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Abstract
We have previously shown that the combination of statins and taxanes was a powerful trigger of HGT-1 human gastric

cancer cells’ apoptosis1. Importantly, several genes involved in the “Central carbon metabolism pathway in cancer”, as

reported in the Kyoto Encyclopedia of Genes and Genomes, were either up- (ACLY, ERBB2, GCK, MYC, PGM, PKFB2,

SLC1A5, SLC7A5, SLC16A3,) or down- (IDH, MDH1, OGDH, P53, PDK) regulated in response to the drug association. In the

present study, we conducted non-targeted metabolomics and lipidomics analyses by complementary methods and

cross-platform initiatives, namely mass spectrometry (GC-MS, LC-MS) and nuclear magnetic resonance (NMR), to

analyze the changes resulting from these treatments. We identified several altered biochemical pathways involved in

the anabolism and disposition of amino acids, sugars, and lipids. Using the Cytoscape environment with, as an input,

the identified biochemical marker changes, we distinguished the functional links between pathways. Finally, looking at

the overlap between metabolomics/lipidomics and transcriptome changes, we identified correlations between gene

expression modifications and changes in metabolites/lipids. Among the metabolites commonly detected by all types

of platforms, glutamine was the most induced (6–7-fold), pointing to an important metabolic adaptation of cancer

cells. Taken together, our results demonstrated that combining robust biochemical and molecular approaches was

efficient to identify both altered metabolic pathways and overlapping gene expression alterations in human gastric

cancer cells engaging into apoptosis following blunting the cholesterol synthesis pathway.

Introduction
Cancer cell metabolism shows strong alterations

required for cell activity and growth2, including a high
avidity for glucose and lipids3–5. Statins, cholesterol-
lowering drugs used to prevent cardiovascular diseases,
are competitive inhibitors of 3-hydroxy-3-methyl-glu-
taryl-coenzyme A reductase (HMG-CoA Red). They block
mevalonate production, in a rate-limiting step of the

cholesterol synthesis pathway6. In addition, statins induce
apoptosis of many cancer cell types, an effect counter-
acting the addiction of cancer cells to pathways driving
cell division, motility, and proliferation7. Indeed, inhibi-
tion of HMG-CoA Red results in a shortage of several
important metabolites, including Farnesyl PyroPhosphate
(FPP) and GeranylGeranyl PyroPhosphate (GGPP)7,8. FPP
and GGPP bind, in a post-translational manner (pre-
nylation), to the C-terminus of a restricted set of proteins
from the Ras and Rho families, which makes those pro-
teins migrate and anchor to the plasma membrane, where
they acquire GTPase activity. Prenylation blockade results
in restriction of the positive growth signals associated
with the MAP kinase-dependent pathways9. Docetaxel, an
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anticancer taxane compound used to treat breast and
gastric cancer10, promotes microtubules assembly and
stabilizes the polymers against depolymerization, thereby
inhibiting microtubule dynamics11.
We reported that both lovastatin and docetaxel trig-

gered efficient apoptosis of HGT-1 human gastric cancer
cells, but also colon or liver cancer cells1. The combina-
tion of lovastatin and docetaxel resulted in a synergistic
apoptotic effect, as compared to either compound alone.
Furthermore, supplementing adenocarcinoma cells with
FFP or GGPP prevented statin-dependent apoptosis of
several cancer cell types, including gastric cancer cells12.
Finally, we showed that lovastatin triggered numerous
gene expression changes, whereas docetaxel had little
effects1.
Based on these results, we decided to investigate the

potential of these drugs to alter the metabolomics and
lipidomics of early cancer cell engagement into apoptosis.
Such markers would hold promise as a characteristic
signature of changes resulting from treatment with these
drugs and, potentially, with other cytotoxic drugs. To this
end, we embarked on a collaborative project with mass
spectrometry (GC-MS and LC-MS) and Nuclear Mag-
netic Resonance (NMR) platforms from the CORSAIRE
metabolomics and lipidomics network (https://www.
biogenouest.org/en), in a non-targeted approach, to
determine the modifications of metabolomics and lipi-
domics profiles in HGT-1 cells. The levels of more than
100 metabolites and lipids were significantly altered by the
treatments, including amino acids, organic acids, sugars,
and several families of lipids. Furthermore, we identified a
small set of compounds with altered accumulation levels
jointly recognized by all analytical platforms, thereby
conferring robustness to our methodological framework.
Strikingly, most changes were due to lovastatin treatment,
used alone or with docetaxel, which had little effect by
itself. Finally, we combined metabolomics/lipidomics and
transcriptomics data obtained from lovastatin and/or
docetaxel-treated cells, which pointed to key biochemical
alterations and to the recognition of novel biomarkers of
the onset of cancer cell apoptosis.

Results
All experiments were performed with extracts from

cells treated by the drugs for 36 h, with the exception of
the kinetics experiments (17, 24, and 36 h).

HMG-CoA reductase enzyme activity following drug

treatments

In order to evaluate the effects of lovastatin and/or
docetaxel on HMG-CoA Red activity, we determined the
level of mevalonate produced. As expected, any condition
that included lovastatin resulted in full absence of HMG-
CoA Red activity. The basal enzyme activity was 18 ± 2

pmol/min/mg protein. Docetaxel had no effect on this
basal activity, and did not overcome the suppression
resulting from lovastatin.

Cross-platform principal component analysis

In order to see if the treatment of HGT-1 cells by
lovastatin and/or docetaxel modified the metabolome and
lipidome, we performed Principal Component Analyses
(PCA) using, as a first entry, harmonized metabolomics
data following Pareto and log10 transformation to have
data from each platform within a similar order of mag-
nitude13. No marker selection was performed upstream of
the PCA analysis. In addition, a PCA analysis was con-
ducted before and after normalization, which showed that
the normalization step did not modify the overall dis-
criminatory effects of the treatments. A strong separation
was observed between conditions with lovastatin and
without lovastatin in HGT-1 (Fig. 1) but also in AGS
human gastric cancer and HCT116 human colon carci-
noma cells (Supplementary Figure 1).
Because of their distinct modes of action, lovastatin, and

docetaxel were not necessarily expected to both trigger
large and convergent metabolomics/lipidomics changes.
Whereas docetaxel acts mechanically onto microtubule
dynamics and induced only a few gene expression chan-
ges, lovastatin strongly altered several gene expression
programs1. Although the metabolome/lipidome changes
may not necessarily converge onto common gene
expression-driven alterations, this observation could
explain our results, at least in part.

Comparison of metabolomics data among analytical

platforms

In order to compare the results from all platforms, we
developed a specific strategy to standardize the data. First,
the LC-MS (Fig. 1A, B), GC-MS (Fig. 1C), and NMR
(Fig. 1D) raw data were collected and standardized by the
amounts of proteins. The analytical drift was then cor-
rected using Workflow4Metabolomics, operating under
the Galaxy environment, by a Van Der Kloet transfor-
mation14. As each data table contained intensities
expressed as arbitrary units specific for each instrument,
we used a log10 and then a Pareto standardization
for data acquired by mass spectrometry and only Pareto
for NMR data. The NMR results were somewhat
distinct from those of the MS platforms, but the PCA
analysis showed that NMR data were consistent with the
(control, docetaxel) vs. (lovastatin, lovastatin+ docetaxel)
discrimination also observed by the MS platforms
(Fig. 1d). Among the NMR signals, some were identified
while others, identified by both GC-MS and LC-MS,
remained unseen by NMR (Supplementary Table 1). That
NMR- and MS-based metabolomics results were not
entirely overlapping could result from the different
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physico-chemical properties of the compounds, or
be linked to the fact that MS often detects minor
species inaccessible to NMR. The data matrices that
correlated most with each other were those from the LC-
MSn°2 platform: RV(LC-MSn°2LipidoPos_vs_LC-MSn°2LipidoNeg)

= 0.978 and RV(LC-MSn°2LipidoPos_vs_LC-MSn°2Neg)= 0.886,
RV(LC-MSn°2LipidoNeg_vs_LC-MSn°2Neg)= 0.870 (Fig. 2).
Metabolomics data generated by the same platform but

in different ionization modes (positive or negative)
showed partial correlation, such that the intra-platform
RV was 0.257 on the LC-MSn°1 platform, and 0.342 on
the LC-MSn°2 platform, even though the data were
obtained from the same samples with a single extraction
process. The data matrix size could explain the low cor-
relation scores. Indeed, on the LC-MSn°1 platform,
1598 signals were extracted from the raw data in the

positive mode, but only 613 signals in the negative mode.
These low correlations scores likely reflected the fact that
metabolomics extractions were more efficient for polar
metabolites, which were separated by acidified phases in
liquid chromatography, promoting a better ionization in
the positive ion mode, including adducts, and thus, pro-
ducing more detectable ions.

Integration of metabolomics and lipidomics data

To address the consequences of the variations detected
by the platforms, we performed PCAs for each platform,
focusing on the coordinates from the first component of
the PCAs, which explained most of the variance. We used
these PCAs as information compression to reduce a
matrix of data to a vector (defined by the coordinates of
the sample in the first component) (Supplementary

Fig. 1 Representative score plots of the Principal Component Analysis (PCA) from metabolomics and lipidomics analyses. Score plots of the

metabolomics MS data acquired in the negative mode on the LC-MSn°2 platform (A), the LC-MSn°1 platform in the positive mode (B), the GC-MSn°1

platform (C), and the NMRn°1 platform (D). Experimental conditions: control (open squares), docetaxel (plain triangles), lovastatin (open circles), and

lovastatin+ docetaxel (plain circles). Cells were treated for 36 h. The two dimensions of the analysis and their contribution to the variance are

indicated. The data are representative of results from all platforms
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Figure 2). Using the first two components, the PCA
explained 70% of the variance and, importantly, dis-
criminated two large data sets (control, docetaxel) vs.
(lovastatin, lovastatin+ docetaxel) (Fig. 3). Hence, the
global information obtained by each platform was con-
vergent, and each platform would be able to determine
whether a sample was treated at least by lovastatin.
However, it was almost impossible to distinguish a control
from a docetaxel-treated sample, or a lovastatin from a
(lovastatin+ docetaxel)-treated sample. However, our
metabolomics approach also identified discrete and dis-
criminant biomarkers.

Metabolites and lipids identification

To determine the nature of the metabolites and lipids
specifically altered by each treatment condition, several
databases were queried, including the local database
(NIST), online databases (LipidMaps, MassBank,
HMDB) or in-house databases15. One hundred and
eleven distinct compounds—some being detected by
more than one platform, including amino acids, small
organic acids, sugars, spermidine, phosphatidyl-choline
or triglycerides—were sorted out across the nine data
matrices generated by all platforms (Table 1). Depend-
ing on the metabolite considered, changes in its intra-
cellular content varied specifically with the treatments.
For instance, glutamine was increased in lovastatin or

(lovastatin+ docetaxel) extracts. Spermidine was
decreased with (lovastatin+ docetaxel). This dedicated
biomarker identification allowed to better discriminate
the different treatments than the global analysis of
metabolomics profiles.
It was expected that levels of some lipids should be

modified in response to statins. We thus analyzed intra-
cellular lipidomes by two of the platforms (LC-MSn°2 and
LC-MSn°3), using the Bligh & Dyer extraction proce-
dure16. Four classes of metabolites were identified as
significantly separating out the (lovastatin+ docetaxel)
condition from the control or docetaxel groups (Fig. 4):
ceramide [Cer(d18:1/16:0)], phosphatidylcholines [PC
(28:0), PC(30:1), PC(32:2), PC(34:3) and PC(34:5)], tri-
glycerides [TG(52:2), TG(52:3) and TG(54:2)] and
sphingomyelins [SM(16:0), SM(18:0), SM(20:0), SM(22:0),
SM(24:0), SM(18:1), SM(20:1), SM(22:1), and SM(24:1)].
The amount of PC(30:1) and PC(32:2), detected in the
positive mode, was reduced by (lovastatin+ docetaxel).
Conversely, [Cer(d18:1/16:0)] was increased in all cases.
From the 19 triglycerides species detected, only 3 were
modulated between treatment groups. No significant
differences were observed between treatments for the sum
of all detectable triglycerides, except a small decrease for
docetaxel alone as compared to (lovastatin+ docetaxel)
(Supplementary Figure 3).

Fig. 2 Inter-platform correlation network. The network was

established using the RV scores between all the data matrices

generated by the 5 analytical platforms. The thickness of the links

reflects the concordance level in metabolite identification between

platforms. The LC-MSn°1 was used in the positive (LCMS1Pos) or

negative (LCMS1Neg) modes; the LC-MSn°2 was used in the

metabolomics positive (LCMS2MetaboPos) or negative

(LCMS2MetaboNeg) modes or in the lipidomics positive

(LCMS2LipidoPos) or negative (LCMS2LipidoNeg) modes

Fig. 3 Score plot of the “meta” PCA prepared from the calculated

Dim1 coordinate from primary PCA analyses resulting from each

data matrix. Experimental conditions: control (open squares),

docetaxel (plain triangles), lovastatin (open circles) and (lovastatin+

docetaxel) (plain circles). Cells were treated for 36 h. The two

dimensions of the analysis and their contribution to the variance are

indicated
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Specifics of the analytical technologies

Various compounds were identified by several plat-
forms. Hence, in addition to the ability of the platforms to

obtain a common descriptive envelope of the metabo-
lome, we could also identify changes in the metabolomics
content with the same accuracy, thereby conferring both
convergence and robustness. In contrast, some com-
pounds were detected by only one platform (e.g. acetate,
choline, or formamide identified by NMR). Nevertheless,
the unique ability of a given platform to identify specific
metabolites added complementary information. To ana-
lyze the overlap in metabolites detected by all technolo-
gies, we established a Venn diagram (Fig. 5). Among all of
the 111 identified biomarkers, six were common: gluta-
mate, glutamine, myo-inositol, creatine, lactic acid, and
fumarate (Table 2). Moreover, 12 metabolites were
detected both by GC-MS and LC-MS, but not by NMR,
including citric acid, pantothenic acid, glucose, L-proline,
or L-methionine (Supplementary Table 1). Finally, we
combined the metabolomics and lipidomics data and
generated a network (Fig. 6). Although ceramides were

Table 1 Evolution of the 111 metabolites identified in the (lovastatin+ docetaxel) vs. control condition after 36 h of

treatment

Up Down

2,3-Dihydroxypropyl palmitate Cis-4-hydroxy-D-proline L-Glutamine Phosphoric acid Choline

2-Hydroxy-3-Methylbutyric acid Citric acid L-Homoserine Propionyl-L-carnitine Fumarate

2-Oxovaleric acid Creatine L-Isoleucine Pyridoxal L-Glutathion

3-Hydroxytyramine Creatinine L-Leucine Pyridoxine L-Tryptophan

3-Methyl-2-oxobutanoic acid Cyclohexene-3,5-dione L-Lysine Pyroglutamic acid Pantothenic acid

4-Methyl-2-oxovaleric acid Cystathionine L-Methionine Pyrophosphate Spermidine

5-Aminovaleric acid Dehydroabietic acid L-Phenylalanine Ribothymidine Threonine

5-Deoxy-5-methylthioadenosine D-Fructose L-Proline Sarcosine SM 16:0

5-Methylcytidine D-Glucose L-Tyrosine Stearoylglycerol SM 18:0

Acetate Dihydrouracil Maleic acid Succinate SM 20:0

Adenosine D-Ribose Methylmalonic acid Talose SM 22:0

Adipic acid Formamide Monopalmitoylglycerol Taurine SM 24:0

Alpha-hydroxyisobutyric acid Fructose di-phosphate Myo-inositol TG (52:2) SM 18:1

Alpha-ketoglutaric acid Glutamate Myristic acid TG (52:3) SM 20:1

Aminoadipic acid Glyceraldehyde N-acetyl-asp-Glu TG (54:2) SM 22:1

Aminomalonic acid Glycerol stearate N-acetyl-D-glucosamine Tryptophan SM 24:1

Arginine Glycerylphosphorylcholine N-acetyl-L-aspartate Tyramine PC (28:0)

Asparagine Hexadecanoic acid N-acetyl-L-glutamate Uric acid PC (30:1)

Aspartate Hippuric acid Nicotinamide Uridine PC (32:2)

Azelaic acid Hydroxybutyric acid O-acetyl carnitine Uridine-5′-monophosphate PC (34:3)

Beta-Alanine Hypotaurine Ornithine Valine PC (34:5)

Betaine Lactic acid O-succinyl-L-homoserine

Cer(d18:1/16:0) L-Alanine Phosphoglyceric acid

HGT-1 cancer cells were treated for 36 h and collected for biochemical analyses. The identified metabolites (fold-change >2, p-value<0.05) are listed in alphabetical
order, both in the “Up” and in the “Down” columns

Fig. 4 Changes in lipid content. Sphingomyelins (SM), ceramide (Cer

16:0), triglyceride (TG), and phosphatidylcholine (PC) fold-changes in

cells treated with (lovastatin+ docetaxel) vs. control. (**p-value<0.01).

Fold changes (− or +) of the various lipid classes were represented as

histogram bars. Cells were treated for 36 h
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modestly linked to other members of the network, a
strong density of partner compounds was observed,
stressing the close interplay between these lipid classes
and the other biochemical categories of metabolites.

Kinetic effects

We used quantitative GC-MS data for these experi-
ments. Each set of data was normalized with respect to its
own control at the same time of treatment. We analyzed
31 metabolites from cells treated by (lovastatin+ doc-
etaxel) for all time-points. The (lovastatin+ docetaxel)
treatments were best separated from their respective 17 h
and 24 h controls according to the first dimension of the
PCA (Fig. 7), like for cells treated by lovastatin alone at
the same time points (data not shown). The first dimen-
sion of the PCA, which explained the largest fraction of
the variance, showed a clear separation of the (lovastatin
+ docetaxel) condition at 36 h, from either the control or
the drug combination at earlier time-points. Strikingly,

nearly all metabolites were increased for the 36 h time-
point, suggesting increased synthesis over time (Supple-
mentary Table 2). By contrast, fumarate and pantothenic
acid levels were decreased at all time-points.

Overlap between transcriptome changes and metabolites/

lipids altered levels

Metabolites with a fold change >1.5 and a p-value <0.05
(lovastatin+ docetaxel condition vs. control) and genes
with a fold change >2 (lovastatin+ docetaxel condition vs.
control) were integrated into a global network using the
Stitch software17 for interaction analysis of metabolites
and proteins, and the Cytoscape environment for visua-
lization18. This highlighted links between “cholesterol
homeostasis” and “cellular carbohydrate biosynthetic
processes” through intermediates from the “response to
transition metal particles” and “female gonad develop-
ment”. “Cellular amino acids metabolic processes”
appeared unlinked to these pathways (Supplementary
Figure 4).
We next used the ClueGO19 application that extracts

the non-redundant biological information for large clus-
ters of genes, and PaintOmics20, which permits overlay
transcriptomics and metabolomics data onto KEGG
pathways. We identified several significantly affected
pathways (Supplementary Information and Supplemen-
tary Figures 5–10). While most metabolites were
increased, fumarate was decreased. Interestingly, expres-
sion of several genes from these pathways was either
increased or decreased by the treatment (Supplementary
Figures 5, 7–10), whereas one pathway showed no mod-
ifications in gene expression, while displaying metabolite
changes (Supplementary Figure 6).
Finally, integrating our data into the general pathway of

“Central carbon metabolism in cancer” (http://www.
genome.jp/kegg-bin/show_pathway?hsa05230) high-
lighted several genes that were up-regulated by the
(lovastatin+ docetaxel) treatment, including the ACLY,
ERBB2, GCK, MYC, PKFB2, SLC1A5, SLC7A5, and the
SLC16A3 genes, together with several modified metabo-
lites identified by one or more platforms, such as amino
acids, citrate, lactate, fumarate, 2-oxoglutarate or succi-
nate. Importantly, several other genes were down-regu-
lated, like P53, IDH, OGDH,MDH1, and PDK. From these
observations, it can be anticipated that glucose uptake,
amino acid synthesis and lactate production be increased,
together with a drop in the P53-dependent sensitization
to apoptosis and a stimulation of cell division through
activation of the ERBB2-dependent MAP kinase pathway
(Fig. 8).

Discussion
The identification of biomarkers of response to antic-

ancer treatments is particularly important to predict

Fig. 5 Venn diagram of the specific and shared metabolites (M)

and lipids (L). Metabolites detected by each technology and lipids

detected by the LC-MS technology in the (lovastatin+ docetaxel, 36

h) condition vs. control (fold change >1.5, p-value<0.05). The six

metabolites common to LCMS2 and NMR were: glutamate, glutamine,

myo-inositol, creatine, lactic acid, and fumarate

Table 2 Univariate quantitative analysis of metabolites

commonly detected by all platforms

GCMS LCMS NMR

Fold

change

t-test Fold

change

t-test Fold

change

t-test

Creatine 2.05 0.0015 2.50 0.0476 2.17 0.0003

Fumarate 2.56 0.0143 2.34 0.0000 1.53 0.0114

Glutamate 1.72 0.0013 1.98 0.0000 1.53 0.0096

Glutamine 6.52 0.0009 7.12 0.0000 6.60 0.0129

Lactic acid 3.08 0.0038 3.96 0.0058 4.30 0.0275

Myo-inositol 2.56 0.0011 1.61 0.0220 1.68 0.0034

HGT-1 cancer cells were treated for 36 h and collected for biochemical analyses.
The identified metabolites are listed in alphabetical order. The fold-changes and
the p-values (Student t-test, p < 0.05) are shown
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patient outcome. Model cancer cell systems are one such
tool to decipher the effects of treatments onto cellular
metabolic activity. In a previous study, we identified the
(lovastatin+ docetaxel) combination as a novel means to
trigger human HGT-1 gastric cancer cells apoptosis quite
efficiently1. Here, we set out to establish a robust
description of metabolomics/lipidomics alterations in
response to the drugs, as an initial step towards further
biomarker characterization. As such, identified metabo-
lites (Table 2) will be further explored as coherent bio-
markers of drug response.
To address the possibility that the metabolome and the

lipidome of gastric cancer cells in vitro could show spe-
cific alterations in response to lovastatin and/or docetaxel,
we selected independent MS and NMR platforms. There
was a good concordance between the results from these
platforms that identified both a comparable trend of
variations, and several of the same metabolites, as

especially shown by the clear distinction between treat-
ments containing or not lovastatin. Importantly, a similar
discrimination between the control and the (lovastatin+

docetaxel) conditions was also observed here in two other
cancer cell lines from the stomach and the colon (Sup-
plementary Figure 1). Almost all metabolite levels
decreased during the first 24 h, but rose afterwards, at 36
h of treatment, possibly indicating a synthesis rebound
phase (Supplementary Table 2). However, both fumarate
and pantothenic acid levels were decreased at all time
points.
The metabolism of lovastatin has been amply descri-

bed21–23. Docetaxel is extensively metabolized by hepatic
cytochromes P-450 (CYP), particularly CYP3A and
CYP2C24 in human liver. The identified metabolites and
lipids whose levels were modified in response to the drugs
were distinct from the metabolic products of lovastatin
and docetaxel. Several metabolites from the tricarboxylic

Fig. 6 Combined network analysis of metabolites and lipids. Data from both the metabolomics and the lipidomics analyses were combined.

Samples used were from (lovastatin+ docetaxel)-treated cells for 36 h. The shapes and colors were as follows: ovals for metabolites and rectangles

for lipids; from yellow to dark orange, more and more up-regulated, from light blue to dark blue, more and more down-regulated
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acid (TCA) cycle were raised, indicating that its activity
was higher than in control cancer cells, hence closer to
that of normal cells. We might suggest that this “normal-
like” metabolic condition may be incompatible with the
mutations or epigenetic changes that drove cancer cells to
switch from oxidative phosphorylation to aerobic glyco-
lysis, participating in apoptotic cell death in response to
the drugs.
Several lipid classes were altered by the treatments,

including phosphatidylcholines and sphingomyelins
(decreased), ceramides, and triglycerides (increased).
Reportedly, lovastatin decreased phosphatidylcholine
concentration by inhibiting cytidylyltransferase activity
In human endothelial cells25. Ceramides, which have a
well-defined pro-apoptotic role, are highly produced
during apoptosis, mostly through the action of sphin-
gomyelinase, and induce sphingomyelinase, which con-
verts sphingomyelin back into ceramides26,27, leading to
amplifying apoptotic signals in cells treated by antic-
ancer agents28,29. The rises observed here were likely
attributable, at least in part, to the apoptosis-inducing
ability of lovastatin, or to the statin-dependent increase
in ceramide synthase30.
Docetaxel binds tubulin, thereby preventing micro-

tubule repolymerization, provoking mitotic arrest and cell
death31. It decreased expression of several genes in breast

Fig. 7 PCA analysis of the kinetic effects of the (lovastatin+

docetaxel) combination. The cells were treated with both drugs for

the indicated times (H) and cell extracts were prepared for GC-MS

analysis. Seventeen-hours control (open squares), 24 h control (gray

squares), 36 h control (black squares), 17 h treament (empty circles),

24 h treatment (gray circles), and 36 h treatment (black circles). Three

biological replicates of each treatment condition were performed

Fig. 8 Central carbon metabolism in cancer. Metabolite and gene expression changes in response to (lovastatin+ docetaxel) treatment for 36 h.

The metabolomics and lipidomics signaling pathways were overlaid with the alterations in gene expression following (lovastatin+ docetaxel)

treatment compared to control cells after 36 h. The color code was as follows: blue boxes and blue circles referred to down-regulated genes and

down-regulated metabolites, respectively. Red boxes and red circles referred to up-regulated genes and up-regulated metabolites, respectively
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cancer cells, including the BCLX and BCL2 anti-apoptotic
genes32. In addition, paclitaxel, another taxane, down-
regulated several lipid synthesis genes in ovarian cancer,
including the APOE, HMGCS1, and LDLR genes, indi-
cating that docetaxel could also contribute to alterations
of lipid levels33. In paclitaxel-treated HeLa cells, a drop in
phosphatidylcholine was observed13, which also occurred
here in docetaxel-treated HGT-1 cells.
Lovastatin increased metabolites from the TCA cycle in

cancer cells (from the ovary), but reduced the metabolites
associated with glycolysis. Nearly all, among metabolites
involved in the TCA cycle, together with amino-acids,
were up-regulated similarly by lovastatin in this study34

and by (lovastatin+ docetaxel) in our study, including
citrate, lactate, malate, succinate, tryptophan, and valine.
We showed previously that treatment with lovastatin

and/or docetaxel engaged cells from several cancer types
into apoptosis, in addition to gastric cancer cells, includ-
ing cervix, lung, or liver cancer cells1. Because most of the
metabolomics and lipidomics changes observed in
response to (lovastatin+ docetaxel) could not be dis-
tinguished from those resulting from lovastatin alone, we
surmise that any lovastatin-responsive cancer cell type
should show comparable metabolomics and lipidomics
profiles.
To determine the links between both metabolomics/

lipidomics and gene expression data types, we used
PaintOmics20. Several of the biochemical pathways
showing variations in activity were indeed associated with
selected changes in mRNA levels (see Supplementary
Information and Supplementary Figures 5, 7–10).
Although most modifications in biochemical pathways
were associated with alterations in gene expression, other
altered pathways were apparently unlinked to gene
expression changes, possibly because their variation in
expression remained undetectable, or because the cell
response to (lovastatin+ docetaxel) did not require
adjustment of mRNA levels of genes from the considered
pathways, e.g. for the “amino acids biosynthesis” pathway
(Supplementary Figure 6).
Importantly, glucose and glutamine levels, two major

sources of energy for cancer cells3,35, were increased, so
was citrate—a precursor of fatty acids—and lactate—a
promoter of invasive potential. Hence, the (lovastatin+

docetaxel) treatment of HGT-1 cells did not oppose the
normal regulation of energy supply characteristic of
cancer cells. Rather, it amplified production or capture
of metabolites important for cancer cell metabolism.
Because these metabolites’ levels dropped at the early
time-points, their further rise at 36 h could be
interpreted as a rebound phase, which was, however,
insufficient to allow cell survival, but possibly pointing
to the ability of these cells to try developing survival
strategies.

In view of the multiplicity of alterations occurring both
at the transcriptome and metabolome/lipidome levels,
and not knowing if these were a driver or a consequence
of apoptosis engagement, or a mixture of both, it will be
difficult to obtain a fair appreciation of which of these
altered pathways would be best targeting for tumor
growth inhibition in vivo. Provided the observed asso-
ciation between metabolite and gene variation levels were
linked, at least in part, it could be envisioned to modulate
expression of some of the genes deregulated under our
pro-apoptotic conditions to directly address their roles in
cell death. Although it may seem counterintuitive that
apoptosis resulting from the (lovastatin+ docetaxel)
treatment was associated with a drop in P53 gene
expression, this might be unlinked to HGT-1 sensitivity to
apoptosis since these cells carry an inactivating P53

mutation. Furthermore, we observed that P53-proficient
HCT116 colon carcinoma cells were also highly sensitive
to the (lovastatin+ docetaxel) combination, indicating
that the apoptosis-inducing capacity of these drugs may
not require either active P53 proteins or, possibly,
induction of some of their targets (e.g. pro-apoptotic Bcl-2
family members). We are currently addressing these
important questions.

Conclusion
Our results, based on a thorough approach that

mobilized several independent technological platforms,
demonstrated that the treatment of gastric cancer cells
by lovastatin +/− docetaxel triggered profound meta-
bolomics and lipidomics alterations at the beginning of
overt apoptosis. Although the sugar dependency and
consumption by cancer cells has been amply reported,
our data stressed the fact that some metabolomics
modifications that accounted for altered glucose meta-
bolism could also occur in response to lipid-restricting
drugs like statins. We identified several cases of overlap
between metabolomics/lipidomics and transcript levels,
indicating that some of the biochemical changes could
have been contributed by modifications in gene
expression. It also appeared that the pro-apoptotic
effects of the (lovastatin+ docetaxel) combination
were able to surpass the rise in energy supply that would
otherwise be sufficient to fulfill the metabolic needs of
cancer cells. We speculate that targeting energy sources
may not necessarily be sufficient to kill cancer cells in
the environment of a living organism. Rather, inhibiting
anti-apoptotic proteins at the same time may be a more
efficient option. It may also be suggested that some of
the metabolites/lipids—and the genes that participated
in producing them—that were modified, could provide
novel biomarkers, or possibly pertinent targets, involved
in the response to apoptosis-promoting treatments in a
more general sense.
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Material & methods
Cell culture and treatments

HGT-1 human gastric cancer cells were grown in 90
mm plates at 37 °C under a humidified atmosphere of 5%
CO2 in DMEM (Dulbecco’s modified Eagle’s medium)
(Lonza, Saint Beauzire, France), containing 4.5 g L−1 glu-
cose and supplemented with 5% fetal bovine serum
without antibiotics (Gibco-Invitrogen, Cergy-Pontoise,
France)12,36. AGS and HCT116 human gastric cancer and
colon cancer cells, respectively, were grown under the
same conditions in DMEM containing 4.5 g L−1 glucose
and supplemented with 5% fetal bovine serum without
antibiotics. The medium was changed at day +2 and day
+4. At day +4, the culture medium was replaced by
DMEM with L-glutamine, without phenol red, for the
time of treatment, as it would otherwise saturate the
signal, particularly in liquid chromatography-mass spec-
trometry (LC-MS). Cells were treated at 80% (roughly 10
million cells) cell confluence, with lovastatin (12.5 μM,
final concentration) and / or docetaxel (5 nM) for up to
36 h. DMSO (Dimethyl sulfoxide), the vehicle of lovasta-
tin, was added to all cell plates at the same concentration
(less than 0.5% V/V) with no apparent toxicity observed in
DMSO only-treated cells used as controls. At the mor-
phological level, docetaxel-treated cells showed no
alterations. By contrast, lovastatin or (docetaxel+ lovas-
tatin)-treated cells did show signs of initiating apoptosis
(cell blebs) after 36 h whereas no such signs were
observed after 24 h. Adherent cells were rinsed twice with
10mL cold phosphate buffered saline and 5mL of ice-
cold methanol were added per dish to stop any metabolic
process and lyse the cells in situ. Cells were then cen-
trifuged and the cell pellets were rinsed with 1 mL of ice-
cold methanol. Pellets were subjected to sonication on ice
(2 × 15 s at 70 Hz) and distributed into aliquots. For pro-
tein assays, 0.1 mL was collected. All the platforms
received 1.5 mL cell pellet fractions. Three independent
biological replicates were prepared several weeks apart,
and sent under the same conditions to all platforms.

Determination of HMG-CoA reductase activity

Cell pellets (4 million cells) were dissolved in 200 μl
buffer containing 50mM NaH2PO4, 10 mM EDTA, 0.1
mM DTT (pH 7.4). Leupeptin (10 μg/mL) and PMSF (1
μL/mL of 1M PMSF in DMSO) were added just before
use. Cells were disrupted by 20 passages in a glass/glass
dounce followed by 20 s sonication. After a 15min cen-
trifugation at 1500×g, the supernatants were removed and
stored at −80 °C until use. Protein concentration was
determined according to Bradford37.
HMG-CoA Red was measured essentially as described38

with some modifications. Incubation mixtures (200 μL)
contained buffer (100 mM KH2PO4, 50 mM KCl, 1 mM
EDTA, and 5mM DTT, pH 7.4), 1.7 nmol of [14C]HMG-

CoA and 8.3 nmol of HMG-CoA (final concentration of
50 μM). The enzyme reactions were started by the addi-
tion of 200 μg of proteins and 2.5 mM NADPH. After 60
min incubation at 37 °C, reactions were terminated by
adding 30 μL of 72% trichloracetic acid. After 30 min to
allow conversion of mevalonate to mevalonolactone,
samples were centrifuged 3min at 16 000×g and 40 μL of
supernatant were used for HPLC analysis. In each sample,
the HMG-CoA Red activity was determined in duplicate.
Samples (30 μL) were injected and separated on a

reverse phase Nucleosil C18 column (5 μm particle size,
250 × 4.6 mm equipped with a 5 mm guard column of the
same phase) with the following linear gradient of potas-
sium phosphate 50mM pH6.8 (solvent A) and methanol
(solvent B): 5% B for 2 min, 5–32% B up to 16min, 32–5%
for 10min, at a flow rate of 0.8 mL/min. The HPLC
chromatograph was interfaced with a Flo-one Beta
radiometric detector (Packard, Meriden, USA). Peak areas
were calculated from the percentage of metabolite area to
the total product area (metabolite+ residual substrate).
Data were expressed as pmol/min/mg of protein.

Metabolomics and lipidomics analytical methods (see

Supplementary information)

Five instrumental platforms contributed to the analyses:
NMRn°1 (1H-NMR, Bruker), LC-MSn°1 (UHPLC-LTQ-
Orbitrap, Thermo), LC-MSn°2 (UHPLC-Exactive,
Thermo), LC-MSn°3 (UPLC-HRMSe, Synapt Q-TOF G2,
Waters), GC-MSn°1 (GC-MS, Agilent). From extraction
to analysis, each analytical platform processed the samples
using its in-house procedure (Supplementary Table 3).
Altogether, the analyses, i.e. metabolomics, lipidomics, in
both positive or negative ionization modes (for MS),
resulted in 9 data matrices from 5 platforms. Each plat-
form generated its own dataset in a tabular format where
variables were the peak area of a m/z index for the mass
spectrometry analysis or a bucket for NMR. These data-
sets included the 3 replicates for each treatment (control,
lovastatin, docetaxel and co-treatment lovastatin+ doc-
etaxel), the analytical blank samples, and quality control
samples (QC). QC samples were generated from an in-
house protocol in varying numbers depending on each
platform (none for NMRn°1, 10 for LC-MSn°1, LC-MSn°2
and GC-MSn°1, 9 for LC-MSn°3). They were prepared by
making a mixture of all samples (controls and tests). They
were used to correct the analytic drift, to filter the data
and to evaluate statistics validity (reproducible profiles).
They were introduced as follows: 5 at run start, then every
5–10 samples, depending on the separation sequence, and
3 at the end of the run (for GC). The relative standard
deviation (RSD, %) was calculated for QC variables peak
areas to evaluate their analytical quality and robustness.
Finally, lipid markers having a RSD value below 30% in
QC samples were kept for subsequent multivariate
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analysis. For the kinetics study, 34 selected biomarkers
were quantified by GC-MS following the procedure
described for the GC-MSn°1 platform. Sphingomyelins
and ceramides were quantified in samples by a validated
assay on the LC-MSn°3 platform, as described pre-
viously39. Additional platform protocols are presented
in Supplementary Information.

Data analysis

Nine data matrices were generated by XCMS included
in the workflow4metabolomics. We have collected all raw
data from each platform, and we then have tuned each
extraction parameter as finely as possible: one metabo-
lomics data matrix in the positive electronic impact mode
for GC-MSn°1, two metabolomic data matrices obtained
in the positive and the negative ESI mode for LC-MSn°1,
two metabolomic data matrices and two lipidomic data
matrices generated in the positive and the negative ESI
mode for LC-MSn°2, one lipidomic data matrix obtained
in the positive ESI mode for LC-MSn°3 and one meta-
bolomic data matrix for NMRn°1 platform. For each of
the data matrices generated, a batch correction was
applied to minimize the signal drift considering the
inherent QCs.
Then, to compare these data matrices, a normalization

step was introduced, i.e. combining all the generated data
to be analyzed in the same order of magnitude. Mass
spectrometry data were first normalized by a log10
transformation, then all datasets (including MS and
NMR) were Pareto transformed13.
The relationship between the data tables from the dif-

ferent platforms were analyzed using the RV coeffi-
cient40,41. This RV coefficient can be interpreted as a
multivariate equivalent of the coefficient of determina-
tion, which is a measure of the quality of the prediction of
a linear regression (R²) ranging from [0–1]. When con-
sidering two matrices X and Y, a coefficient RV equaling
to 1 means that the relative position of the samples in X is
similar to that in Y. In other words, the information
contained in the two tables is identical. For each data
matrix generated, a principal component analysis (PCA)
was also performed with FactoMineR and the FactoExtra
package working under the R computing environment42.
The coordinates of the first dimension (Dim 1) of each
PCA describing a data matrix were combined into a single
file. We felt that multivariate tests would provide a fair
description of the phenomena. Nevertheless, all univariate
comparisons were also performed, which showed the
same results, i.e. the equivalence of the control and doc-
etaxel condition, the equivalence of the lovastatin and
lovastatin+ docetaxel condition, and the clear separation
of the control and lovastatin, the control and lovastatin+

docetaxel, the docetaxel and the lovastatin, the docetaxel
and the lovastatin+ docetaxel conditions. Univariate

determinations are reported in Supplementary Tables 1
and 2. It could be observed that all platform determina-
tions were quite homogeneous, i.e. obtained similar
trends of variations for these metabolites. In addition,
glutamine was the most strongly increased metabolite in
response to the combination of lovastatin and docetaxel.
However, some even stronger increases occurred for a few
metabolites detected by a given platform, LCMS vs.
GCMS, e.g. citric acid (10.22-fold according to LCMS,
but 1.75-fold according to GCMS) or glutathione (4.55-
fold according to LCMS and 2.1-fold according to
GCMS). All statistical experiments were also performed
with FactoMineR or Workflow4Metabolomics 3.0
(workflow4metabolomics.org).
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