in situ following the proto-
col described by Bollinger et al. (2012). Specimen strain 
(ε) and strain rate (ε̇) are measured by time-resolved X-ray 
radiography (Vaughan et al. 2000) from the positions on 
radiographs of the metal foils placed at sample ends.

Sample LPO is measured in situ using the variation 
of diffraction peak intensities with orientation, as first 
described in Bollinger et al. (2012). For forsterite, we used, 
when possible, the first-order diffraction lines: 021, 101, 
002, 130, 131, 112, 041, 210. As in Bollinger et al. (2012), 
the Polydefix software (Merkel and Hilairet 2015) was used 
to correct the raw data for detector sensitivity and shadow 
effect from the D-DIA. The experimental LPO were then 
exported for further processing in Beartex (Wenk et al. 
1998) and extract the corresponding orientation distribu-
tion function (ODF), assuming axial symmetry around 
the deformation axis. Textures are then represented with 
inverse pole figures (IPF, Fig. 1). For axial compression 

Table 1  Run numbers, conditions of deformation (geometry, temperature, pressure, differential stress, and strain rate), total strain applied in 
each deformation step, [OH] content measured in the sample after the experiment, and texture observations for all available datasets

Texture observations for lateral compression in run 65 allows for determining a dominant slip direction. Other deformation steps are performed 
in axial compression and allow for the determination of a dominant slip plane. Stresses and strains are set positive for case of axial compression

Run # Deformation T (K) P (GPa) σ (MPa) ε̇ (10−5 s−1) Strain in  
step (%)

Paterson (1982) 
(ppm H/Si)

Bell et al. (2003) 
(ppm H/Si)

Comparison with 
models

65 Axial 1373 5.8 (0.2) 1196 (115) 3.8 (0.07) 23 531 1224 (010) Dominant

65 Lateral 1373 5.2 (0.2) −637 (210) −2.4 (0.05) −7 Direction [100] 
dominant

65 Axial 1373 5.6 (0.2) 1242 (123) 5.5 (0.06) 9 (010) Dominant

68 Axial 1373 4.1 (0.1) 489 (122) 4.8 (0.05) 33 – – (010) Dominant

69 Axial 1373 5.6 (0.1) 263 (48) 4.4 (0.06) 18 – – (010) Dominant

70 Axial 1373 3.1 (0.1) 959 (56) 4.5 (0.17) 42 175 375 (010) Dominant

79 Axial 1473 3.1 (0.1) 146 (96) 1.7 (0.35) 6 – – Weak (010)

80 Axial 1473 3.8 (0.1) 262 (194) 1.5 (0.17) 12 – – (010) Dominant

81 Axial 1373 5.6 (0.2) 382 (315) 2.3 (0.20) 5 1777 3769 Not measured

81 Axial 1373 4.6 (0.2) 493 (228) 2.2 (0.03) 6 (010) Dominant

81 Axial 1573 4.8 (0.1) 78 (181) 2.7 (0.05) 9 (010) Dominant

81 Axial 1573 4.9 (0.2) 341 (88) 4.5 (0.20) 11 (010) Dominant

82 Axial 1373 7.8 (0.2) 831 (337) 0.9 (0.05) 6 – – Undefined

82 Axial 1573 7.1 (0.1) 163 (83) 1.7 (0.01) 9 (010) Dominant

87 Axial 1373 5.1 (0.4) 737 (117) 1.9 (0.06) 10 – – (010) Dominant

87 Axial 1573 4.6 (0.4) 203 (241) 4.4 (0.16) 15 (010) Dominant

87 Axial 1573 6.0 (0.2) 276 (251) 3.4 (0.38) 19 (010) Dominant

88 Axial 1473 7.0 (0.4) 884 (110) 0.9 (0.05) 8 493 1371 (001) Dominant

88 Axial 1673 7.6 (0.3) 272 (256) 2.0 (0.43) 4 Undefined

89 Axial 1473 5.5 (0.4) 535 (244) 1.1 (0.03) 4 110 493 (100) Dominant

89 Axial 1473 5.6 (0.4) 504 (217) 0.5 (0.40) 5 Undefined

89 Axial 1673 5.0 (0.2) 83 (62) 1.2 (0.20) 6 Undefined

89 Axial 1673 4.5 (0.8) 248 (242) 2.2 (0.40) 5 Undefined

90 Axial 1473 7.1 (0.4) 796 (291) 2.7 (0.02) 9 1565 3327 (100) Dominant

90 Axial 1673 8.1 (0.4) 118 (154) 4.5 (0.01) 12 Undefined



experiments, we use inverse pole figures of the compres-
sion direction. For lateral compression experiments, we use 
inverse pole figures of the lengthening direction.

Electron backscattered diffraction (EBSD) is a method 
of choice for the study of LPO under ambient conditions. 
The LPO extracted from X-ray diffraction at the X17B2 
beamline were validated with post-mortem EBSD measure-
ments on run #65 (Bollinger et al. 2012). The current study 
focuses on LPO measured in situ, using X-ray diffraction. 
While further EBSD measurements could have been use-
ful for a full understanding of the mechanisms involved, 
they are no more possible on the current samples as most of 
them have been used for FTIR and TEM analyses.

Grain growth

The forsterite powder was mixed with 5 wt% enstatite to 
limit grain growth. At 1673 K, however, we observed large 
changes in relative diffraction intensities between each 
deformation step. This is an indication of fast recrystalliza-
tion of the sample (e.g., Figure 3 in Hilairet et al. 2012). 
Recrystallization implies grain growth and a fast reorien-
tation of sample grains. Under such conditions, the num-
ber of grains probed by the X-ray beam is changing, can 
be insufficient, and the extracted LPO become variable. 
Such behavior can be difficult to observe in polychromatic 

diffraction with point detectors, but is clearly visible in the 
monochromatic diffraction images of Hilairet et al. (2012). 
Hence, in this paper, fabrics measured at 1673 K will be 
labeled as “undefined,” as they evolve with time, with no 
clear connection between the direction of deformation and 
the extracted LPO.

Micromechanical model

In deformation experiments performed in shear, and espe-
cially for orthorhombic crystals such as forsterite, sample 
LPO are often directly associated with a dominant slip sys-
tem by identifying the slip direction to the maximum orien-
tation concentration close to the direction of shear and the 
slip plane to the maximum orientation concentration nor-
mal to the shear plane. Such direct association between tex-
ture type and slip system is more difficult for slip systems 
with multiple symmetry equivalents (e.g., [001]{110}), 
if multiple systems are active, or for textures obtained in 
compression.

Hence, in order to help with the data interpretation, we 
perform polycrystal plasticity simulations of the expected 
fabrics using the second-order (SO) self-consistent model, 
initially proposed by Ponte Castañeda (2002) and extended 
by Detrez et al. (2015). This mean-field micromechanical 
model accounts for the slip systems at the grain level and 

Fig. 1  Typical textures obtained in experiments. Inverse pole fig-
ures of the compression direction for axial compression experiments. 
Inverse pole figure of the lengthening direction for lateral compres-
sion experiment. Equal area projections. Linear scale in multiples of 

a random distribution. Experimental pressures (P), temperatures (T), 
stresses (σ), total strains (ε) and strain rates (ε̇) are indicated on the 
figure



an isotropic relaxation mechanism. Olivine is lacking four 
independent slip systems at the grain level, which is neces-
sary to accommodate any arbitrary plastic deformation in 
the aggregate. Hence, an additional relaxation mechanism 
is required. The microscopic origin of the relaxation is not 
known. It could relate to grain boundary sliding, dynamic 
recrystallization, diffusion, or disclinations.

We define seven plastic models allowing for different 
dominant slip systems (Table 2). For each, we arbitrarily 
set the strength of the dominant deformation mechanism to 
10 and to 50 for all others. Simulations are performed for a 
1000 grains random starting aggregate, and we calculate the 
polycrystal LPO after 50 % deformation in axial (final state 

εxx = εyy = 0.25 and εzz = −0.5, were z is the compres-
sion direction) and lateral (final state εxx = εyy = −0.25 
and εzz = 0.5) compression (Fig. 2). In all cases, the iso-
tropic mechanism accommodates between 55 and 70 % of 
the plastic strain, while the enforced dominant slip system 
accommodates between 20 and 40 % of the deformation 
(Table 2).

The isotropic mechanism allows removing the fictitious 
〈

11̄0
〉

{111} slip system used in previous computations 
(e.g., Tommasi et al. 2000; Castelnau et al. 2009, 2010). 
Because of the strong plastic anisotropy in olivine, the iso-
tropic mechanism accommodates a significant portion of 
the strain, even if its strength is set to a large value (Detrez 

Table 2  CRSS and simulated slip system activities in SO calculations

Each line is a simulation with a different dominant slip system. For each simulation, we report the CRSS of each slip system (top number), their 
plastic relative activities in axial compression (first percentage) and lateral compression (second percentage)

Dominant slip system CRSS and activity

[100](010) [001](010) [001](100) [100]{021} [100](001) [001]{110} Isotropic

[100](010) 10
24–22 %

50
3–2 %

50
2–2 %

50
2–2 %

50
2–2 %

50
3–4 %

50
66–66 %

[001](010) 50
3–2 %

10
24–22 %

50
1–2 %

50
4–3 %

50
1–2 %

50
2–3 %

50
65–65 %

[001](100) 50
3–2 %

50
2–3 %

10
21–23 %

50
3–2 %

50
1–1 %

50
2–2 %

50
68–68 %

[100]{021} 50
0–0 %

50
3–1 %

50
1–1 %

10
33–38 %

50
1–1 %

50
2–1 %

50
61–58 %

[100](001) 50
2–3 %

50
3–2 %

50
1–1 %

50
2–3 %

10
22–23 %

50
2–1 %

50
69–68 %

[001]{110} 50
3–1 %

50
1–2 %

50
0–0 %

50
3–2 %

50
0–0 %

10
30–34 %

50
62–60 %

[001](100)
[100](001)

50
2–2 %

50
2–2 %

10
14–14 %

50
2–2 %

10
14–14 %

50
2–2 %

50
64–64 %

Fig. 2  Inverse pole figure representing the simulated LPO for a for-
sterite aggregate deformed in axial (top row) and lateral (bottom row) 
compression using the parameters of the Table 2. Equal area projec-
tions. Linear scale in multiples of a random distribution. For axial 

compression: inverse pole figure of the compression direction. For 
lateral compression: inverse pole figure of the lengthening direction. 
The dominant slip system is indicated below the figure



et al. 2015). It should be noted, however, that the activity of 
the isotropic mechanism does not change the locations of 
the minima and maxima in the simulated textures, but only 
their intensity. Changing the strength of this mechanism 
will not change the interpretation of textures in terms of a 
dominant slip system in an experiment.

Results

Micromechanical modeling

Figure 2 presents the calculated fabrics for each plastic 
model of Table 2. In axial compression (sample shorten-
ing), deformation involving (100), (010), and (001) as 
dominant slip plane lead to maxima at 100, 010, and 001 
in the inverse pole figures, respectively. If dominant, those 
slip planes can hence be easily deduced from compression 
textures. Systems involving {110} or {021} lead to broader 
maxima and will hence be more difficult to identify. The 
joint activation of multiple dominant slip systems (such as 
[100](001) and [001](100) together) leads to a nearly ran-
dom LPO, with no marked intensity, in which the dominant 
slip plane can be difficult to identify.

Simulations in lateral compression (sample lengthening) 
lead to an interesting result: a dominant [100] or [001] slip 
directions induces a maximum at 100 and 001, respectively. 
Contrary to common belief, it is hence possible to deduce 
a dominant glide direction from axial deformation experi-
ments, as long as the interpretation of experimental textures 
is validated with micromechanical models. Dominant [100] 
slip direction in olivine will lead to a maximum at 100 
in the inverse pole figure of the lengthening direction for 
lateral compression. Reversely, dominant [001] slip direc-
tion will lead to a maximum at 001. Lateral compression 
is hence an effective method for identifying the dominant 
glide direction in olivine.

Experimental textures

Representative fabrics measured in forsterite are presented 
in Fig. 1. This paragraph will describe the orientation rela-
tion between the different crystallographic axes and a 
specific sample direction: the shortening direction for the 
axial compression data, and the lengthening direction for 
the lateral compression data. All other results are listed in 
Table 1.

In run #81, the sample displays relatively weak LPO at 
the beginning of the run, with a maximum intensity spread-
ing from the 010 to the 100 pole. After a step in axial com-
pression at 4.6 GPa and 1373 K, the sample develops a LPO 
with a clear maximum intensity at the 010 pole. The sample 
is then further deformed at higher temperature (1573 K). 

The maximum at 010 becomes stronger and minima appear 
between 100 and 011. These observations indicate a domi-
nant (010) glide plane at 4.6 GPa and 1373–1573 K.

Run #65 is a cycle of axial compression (sample short-
ening), followed by lateral compression (sample lengthen-
ing), and again axial compression at ~5.8 GPa and 1373 K. 
After the first compression, the sample texture is charac-
terized by a sharp maximum at 010. The following lateral 
compression induces a weaker texture, with a maximum 
intensity at 100. Finally, the last axial compression cycle 
induces, again, a sharp maximum at 010, as in the first 
deformation step. Those observations are consistent with 
the activation of the dominant slip in the [100] direction 
and in the (010) plane at ~5.8 GPa and 1373 K.

In run #89, first performed at 5.5 GPa and 1473 K, the 
sample starts from an initial LPO with a maximum inten-
sity close to 010. After the two first deformation steps in 
axial compression, one can observe two maxima at 010 
and 100, with a weaker LPO. Hence (010) is not a single 
dominant slip plane in this run. The somewhat weak final 
textures do not allow for extracting information for a domi-
nant slip plane under these conditions. Temperature is then 
increased to 1673 K. Compression textures are strong at 
a strain of 15 %, with a maximum between 010 and 110. 
However, further compression to a strain of 20 % under 
similar conditions leads to a maximum at 001, inconsist-
ent with the previous measurement. As reported by Hilairet 
et al. (2012), diffraction intensity variations with orienta-
tions change rapidly above 1600 K, because of fast grain 
growth and/or recrystallization. Dominant deformation 
mechanisms are hence difficult to extract from X-ray dif-
fraction textures. Further analysis with EBSD could have 
helped with the interpretation of the high temperature tex-
tures that cannot be evaluated with X-rays, but they were 
not possible with the current sample.

Effect of P and T on forsterite compression textures

Information on slip systems deduced from the experimental 
textures is summarized in Fig. 3a. At 1373 K, we observe 
textures compatible with a dominant (010) slip plane up 
to 6 GPa, whatever the water content. At 8 GPa, texture is 
weak with no clear connection to a dominant slip plane. At 
1473 K, the (010) slip plane is dominant at ~4 GPa. Results 
are inconsistent above 4 GPa, with different experiments 
leading to different results. At 1573 K, we observe textures 
consistent with (010) as a dominant slip plane up ~7 GPa, 
with no measurements at higher pressure. At 1673 K, in 
the whole tested pressure range, no clear texture can be 
defined, neither in dry (<200 ppm H/Si, see Kohlstedt et al. 
1996) nor wet (>200 ppm H/Si) conditions. Grain growth 
and/or recrystallization do not allow the measurement of 
consistent textures with the capabilities of the present setup 



at this high P, T. This last observation is consistent with 
TEM observations of evidences of recovery at tempera-
tures above 1600 K (Bollinger et al. 2015). As shown in 
Fig. 3 and Table 1, there is no clear connection between the 
observed textures and sample water content or stress level.

Discussion

Effect of P and T on forsterite plasticity

At pressure and temperature lower than 6 GPa and 1600 K, 
we observe consistent LPO, compatible with dominant slip 
on (010) plane, with a clear determination of a dominant 
[100](010) slip system in run #65 at 4.6 GPa and 1373 K. 
Above 6 GPa, we suspect the activation of multiple domi-
nant slip systems, leading to a weaker LPO that is difficult 

to measure with the current setup. The change in observed 
textures above 6 GPa may be related to the transition of 
deformation mechanism expected at these conditions (e.g., 
Couvy et al. 2004; Durinck et al. 2005, 2007; Raterron 
et al. 2007, 2009, 2011, 2012; Jung et al. 2009) or a transi-
tion to a regime dominated by diffusion. Indeed, Nishihara 
et al. (2014) have shown that both diffusion and dislocation 
creep play an important role in the rheology of forsterite 
aggregates. The present data, however, do not allow draw-
ing a final conclusion on the topic.

LPO developed in olivine are usually interpreted as a 
result from the activation of a single dominant (or major) 
slip system. Below 6 GPa and 1600 K, our data are con-
sistent with this observation with textures indicating a 
clear dominant (010) slip plane. Above 6 GPa and 1600 K, 
forsterite plasticity seems governed by several concurrent 
mechanisms.

Although the water content was not controlled during 
our experiments, FTIR analyses show that the deforma-
tion occurred in “wet” conditions (details in Bollinger et al. 
2015) with more than 200 ppm H/Si for most of the for-
sterite samples. Our observations at 1373 K and 4.6 GPa 
indicate a dominant [100](010) slip system, consistent with 
a A-type LPO (Jung et al. 2006). C-type or E-type LPOs 
with a dominant (100) or (001) slip plane are expected 
for wet olivine but do not clearly appear in our experi-
ments (Table 1; Fig. 3). Hence, water content did not sig-
nificantly affect our measured fabrics. Ohuchi et al. (2011) 
described the pressure effect on the LPO in “dry” olivine 
aggregates in shear and showed a transition from A-type 
LPO to B-type or C-type about 7.6 GPa. In a later publica-
tion (Ohuchi and Irifune 2014), they placed such transition 
at ~10 GPa for water-saturated olivine. Our data in Fig. 1 
indicate a transition from a 010 compression LPO to a dif-
ferent LPO above 6 GPa. This transition, observed in rela-
tively wet forsterite, is hence at a P about 1.5 GPa lower 
than that of Ohuchi et al. (2011) in “dry” olivine. Differ-
ence in sample composition and water content may explain 
this small pressure difference.

Implications for upper mantle anisotropy

In the Earth’s upper mantle, seismic anisotropy is maxi-
mum at about 100 km depth, where P = 3.2 GPa (Fig. 3b).
According to Yuan and Behein (2013), it decreases mark-
edly at lower depths with a minimum located at 220 km 
(P = 7.1 GPa) and increases again to a secondary maxi-
mum at ~300 km (P = 9.8 GPa).

Our data on forsterite indicate a dominance of slip in 
(010) up to ~6 GPa, with a transition in compression tex-
tures occurring at higher pressures. Interestingly, the pres-
sures at which our experimental LPO become complex, 
with uncertainties regarding the dominant slip system, do 

Fig. 3  a Dominant glide planes deduced as a function of the pres-
sure and temperature. Orange square dominant slip in (010), blue 
diamond dominant slip in (100), red triangle dominant slip in (001), 
gray circle weak or inconsistent texture. Lines are indicating three 
typical geotherms (dashed line oceanic geotherm, 20 Ma, dotted line 
oceanic geotherm, 80 Ma, solid line continental geotherm). Gray 
shading above ~1600 K indicates temperatures where grain growth 
and/or recrystallization do not allow the measurement of consistent 
textures with the capabilities of the present setup. Filled symbols 
samples with high water content. Open symbols sample with low 
water content. Crossed symbols sample with no water content meas-
urement. b Average amplitude of azimuthal anisotropy (dependence 
of seismic wave-speed within a horizontal layer) for vertically polar-
ized shear-waves observed as a function of depth in the Earth’s man-
tle (Debayle et al. 2005; Yuan and Beghein 2013)



correspond to depths with a minimum in seismic anisot-
ropy. Hence we can speculate that the minimum of global 
anisotropy observed at 220 km depth is related to a change 
of plastic mechanism in olivine.

The experimental setup used here did not allow experi-
ments at higher pressure. Hence, our data do not allow 
determining the dominant slip system at lower depths. Tex-
ture measurements by Ohuchi et al. (2011) and Ohuchi and 
Irifune (2014), however, lead to a dominant [001](100) or 
[001](hk0) at P ~7–11 GPa in wet and dry olivine, in agree-
ment with the TEM work of Couvy et al. (2004), the single 
crystal experiments of Raterron et al. (2007, 2009, 2011, 
2012), and predictions based on numerical modeling of 
Durinck et al. (2005).

Hence, we can speculate the following scenario for oli-
vine fabrics in the Earth’s mantle. Above 200 km, olivine 
plasticity leads to fabrics consistent with a dominant [100]
(010) slip. At ~220 km depth, a transition occurs in oli-
vine plasticity, leading to inconsistent textures and a weak 
seismic anisotropy. As pressure increases, textures become 
consistent with slip along [001] in planes such as (100), 
(010) or (hk0) thus explaining the increasing observed ani-
sotropy down to 300 km.

Conclusion

Steady-state deformation experiments were performed on 
forsterite aggregates in the D-DIA coupled with synchro-
tron radiation on polycrystalline forsterite at P–T condi-
tions representative of upper mantle geotherms down to 
depths of ~250 km (P, T range from 3.1 to 8.1 GPa and 
from 1373 to 1673 K, respectively). The obtained fabrics 
are then compared with results of micromechanical models 
for the extraction of dominant plastic mechanism in the for-
sterite aggregate.

Below 6 GPa and 1600 K, we observe consistent LPO, 
compatible with dominant slip on (010), with a clear 
determination of a dominant [100](010) slip system at 
4.6 GPa and 1373 K. Above 6 GPa, we suspect the acti-
vation of multiple dominant slip systems, leading to a 
weaker LPO that is difficult to measure with the current 
setup.

In the Earth’s mantle, we hence speculate that above 
200 km depths, olivine fabrics are controlled by a mech-
anism consistent with slip along [100](010). The seismic 
anisotropy minimum observed at 220 km is connected 
to a change of dominant deformation mechanism in oli-
vine, leading to weaker or inconsistent fabric. Deeper in 
the mantle, olivine plasticity becomes more consistent 
and, hence, allows for the development of further seismic 
anisotropy.
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