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Abstract

The conception of new metamaterials showing unorthodox behaviors with respect to elastic wave
propagation has become possible in recent years thanks to powerful dynamical homogenization tech-
niques. Such methods effectively allow to describe the behavior of an infinite medium generated by
periodically architectured base materials. Nevertheless, when it comes to the study of the scattering
properties of finite-sized structures, dealing with the correct boundary conditions at the macroscopic
scale becomes challenging. In this paper, we show how finite-domain boundary value problems can
be set-up in the framework of enriched continuum mechanics (relaxed micromorphic model) by im-
posing continuity of macroscopic displacement and of generalized traction when non-local effects are
neglected.

The case of a metamaterial slab of finite width is presented, its scattering properties are studied via
a semi-analytical solution of the relaxed micromorphic model and compared to numerical simulations
encoding all details of the selected microstructure. The reflection coefficient obtained via the two
methods is presented as a function of the frequency and of the direction of propagation of the incident
wave. We find excellent agreement for a large range of frequencies going from the long-wave limit
to frequencies beyond the first band-gap and for angles of incidence ranging from normal to near
parallel incidence. The case of a semi-infinite metamaterial is also presented and is seen to be a
reliable measure of the average behavior of the finite metastructure. A tremendous gain in terms
of computational time is obtained when using the relaxed micromorphic model for the study of the
considered metastructure.
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1 Introduction

Recent years have seen the rapid development of mechanical metamaterials and phononic crystals showing
unorthodox behaviors with respect to elastic wave propagation, including focusing, channeling, cloaking,
filtering, etc. [8, 9, 14, 27, 31]. The basic idea underlying the design of these metamaterials is that of
suitably engineering the architecture of their microstructure in such a way that the resulting macroscopic
(homogenized) properties can exhibit the desired exotic characteristics. One of the most impressive
features provided by such metamaterials is that of showing band-gaps, i.e. frequency ranges for which
wave propagation is inhibited. The most widespread class of metamaterials consists of those which
are obtained by a periodic repetition in space of a specific unit cell and which are known as periodic
metamaterials. For such metamaterials, renown scientists have provided analytical [37, 38, 39, 40] or
numerical [13] homogenization techniques (in the spirit of the seminal works of Bloch [7] and Floquet
[12]), allowing to obtain a homogenized model which suitably describes, to a good extent, the dynamical
behavior of the bulk periodic metamaterial at the macroscopic scale. Rigorous models for studying the
macroscopic mechanical behavior of non-periodic structures become rarer and usually rely on the use
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of detailed finite element modeling of the considered microstructures (see e.g. [15]), thus rendering the
implementation of large structures computationally demanding and impractical.

At the current state of knowledge, little effort is made in trying to model large metamaterial structures
(which we will call metastructures), due to the difficulty of imposing suitably boundary conditions in
the framework of homogenization theories (see [36]). We propose to shed new light in this direction
by the introduction of an enriched continuum model of the micromorphic type (relaxed micromorphic
model), equipped with the proper boundary conditions for the effective description of finite sized band-
gap metastructures. The relaxed micromorphic model (see [2, 4, 5, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25,
28, 29, 30] for preliminary results) has a simplified structure which allows to describe the homogenized
properties of (periodic or even non-periodic) anisotropic metamaterials with a limited number of constant
material parameters and for an extended frequency range going from the long-wave limit to frequencies
which are beyond the first band-gap. The rigorous development of the relaxed micromorphic model for
anisotropic metamaterials has been given in [10], where applications to different classes of symmetry
and the particular case of tetragonal periodic metamaterials are also discussed. In the latter paper, a
procedure to univocally determine some of the material parameters for periodic metamaterials with static
tests is also provided. It is important to point out that the relaxed micromorphic model is not obtained
via a formal homogenization procedure, but is developed generalizing the framework of macroscopic
continuum elasticity by introducing enriched kinematics and enhanced constitutive laws for the strain
energy density. In this way, extra degrees of freedom are added to the classical macroscopic displacement
via the introduction of the micro-distortion tensor and the chosen constitutive form for the anisotropic
strain energy density. This allows to introduce a limited number of elastic parameters through fourth-
order macro and micro elasticity tensors working on the sym/skew orthogonal decomposition of the
introduced deformation measures (see [10] for details). The need of using an enriched continuum model
of the micromorphic type for describing the broadband macroscopic behavior of acoustic metamaterials
as emerging from a numerical homogenization technique was recently proven in [35]. Nevertheless, the
authors of the latter paper showed that a huge number of elastic parameters (up to 600 for the studied
tetragonal two-dimensional structures) is indeed needed to perform an accurate fitting of the dispersion
curves issued by the Bloch-Floquet analysis. This extensive number of parameters can also be found in
other micromorphic models of the Eringen [11] and Mindlin [26] type. The need of this vast number of
parameters is related to the fact that the macroscopic class of symmetry of the metamaterial and the
correct (i.e. sym/skew-decomposed) deformation measures are usually not accounted for. As a matter of
fact, the relaxed micromorphic model, as proposed in [10], is able to minimize the number of parameters
(15 for the tetragonal 2D-case) thanks to the introduction of “generalized classes of symmetry” for
metamaterials and to the sym/skew-decomposition choice of the introduced deformation measures. The
fitting of the dispersion curves, which can be obtained by the inverse fitting procedure proposed in [10],
cannot reproduce point-by-point the dispersion curves issued via Bloch-Floquet analysis (which is not
the aim of our work), but is general enough to capture the main features of the studied metamaterials’
behavior including dispersion, anisotropy, band-gaps for a wide range of frequencies and for wavelengths
which can become very small and even comparable to the size of the unit cell.

Last, but most importantly, since it is issued by a variational procedure, the relaxed micromorphic
model is naturally equipped with the correct macroscopic boundary conditions which have to be applied
on the boundaries of the considered metamaterials. This implies that the global refractive properties of
metamaterials’ boundaries can be described in the simplified framework of enriched continuum mechanics,
thus providing important information while keeping simple enough to allow important computational
time-saving.

Very complex phenomena take place when an incident elastic wave hits a metamaterial’s boundary,
resulting in reflected and transmitted waves which can be propagative or evanescent depending on the
frequency and angle of incidence of the incident wave itself. The primordial importance of evanescent
(non-propagative) waves for the correct formulation of boundary value problems for metamaterials has
been highlighted in [36, 41], where the need of infinite evanescent modes for obtaining continuity of
displacement and of tractions at the considered metamaterial’s boundary is pointed out. One of the
advantages of the enriched continuum model proposed in the present paper is that the generalized
boundary conditions (continuity of macroscopic displacement and of generalized traction) associated to
the considered boundary value problem are exactly fulfilled with a finite number of modes.

We will show that the proposed framework allows to describe, to a good extent, the overall behavior
of the reflection coefficient (generated by a plane incident wave) of an interface between a homogeneous
medium and a specific tetragonal band-gap metamaterial (both considered as semi-infinite in space),
as function of the frequency and of the angle of incidence of the incident wave. Moreover, given the
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auto-consistency of bulk PDEs and associated jump conditions, we are able to treat the more realistic
case of a metamaterial slab of finite width treated as an inclusion between two semi-infinite homogeneous
media. Also for the latter case, we are able to obtain the reflective properties of the slab as a function of
the frequency and angle of incidence of the plane incident wave. To the authors’ knowledge, a boundary
value problem which describes the dynamical behavior of realistic finite-size metamaterial structures via
the introduction of rigorous macroscopic boundary conditions, is presented here for the first time.

The results show very good agreement (for a wide range of frequencies extending from the low-
frequency Cauchy limit to frequencies beyond the first band-gap and for all the possible angles of inci-
dence) with the direct FEM numerical implementation of the considered system in COMSOL, where the
detailed geometry of the unit cell has been implemented in the framework of classical linear elasticity.
We observe a tremendous advantage in terms of the computational time needed to perform the numerical
simulations (few hours for the relaxed micromorphic model against weeks for the direct FEM simulation).

We structure the paper as follows: In Section 1 we present an introduction together with the notation
used throughout the paper. Section 2 briefly recalls the governing equations describing the motion of
Cauchy and relaxed micromorphic continua, with specific reference to the definition of the energy flux
for both cases. In Section 3 the plane-wave solutions for the Cauchy and relaxed micromorphic continua
are obtained as solutions of the corresponding eigenvalue problems. In Section 4 we provide essential
information concerning the correct boundary conditions which have to be imposed at the metamaterial’s
boundaries, in the relaxed micromorphic framework. In Sections 5 and 6 the problems of the scattering
from a relaxed micromorphic single interface and relaxed micromorphic slab of finite size, respectively,
are rigorously set up and solved. Section 7 presents the detailed implementation of the microstructured
metamaterial slab based on classical elasticity and implemented in the commercial Finite Element soft-
ware COMSOL Multiphysics. Section 8 thoroughly presents our results by means of a detailed discussion.
Section 9 is devoted to conclusions and perspectives.

1.1 Notation

Let R3×3 be the set of all real 3×3 second order tensors which we denote by capital letters. A simple and
a double contraction between tensors of any suitable order is denoted by · and : respectively, while the
scalar product of tensors of suitable order is denoted by 〈·, ·〉.1 The Einstein sum convention is implied
throughout this text unless otherwise specified. The standard Euclidean scalar product on R3×3 is given
by 〈X,Y 〉 = tr(X · Y T ) and consequently the Frobenius tensor norm is ‖X‖2 = 〈X,X〉. The identity
tensor on R3×3 will be denoted by 1; then, tr(X) = 〈X,1〉.

We denote by BL a bounded domain in R3, by ∂BL its regular boundary and by Σ any material
surface embedded in BL. The outward unit normal to ∂BL will be denoted by ν as will the outward unit
normal to a surface Σ embedded in BL. Given a field a defined on the surface Σ, we define the jump of
a through the surface Σ as:

[[a]] = a+ − a−, with a− := lim
x∈B−

L \Σ
x→Σ

a, and a+ := lim
x∈B+

L\Σ
x→Σ

a, (1.1)

where B−L , B
+
L are the two subdomains which result from splitting BL by the surface Σ.

Classical gradient ∇ and divergence Div operators are used throughout the paper.2 Moreover, we
introduce the Curl operator of the matrix P as (CurlP )ij = εjmnPin,m, where εjmn denotes the standard
Levi-Civita tensor, which is equal to +1, if (j,m, n) is an even permutation of (1, 2, 3), to −1, if (j,m, n)
is an odd permutation of (1, 2, 3), or to 0 if j = m, or m = n, or n = j.

Given a time interval [0, T ], the classical macroscopic displacement field is denoted by:

u(x, t) = (u1(x, t), u2(x, t), u3(x, t))T, x ∈ BL, t ∈ [0, T ]. (1.2)

In the framework of enriched continuum models of the micromorphic type, extra degrees of freedom are

1For example, (A ·v)i = Aijvj , (A ·B)ik = AijBjk, A : B = AijBji, (C ·B)ijk = CijpBpk, (C : B)i = CijpBpj , 〈v, w〉 =
v · w = viwi, 〈A,B〉 = AijBij , etc.

2The operators ∇, curl and Div are the classical gradient, curl and divergence operators. In symbols, for a field u of any
order, (∇u)i = u,i, for a vector field v, (curl v)i = εijkvk,j and for a field w of order k > 1, (Divw)i1i2...ik−1

= wi1i2...ik,ik
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added through the introduction of the micro-distortion tensor P denoted by:

P (x, t) =


P11(x, t) P12(x, t) P13(x, t)

P21(x, t) P22(x, t) P23(x, t)

P31(x, t) P32(x, t) P33(x, t)

 , x ∈ BL, t ∈ [0, T ]. (1.3)

2 Governing equations and Energy flux

2.1 The classical isotropic Cauchy continuum

The equations of motions in strong form for a classical Cauchy continuum are:

ρ u,tt = Div σ, ρ ui,tt = σij,j , (2.1)

where
σ = 2µ sym∇u+ λ tr(sym∇u)1, σij = µ(ui,j + uj,i) + λuk,kδij , (2.2)

is the classical symmetric Cauchy stress tensor for isotropic materials and µ and λ are the classical Lamé
parameters.

The mechanical system we are considering is conservative and, therefore, the energy must be conserved
in the sense that the following differential form of a continuity equation must hold:

E,t + divH = 0, (2.3)

where E is the total energy of the system and H is the energy flux vector, whose explicit expression is
given by (see e.g. [2] for a detailed derivation)

H = −σ · u,t, Hk = −σik uk,t. (2.4)

2.2 The anisotropic relaxed micromorphic model

The kinetic energy density in the anisotropic relaxed micromorphic model considered in this paper is
[10]:

J(u,t,∇u,t, P,t) =
1

2
ρ 〈u,t, u,t〉+

1

2
〈Jmicro symP,t, symP,t〉+

1

2
〈Jc skewP,t, skewP,t〉

+
1

2
〈Te sym∇u,t, sym∇u,t〉+

1

2
〈Tc skew∇u,t, skew∇u,t〉, (2.5)

where u is the macroscopic displacement field, P ∈ R3×3 is the non-symmetric micro-distortion tensor
and ρ is the apparent macroscopic density. Moreover, Je, Jmicro, Jc,Te and Tc are 4th order inertia
tensors, whose precise form will be specified in the following. An existence and uniqueness result for
models with these types of generalized inertia terms is given in [32].

The strain energy density for an anisotropic relaxed micromorphic medium is given by [10]:

W (∇u, P,CurlP ) =
1

2
〈Ce sym(∇u− P ), sym(∇u− P )〉+

1

2
〈Cmicro symP, symP 〉

+
1

2
〈Cc skew(∇u− P ), skew(∇u− P )〉

+
L2
c

2
(〈Le sym CurlP, sym CurlP 〉+ 〈Lc skew CurlP, skew CurlP 〉) , (2.6)

where Ce,Cmicro,Cc,Le and Lc are 4th order elasticity tensors which will be precisely defined in the
following. Moreover, Lc is a characteristic length, which may account for non-local effects in the meta-
material. We remark that non-local effects provide small corrections to the average behavior of the
metamaterial, so that only a small error is introduced if in a first instance, non-localities are neglected.

Let t0 > 0 be a fixed time and consider a bounded domain BL ⊂ R3. The minimization of the action
functional of the system at hand is defined as

A =

∫ t0

0

∫
BL

(J −W )dXdt, (2.7)
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where J is the kinetic and W the strain energy of the system, defined by (2.5) and (2.6), respectively.
The action functional ([10]) provides the governing equations for the anisotropic relaxed micromorphic
model:

ρ u,tt −Div σ̂,tt = Div σ̃,

Jmicro symP,tt = σ̃e − s− sym Curlm, Jc skewP,tt = σ̃c − skew Curlm, (2.8)

where we set

σ̃e = Ce sym(∇u− P ), σ̃c = Cc skew(∇u− P ), σ̃ = σ̃e + σ̃c, σ̂ = Te sym∇u+ Tc skew∇u,

s = Cmicro symP, m := L2
c (Le sym CurlP + Lc skew CurlP ). (2.9)

Conservation of energy for an anisotropic relaxed micromorphic continuum is formally written as in
equation (2.3). The specific form for the energy flux for an anisotropic relaxed micromorphic continuum
is (see Appendix A.1.1 for detailed derivation of this expression)

H = − (σ̃ + σ̂)
T · u,t −

(
mT · P,t

)
: ε, Hk = −ui,t (σ̃ik + σ̂ik)−mihPij,tεjhk. (2.10)

From here on, we set Lc = 0 for the remainder of this article. Indeed, it will be shown that even if
non-locality is switched off (Lc = 0), the relaxed micromorphic model is able to capture the more relevant
features of the considered problem. Taking the internal length into account provides small corrections
to the overall behavior of the metamaterial. Such effects will be discussed in forthcoming papers.

2.3 The plane-strain tetragonal symmetry case

In this article, we are interested in plane-strain solutions of the system (2.8). This means that the
macroscopic displacement u and the micro-distortion tensor P introduced in (1.2) and (1.3) are supposed
to take the following form:

u = u(x1, x2) = (u1(x1, x2), u2(x1, x2), 0)
T
, and ui,3 = 0, i = 1, 2, (2.11)

and

P = P (x1, x2) =


P11(x1, x2) P12(x1, x2) 0

P21(x1, x2) P22(x1, x2) 0

0 0 0

 , and Pij,3 = 0, i = 1, 2, j = 1, 2. (2.12)

Following [10], we denote the second order constitutive tensors in Voigt notation corresponding to
the fourth order ones appearing in the kinetic and strain energy expressions (2.5) and (2.6) by a tilde.3

For the tetragonal case, the constitutive tensors in Voigt notation are (see [4, 10])

C̃e =



2µe + λe λe ? 0 0 0

λe 2µe + λe ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 µ∗e


, C̃micro =



2µmicro + λmicro λmicro ? 0 0 0

λmicro 2µmicro + λmicro ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 µ∗micro


,

C̃c =


? 0 0

0 ? 0

0 0 4µc

 , J̃micro =



2 η1 + η3 η3 ? 0 0 0

η3 2 η1 + η3 ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 η∗1


, J̃c =


? 0 0

0 ? 0

0 0 4 η2

 ,

3For example, the 4th order tensor Ce is written as C̃e in Voigt notation.
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T̃e =



2 η̄1 + η̄3 η̄3 ? 0 0 0

η̄3 2 η̄1 + η̄3 ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 η̄∗1


, T̃c =


? 0 0

0 ? 0

0 0 4 η̄2

 ,

where we denoted by a star those components, which work on out-of-plane macro- and micro-strains and
do not play any role in the considered in plane (plane-strain) problem.

3 Bulk wave propagation in Cauchy and relaxed micromorphic
continua

3.1 Isotropic Cauchy continuum

We make the plane-wave ansatz for the solution to (2.1):

u(x1, x2, t) = ψ̂ ei(〈k,x〉−ωt) = ψ̂ ei(k1x1+k2 x2−ωt), ψ̂ ∈ C2, (3.1)

where k = (k1, k2)T is the wave vector and ω is the angular frequency.4 Plugging (3.1) into equation
(2.1) we get a 2× 2 algebraic system of the form

A · ψ̂ = 0, (3.2)

where

A =

 ρω2 − (2µ+ λ) k2
1 − µk2

2 −(µ+ λ) k1 k2

−(µ+ λ) k1 k2 ρω2 − (2µ+ λ) k2
2 − µk2

1

 . (3.3)

The algebraic system (3.2) has a solution if and only if detA = 0. This is a bi-quadratic polynomial
equation which has the following four solutions:

kL,r1 = −
√

ρ

2µ+ λ
ω2 − k22, kS,r1 = −

√
ρ

µ
ω2 − k22, kL,t1 =

√
ρ

2µ+ λ
ω2 − k22, kS,t1 =

√
ρ

µ
ω2 − k22, (3.4)

where we denote by L and S the longitudinal and shear waves and by r and t whether they are “reflected”
or “transmitted”, respectively. In a semi-infinite medium, the sign of these solutions must be chosen
according to the direction of propagation of the considered wave. We plug the solutions (3.4) into (3.2)
to calculate the corresponding eigenvectors

ψ̂L,r =

 1

−k
L,r
2

kL,r
1

 , ψ̂S,r =

 1

kS,r
1

kS,r
2

 , ψ̂L,t =

 1

kL,t
2

kL,t
1

 , ψ̂S,t =

 1

−k
S,t
1

kS,t
2

 . (3.5)

Normalizing these eigenvectors gives:

ψL,r :=
1∣∣∣ψ̂L,r∣∣∣ ψ̂L,r, ψS,r :=

1∣∣∣ψ̂S,r∣∣∣ ψ̂S,r, ψL,t :=
1∣∣∣ψ̂L,t∣∣∣ ψ̂L,t, ψS,t :=

1∣∣∣ψ̂S,t∣∣∣ ψ̂S,t. (3.6)

Then, the general solution to (2.1) can be written as:

u(x1, x2, t) = aL,rψL,rei(k
L,r
1 x1+k

L,r
2 x2−ωt) + aS,rψS,rei(k

S,r
1 x1+k

S,r
2 x2−ωt)

+ aL,tψL,tei(k
L,t
1 x1+k

L,t
2 x2−ωt) + aS,tψS,tei(k

S,t
1 x1+k

S,t
2 x2−ωt), (3.7)

where aL,r, aS,r, aL,t, aS,t ∈ C are constants to be determined from the boundary conditions, kL,t1 = −kL,r1

and kS,t1 = −kS,r1 , according to (3.4). Depending on the specific problems which are considered (e.g. semi-
infinite media), only some modes may propagate in specific directions. In this case, some of the terms in

4As we will show in the following, k2, which is the second component of the wave-number, is always supposed to be
known and is given by Snell’s law when imposing boundary conditions on a given boundary.
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the sum (3.7) have to be omitted. In particular, if we are considering waves propagating in the x1 < 0
half-space, then the solution to (2.1) reduces to:5

u(x1, x2, t) = aL,rψL,rei(k
L,r
1 x1+k

L,r
2 x2−ωt) + aS,rψS,rei(k

S,r
1 x1+k

S,r
2 x2−ωt), (3.8)

while if we are considering the x1 > 0 half-space, then the solution to (2.1) reduces to:

u(x1, x2, t) = aL,tψL,tei(k
L,t
1 x1+k

L,t
2 x2−ωt) + aS,tψS,tei(k

S,t
1 x1+k

S,t
2 x2−ωt). (3.9)

3.2 Relaxed micromorphic continuum

We start by collecting the unknown fields for the plane-strain case in a new variable:

v := (u1, u2, P11, P12, P21, P22)T. (3.10)

The plane-wave ansatz for this unknown field reads:

v = φ̂ ei(〈k,x〉−ωt) = φ̂ ei(k1 x1+k2x2−ω t), (3.11)

where φ̂ ∈ C6 is the vector of amplitudes, k = (k1, k2)T ∈ C2 is the wave-vector6 and ω is the angular
frequency. We plug this into (2.8) and get an algebraic system of the form

Â(k1, k2, ω) · φ̂ = 0, (3.12)

where Â(k1, k2, ω) ∈ C6×6 is a matrix depending on k1, k2, ω and all the material parameters of the
plane-strain tetragonal relaxed micromorphic model (see A.2 for an explicit presentation of this matrix).

In order for this system to have a solution other than the trivial one, we impose det Â = 0.
The equation det Â = 0 is a polynomial of order 12 in ω and it involves only even powers of ω. This

means that, plotting the roots ω = ω(k) gives 6 dispersion curves in the ω − k plane (see Fig. 3). On
the other hand, the same polynomial is of order 4 (and bi-quadratic), if regarded as a polynomial of k1

(k2 is supposed to be known when imposing boundary conditions) when setting Lc = 0. We can write
the roots of the characteristic polynomial as:

k
(1)
1 (k2, ω), k

(2)
1 (k2, ω), k

(3)
1 (k2, ω) = −k(1)

1 (k2, ω), k
(4)
1 (k2, ω) = −k(2)

1 (k2, ω). (3.13)

We have verified that, plotting the two functions k(1)(ω) :=

√(
k

(1)
1

)2

+
(
k

(1)
2

)2

and

k(2)(ω) :=

√(
k

(2)
1

)2

+
(
k

(2)
2

)2

gives the same diagrams as in Fig. 3. This means that each of the 2

modes k(i), i = {1, 2} actually gives rise to 3 branches in the k − ω plane.

We plug the solutions (3.13) into (3.12) and calculate the eigenvectors of Â, which we denote by:

φ̂(1), φ̂(2), φ̂(3), φ̂(4). We normalize these eigenvectors, thus introducing the normal vectors

φ(1) :=
1

|φ̂(1)|
φ̂(1), φ(2) :=

1

|φ̂(2)|
φ̂(2), φ(3) :=

1

|φ̂(3)|
φ̂(3), φ(4) :=

1

|φ̂(4)|
φ̂(4). (3.14)

Considering a micromorphic medium in which all waves travel simultaneously, the solution to (2.8) is:

v(x1, x2, t) =

4∑
j=1

αjφ
(j)e

i
(
k
(j)
1 x1+k

(j)
2 x2−ωt

)
, (3.15)

where αj ∈ C are unknown constants which will be determined from the boundary conditions,

k
(3)
1 = −k(1)

1 and k
(4)
1 = −k(3)

1 . If, on the basis of the particular interface problem one wants to study
only some waves traveling in the considered medium, then the extra waves must be omitted from the

5This choice for the sign of k1 always gives rise to a solution which verifies conservation of energy at the interface. We
will show in the following, that this particular choice, which at a first instance is rather intuitive, is not always the correct
one when dealing with a relaxed micromorphic medium.

6Here again, as in the case of a Cauchy medium, k2 will be fixed and given by Snell’s law when imposing boundary
conditions.
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sum in (3.15). This means that if we are considering waves traveling in the x1 > 0 direction, then the
solution to (2.8) is given by

v(x1, x2, t) = α1 φ
(1)e

i
(
k
(1)
1 x1+k

(1)
2 x2−ωt

)
+ α2 φ

(2)e
i
(
k
(2)
1 x1+k

(2)
2 x2−ωt

)
, (3.16)

while if the wave is traveling in the x1 < 0 direction, the solution to (2.8) is given by

v(x1, x2, t) = α3 φ
(3)e

i
(
k
(3)
1 x1+k

(3)
2 x2−ωt

)
+ α4 φ

(4)e
i
(
k
(4)
1 x1+k

(4)
2 x2−ωt

)
. (3.17)

4 Boundary Conditions

In this paper we will consider two types of interface problems: (i) a single interface separating a Cauchy
and a relaxed micromorphic medium, both assumed to be semi-infinite and (ii) a micromorphic slab
of finite size embedded between two semi-infinite Cauchy media. In the following, we will simply denote
“single interface” and “micromorphic slab” the first and second problem, respectively.

In the single interface problem, two infinite half-spaces are occupied by two materials in perfect contact
with each other. The material on the left of the interface is an isotropic classical Cauchy medium, while
the material on the right is a microstructured tetragonal metamaterial modeled by the tetragonal relaxed
micromorphic model (see Fig 1(a)).

In the micromorphic slab problem, two infinite half-spaces are separated by a micromorphic slab of
finite width h. Three materials are thus in perfect contact with each other: the material on the left
of the first interface is a classical linear elastic isotropic Cauchy medium, the material in the middle is
an anisotropic relaxed micromorphic medium, while the material on the right of the second interface is
again a classical isotropic Cauchy medium (see Fig. 1(b)).

θ

k

x2

x1

(a)

θ

k

x2

x1

h
2

h
2

(b)

Figure 1: Panel (a): single interface separating a Cauchy medium from a relaxed micromorphic medium
(both semi-infinite in the x1 direction). Panel (b): A micromorphic slab of width h between two semi-
infinite elastic Cauchy media. Both configurations (a) and (b) are semi-infinite in the x2 direction.

4.1 Boundary conditions at an interface between a Cauchy continuum and
a relaxed micromorphic continuum with vanishing characteristic length
Lc = 0

In the particular case where Lc = 0, there are two sets of boundary conditions which have to be imposed:
continuity of displacement and continuity of generalized traction (see [1, 2, 25] for more details).7 For

7On the other hand, if Lc > 0, one should also impose boundary conditions on the tangent part of the micro-distortion
tensor P and of the double force (see [1, 2, 25]).
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the displacement, we have:
[[u]] = 0⇒ u− = u+, on x1 = 0, (4.1)

where u− is the macroscopic displacement on the “minus” side (the x1 < 0 half-plane, occupied by
an isotropic Cauchy medium) and u+ is the macroscopic displacement on the “plus” side (the x1 > 0
half-plane, occupied by an anisotropic relaxed micromorphic medium). As for the jump of generalized
traction we have:

t = t̃, (4.2)

where t is the Cauchy traction on the “minus” side and t̃ is the generalized traction on the “plus” side.
We recall that in a Cauchy medium, t = σ · ν, ν being the outward unit normal to the surface and σ
being the Cauchy stress tensor given by (2.2). The generalized traction for the relaxed micromorphic
medium is given by

t̃ = (σ̃ + σ̂) · ν, t̃i = (σ̃ij + σ̂ij) · νj , on x1 = 0, (4.3)

where σ̃, σ̂ are defined in (2.9).

4.1.1 Continuity of macroscopic displacement and of generalized force implies conserva-
tion of energy at the interface

We have previously shown that conservation of energy for a bulk Cauchy and relaxed micromorphic
medium is given by equation (2.3), where the energy flux is defined in (2.4) and (2.10), respectively. It is
important to remark that the conservation of energy (2.3) has a “boundary counterpart”. This establishes
that the jump of the normal part of the flux must be vanishing, or, in other words, the normal part
of the flux must be continuous at the considered interface (this comes from the bulk conservation law
and the use of the Gauss divergence theorem). In symbols, when considering a surface Σ separating two
continuous media, we have

[[H · ν]] = 0, on Σ. (4.4)

We want to focus the reader’s attention on the fact that, in the framework of a consistent theory in
which the bulk equations and boundary conditions are simultaneously derived by means of a variational
principle, the jump conditions imposed on Σ necessarily imply the surface conservation of energy (4.4),
as far as a conservative system is considered. We explicitly show here that this is true for an interface
Σ separating a Cauchy medium from a relaxed micromorphic one. The same arguments, however, hold
for interfaces between two Cauchy or two relaxed micromorphic media.

To that end, considering for simplicity that the interface Σ is located at x1 = 0 (so that its normal
is ν = (1, 0)T) and assuming Lc = 0 we get from equation (2.10) that the normal flux computed on the
“relaxed micromorphic” side is given by:

(H · ν)+ := H+
1 = −ν+ · (σ̃ + σ̂)T · u+

,t at x1 = 0. (4.5)

By the same reasoning, the flux at the interface on the “Cauchy” side is computed from (2.4) and
gives:

(H · ν)− := H−1 = −ν− · σ · u−,t . (4.6)

Equation (4.4) can then be rewritten as:

− ν+ · (σ̃ + σ̂)T · u+
,t = −ν− · σ · u−,t . (4.7)

It is clear that, given the jump conditions (4.1) and (4.2), the latter relation is automatically verified.8

As we will show in the remainder of this paper, when modeling a metamaterial’s boundary via the
relaxed micromorphic model, we only need a finite number of modes in order to exactly verify boundary
conditions and, consequently, surface energy conservation. This provides the most powerful simplification
of the relaxed micromorphic model with respect to classical homogenization methods, in which infinite
modes are needed to satisfy conservation of stress and displacement at the metamaterial’s boundary (see
[39]). The first step towards the final goal of studying finite-sized complex metastructures, will be made
in this paper by studying the scattering properties of a finite-sized relaxed micromorphic slab.

8An analogous calculation can be done with Lc > 0, but in that case boundary conditions on the tangent part of P
and of the double force need to be used in order to automatically verify the conservation of energy on the boundary.
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4.2 Boundary conditions for a micromorphic slab embedded between two
Cauchy media

Given the macroscopic nature of the boundary conditions presented in section 4.1, they can be used
to solve more complex large-scale problems, in which multiple interfaces are present. In particular, the
boundary conditions to be satisfied at the two interfaces separating the slab from the two Cauchy media
in Fig. 1(b), are continuity of displacement and continuity of generalized force. This means that we
have four sets of boundary conditions, two on each interface. The finite slab has width h and we assume
that the two interfaces are positioned at x1 = −h/2 and x1 = h/2, respectively. The continuity of
displacement conditions to be satisfied at the two interfaces of the slab are:9

u− = ṽ, on x1 = −h
2
, ṽ = u+, on x1 =

h

2
. (4.8)

As for the continuity of generalized force, we have:

t− = t̃, on x1 = −h
2
, t̃ = t+, on x1 =

h

2
, (4.9)

where t± = σ± · ν± are classical Cauchy tractions and t̃ is again given by (4.3).

5 Reflection and transmission at the single interface

In this section, we study the two-dimensional, plane-strain, time-harmonic scattering problem from an
anisotropic micromorphic half-space (see equations (2.8)), occupying the region x1 > 0 of Fig. 1(a).
With reference to Fig. 1(a), the half-space x1 < 0 is filled with a linear elastic Cauchy continuum,
governed by equation (2.1). For simplicity, we assume that the incident wave hits the interface at the
origin. Considering that reflected waves only travel in the x1 < 0 Cauchy half-plane, only negative
solutions for the k1’s must be kept in equation (3.4), so that the total solution in the left half-space is

u−(x1, x2, t) = aL/S,iψL/S,iei(〈x,k
L/S,i〉−ωt) + aL,rψL,rei(〈x,k

L,r〉−ωt) + aS,rψS,rei(〈x,k
S,r〉−ωt)

=: uL/S,i + uL,r + uS,r, (5.1)

where we write L or S in the incident wave depending on whether the wave is longitudinal or shear and
i and r in the exponents stand for “incident” and “reflected”. Analogously, the solution on the right
half-space, which is occupied by a relaxed micromorphic medium, is10

v(x1, x2, t) = α1 φ
(1)ei(〈x,k

(1)〉−ωt) + α2 φ
(2)ei(〈x,k

(2)〉−ωt), (5.2)

where we have kept only terms with positive k1’s in the solution (3.13), since transmitted waves are
supposed to propagate in the x1 > 0 half-plane.11

Since the incident wave is always propagative, the polarization and wave-vectors are given by:

ψL,i = (sin θL,− cos θL)T, kL = |kL|(sin θL,− cos θL)T, (5.3)

ψS,i = (cos θS , sin θS)T, kS = |kS |(sin θS ,− cos θS)T, (5.4)

where, according to (3.4), |kL| = ω
cL

and |kS | = ω
cS

, with cL =
√

(2µ+ λ)/ρ and cS =
√
µ/ρ the

longitudinal and shear speeds of propagation and θL and θS the angles of incidence when the wave is
longitudinal or shear, respectively (see Fig. 1 and [2] for a more detailed exposition).

The continuity of displacement condition (4.1) provides us with the generalized Snell’s law for the
case of a Cauchy/relaxed micromorphic interface (see [2] for a detailed derivation):

k
L/S,i
2 = kL,r2 = kS,r2 = k

(1)
2 = k

(2)
2 .

Generalized Snell’s Law

(5.5)

9We denote by ṽ the first two components of the micromorphic field v defined in equation (3.11).
10We suppose here that, for the transmitted wave we have to consider only the positive solutions of (3.13). Even though

this choice can seem rather intuitive, it is not the correct one since negative refraction can take place for high frequencies
in order to respect conservation of energy.

11We will show in section 8 that, given the anisotropy of the relaxed micromorphic model, there exist some angles of
incidence and some frequencies, for which this choice for the sign of the k1’s is not correct, in the sense that conservation of
energy (2.3) is not satisfied. In fact, for these angles of incidence and frequency intervals, we have to invert the sign of the
k1’s in order to correctly satisfy conservation of energy. This can be somehow related to what is known in the literature as
negative refraction phenomena.
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As for the flux, the normal outward pointing vector to the surface (the x2 axis) is ν = (−1, 0).
This means that in expressions (2.4) and (2.10) for the fluxes, we need only take into account the first
component. According to our definitions (2.4) and (2.10) (remembering that Lc = 0 and that we impose
the plane-strain restriction), we have

H−1 = −ui,t σi1, H+
1 = −vi,t (σ̃i1 + σ̂i1) , i = 1, 2. (5.6)

Having calculated the “transmitted” flux, we can now look at the reflection and transmission coefficients
for the case of a Cauchy/relaxed micromorphic interface. We define12

J i =
1

T

∫ T

0

H i(x, t)dt, J r =
1

T

∫ T

0

Hr(x, t)dt, J t =
1

T

∫ T

0

Ht(x, t)dt, (5.7)

where T is the time period of the considered harmonic waves, H i = H−1 (uL/S,i), Hr = H−1 (uL,r + uS,r)
and Ht = H+

1 (v), with H+
1 and H−1 defined in (5.6). Then the reflection and transmission coefficients

are

R =
J r

J i
, T =

J t

J i
. (5.8)

Since the system is conservative, we must have that R+ T = 1.

6 Reflection and transmission at a relaxed micromorphic slab

As pointed out, in this case there are three media: the first Cauchy half-space, the anisotropic relaxed
micromorphic slab and the second Cauchy half-space. The two Cauchy half-spaces are denoted by −
and +, while the quantities considered in the slab have their own notation.

The solution on the first Cauchy half space is given, as in the case of a single interface, by

u−(x1, x2, t) = aL/S,iψL/S,iei(〈x,k
L/S,i〉−ωt) + aL,rψL,,rei(〈x,k

L,,r〉−ωt) + aS,rψS,rei(〈x,k
S,r〉−ωt). (6.1)

In the case of a relaxed micromorphic slab, when solving the eigenvalue problem we must select and
keep all the roots for k1, as given in (3.13), both positive and negative. This is due to the fact that there
are waves which transmit in the micromorphic part from the first interface (x1 = −h/2), upon which
the incident wave hits and waves which reflect on the second interface (x1 = h/2). This means that the
solution of the PDEs in the slab is

v(x1, x2, t) = α1 φ
(1)ei(〈x,k

(1)〉−ωt) + α2 φ
(2)ei(〈x,k

(2)〉−ωt) + α3 φ
(3)ei(〈x,k

(3)〉−ωt) + α4 φ
(4)ei(〈x,k

(4)〉−ωt),
(6.2)

where k
(1)
1 = −k(3)

1 and k
(2)
1 = −k(4)

1 (see section 3.2). Finally, the solution on the right Cauchy half-space
is

u+(x1, x2, t) = aL,tψL,tei(〈x,k
L,t〉−ωt) + aS,tψS,tei(〈x,k

S,t〉−ωt). (6.3)

The continuity of displacement conditions (4.8) again imply a generalized form of Snell’s law for the
case of the micromorphic slab:

k
L/S,i
2 = kL,r2 = kS,r2 = k

(1)
2 = k

(2)
2 = k

(3)
2 = k

(4)
2 = kL,t2 = kS,t2 .

Generalized Snell’s Law in a micromorphic slab

(6.4)

In order to define the reflection and transmission coefficients in the case of the anisotropic slab, we
follow the same reasoning as for the single interface. However, in this case, the transmitted flux is defined
as the flux on the right of the second interface, which is occupied by an isotropic Cauchy medium.

In this case, the reflected flux is evaluated at x1 = −h/2 and the transmitted flux at x1 = h/2.
Both the reflected and the transmitted fields propagate in isotropic Cauchy media, so that the quantities
J i, J r, J t defined in (5.7) are given by (see [2])

J i
slab =

1

2
Re

([
(2µ− + λ−)

∣∣∣ψj,i1

∣∣∣2 kj,i1 + λ−
(
ψj,i1

)∗
ψj,i2 kj,i2 + µ−

(
ψi
1

(
ψj,i2

)∗
kj,i2 +

∣∣∣ψj,i2

∣∣∣2 kj,i1

)] ∣∣∣aj,i∣∣∣2 ω) , (6.5)

12In order to easily compute these coefficients in the numerical implementation of the code, we employ Lemma 1 given
in Appendix A.3.
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Jr
slab =

∑
j∈J

1

2
Re

([
(2µ− + λ−)

∣∣∣ψj,r1

∣∣∣2 kj,r1 + λ−
(
ψj,r1

)∗
ψj,r2 kj,i2 + µ−

(
ψj,r1

(
ψ
j,(2)
2

)∗
kj,i2

∣∣∣ψj,r2

∣∣∣2 kj,r1

)] ∣∣aj,r∣∣2 ω) , (6.6)

Jt
slab =

∑
j∈J

1

2
Re

([
(2µ+ + λ+)

∣∣∣ψj,t1

∣∣∣2 kj,t1 + λ+
(
ψj,t1

)∗
ψj,t2 kj,i2 + µ+

(
ψj,t1

(
ψj,t2

)∗
kj,i2 +

∣∣∣ψj,t2

∣∣∣2 kj,t1

)] ∣∣aj,t∣∣2 ω) ,
(6.7)

where, J ∈ {L, S}, aj,i, aj,r, aj,t ∈ C and ψj,i, ψj,(2), ψj,t ∈ C2 with J ∈ {L, S}, are the amplitudes and
polarization vectors for incident, reflected and transmitted waves, respectively (see also equation (3.6)),
µ−, λ− and µ+, λ+ are the Lamé parameters of the left and right Cauchy half-spaces, respectively.

So, the reflection and transmission coefficients for the slab are

Rslab =
J r

slab

J i
slab

, Tslab =
J t

slab

J i
slab

. (6.8)

Since the system is conservative, we must have Rslab + Tslab = 1.

7 Reflective properties of a micro-structured slab

Here, we consider the scattering of in-plane elastic waves from a slab containing cross like holes drilled
in an isotropic elastic material (see Fig. 2(a)). The holes in the micro-structured slab are arranged
according to a truncated square lattice, i.e. a finite number N of cells in the x1 direction and an infinite
number of cells in the x2 direction.

θkj

x2

x1

N = 10

γ

(a)

νfhj(x)

∂(+)Ω

∂(−)Ω

Ω(n1, n2)

a c b

(b)

Figure 2: Panel (a) is a schematic representation of a slab of cross like-holes which is finite in the
x1-direction (N = 10 number of unit cells) and periodic in the x2-direction. The red shadows represent
the finite element domain γ where the scattering problem is set up and solved. The domain γ contains
two perfectly matched layers (darker red regions at the sides of the rectangular domain γ). Panel (b)
is a schematic representation of a unit cell Ω(n1, n2), for a generic pair of integers (n1, n2). The inner
boundary ∂(−)Ω(n1, n2) (dashed black line), the outer boundary ∂(+)Ω(n1, n2) (dot-dashed black line),
and the normal and traction vectors along ∂(−)Ω(n1, n2) (black and red arrow lines, respectively) are
also shown.

We consider an incident time-harmonic plane wave

uj,i(x, t) = ūj,i(x)e−iωt = dj ei〈k
j ,x〉−iωt, (7.1)

where the index j ∈ {L, S} denotes longitudinal and shear waves, respectively. Accordingly,
kj = ω/cj(sin θ,− cos θ, 0)T, with j ∈ {L, S} and θ the angle of incidence, cL =

√
(λAl + 2µAl)/ρAl

and cS =
√
µAl/ρAl are the longitudinal and shear wave speeds for aluminum. The Lamé parameters

of aluminum are λAl = 5.11 × 1010 Pa and µAl = 2.63 × 1010 Pa, and the density of aluminum is
ρAl = 2700 Kg/m3. The Lamé parameters define uniquely the fourth order stiffness tensor CAl, whose
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Voigt representation is

C̃Al =



2µAl + λAl λAl ? 0 0 0

λAl 2µAl + λAl ? 0 0 0

? ? ? 0 0 0

0 0 0 ? 0 0

0 0 0 0 ? 0

0 0 0 0 0 µAl


, (7.2)

where the stars denote the components which do not intervene in the plane-strain case. In equation (7.1)
we have introduced the polarization vectors dj , j ∈ {L, S} of amplitude d0 for longitudinal and shear
waves, defined as dL = d0(sin θ,− cos θ, 0)T and dS = d0(cos θ, sin θ, 0)T, respectively. The scattering
problem in terms of the elastic plane-strain field uj ≡ uj(x, t), j ∈ {L, S}, in the micro-structured
material, according to linear elasticity, can be written as

ρAl u
j
,tt = Div

(
CAl sym ∇uj

)
, x ∈ Ω0(n1, n2)

f(uj) = 0, x ∈ ∂(−)Ω(n1, n2), ∀n1 ∈ {1, · · · , N} and ∀n2 ∈ Z,
(7.3)

where we have introduced the traction vectors

f(uj) = (CAl sym ∇uj) · ν, j ∈ {L, S}, (7.4)

ν being the normal unit vector (see black arrow line in Fig. 2(b)) to the cross-like holes boundaries
∂(−)Ω(n1, n2) and where we denote by Ω0 the part of the domain Ω, which is non-empty (occupied by
aluminum). The elastic field in (7.3) can be written according to the scattering time-harmonic ansatz

uj(x, t) =
(
ūj,i(x) + ūj,sc(x)

)
e−iωt, j ∈ {L, S}, (7.5)

where ūj,i has been introduced in equation (7.1) and ūj,sc is the so-called scattered solution. By linearity
of the traction vector (7.4), and using equation (7.5), we obtain

f(uj(x, t)) =
[
f(ūj,i(x)) + f(ūj,sc(x))

]
e−iωt = 0, j ∈ {L, S}. (7.6)

Using the fact that uj,i(x, t) is a solution of the PDE in equation (7.3), together with equation (7.6), the
PDEs system (7.3) can be rewritten in a time-harmonic form with respect to the field uj,sc(x), as:

−ω2ρAl ū
j,sc = Div

(
CAl sym ∇ūj,sc

)
, x ∈ Ω0

f(ūj,sc) ≡ (CAl sym ∇ūj,sc) · ν = −f(ūj,i), x ∈ ∂(−)Ω(n1, n2), ∀n1 ∈ {1, · · · , N} and ∀n2 ∈ Z,
(7.7)

with j ∈ {L, S} and where we have canceled out time-harmonic factors. The analytical expressions
for the boundary conditions for the scattered field (see right-hand side of the boundary conditions in
equation (7.7)) are given component-wise as:

f(ūj,i) · e1 := f jv(x) = (CAl sym ∇ūj,i) · e1

=
iωρ

cj

{[
c2L sin θ dj,i1 − (c2L − 2c2S) cos θ dj,i2

]
e1 + c2S

[
− cos θ dj,i1 + sin θ dj,i2

]
e2
}
ei〈k

j,i,x〉, (7.8)

with j ∈ {L, S} for vertical boundaries of ∂(−)Ω(n1, n2) with normal vector parallel to e1 (see Fig. 2(b)).
Similarly, for vertical boundaries with normal vector anti-parallel to e1 we have f(ūj,i) = −f jv(x). In
addition, for horizontal boundaries in ∂(−)Ω(n1, n2) whose normal vector is parallel to e2 we have:

f(ūj,i) · e2 := f jh(x) = (CAl sym ∇ūj,i) · e2

=
iωρ

cj

{[
(c2L − 2c2S) sin θ dj,i1 − c

2
L cos θ dj,i2

]
e2 + c2S

[
− cos θ dj,i1 + sin θ dj,i2

]
e1
}
ei〈k

j,i,x〉, (7.9)

with j ∈ {L, S}. Similarly, for vertical boundaries with normal vector anti-parallel to e2 we have
f(ūj,i) = −f jh(x).
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7.1 Bloch-Floquet conditions

We recall that the primitive vectors of a square lattice are defined as:

a1 = a e1, and a2 = a e2, (7.10)

where a is the side of the unit-cell (see Fig. 2(b)). Since the scatterers (i.e. the cross-like holes) are
periodic in the x2-direction, the displacement field in equation (7.5) satisfies Bloch-Floquet boundary
conditions

ūj,sc(x+ n2 a2) = ein2k2a ūj,sc(x), for x ∈ γ, and n2 ∈ Z, (7.11)

where k2 is the component along the x2-direction of the wave vector k. The value of k2 is known and
should be equal, given the considered geometry represented in Fig. 2(a), to the second component of the
wave vector of the incident wave. This requirement is essential in order to construct a solution which
satisfies the prescribed boundary conditions within a micro-structured medium which is periodic in one
dimension, i.e. in a layered micro-structured medium (see e.g. [33]). This, of course, is the well known
Snell’s law governing the refraction of waves at the interface between two half-spaces with different
material parameters (see the book by Leckner [16] for a mathematical introduction encompassing several
physical scenarios). As it is customary in Floquet theory of PDEs with periodic coefficients, we can
obtain the solution of the PDEs system (7.7), by solving the problem in its period (i.e. the red strip in
Fig. 2(a) here denoted as γ) provided that the Bloch-Floquet condition (7.11) on the scattered field is
satisfied.

Although the x1 extension of the domain γ is infinite in our model problem, in the finite-element im-
plementation of the boundary value problem we are of course restricted to finite computational domains.
In order to annihilate the reflection from the sides of γ with constant x1, we use perfectly matched layers
[6] away from the microstructure.

7.2 Reflectance

The time-averaged Poynting vector associated with a 2D time-harmonic displacement field
u(x, t) = ū(x) e−iωt is defined as [2, 3]

F = −ω
2

Re (iσ · u∗) , (7.12)

where “∗” denotes complex conjugation and σ = CAl sym∇u is the Cauchy stress tensor associated
with the elastic field u. From equation (7.12), and using equation (7.1), it follows that the energy flux
associated with the incident displacement field (7.1) is

F j,i =
1

2
ρ cj |dj,i|2

kj,i

|kj,i|
, j ∈ {L, S}. (7.13)

Similarly, we define the flux F j,sc of the scattered field to be as in equation (7.12) with
u(x, t) = ūj,sc(x)e−iωt, where ūj,sc is the solution of the PDEs system (7.7)). The reflectance, i.e. the
ratio of reflected energy and incident energy passing through a vertical line of length a, is

Rj =
1

〈F j,i, e1〉
1

a

∫ a/2

−a/2
〈F j,sc

∣∣
x1�−aN/2

, e1〉dx2,

=
2

ρ cj |dj,i|2 sin(θ)

1

a

∫ a/2

−a/2
〈F j,sc

∣∣
x1�−aN/2

, e1〉dx2, j ∈ {L, S}. (7.14)

The reflectance associated with incident shear waves (RS) differs from that associated with incident
longitudinal waves (RL). The Poynting vector is evaluated at a given x1 � −aN/2 away from the slab
to avoid the contribution from the near elastic field close to the microstructure. Provided the condition
x1 � −aN/2 is satisfied, we have verified that the reflectance (7.14) does not depend on the exact value
of x1.
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8 Results and discussion

In this section we present the comparison between the refractive behavior of the finite metamaterial’s slab,
as modeled in Comsol (see Fig.2) and the relaxed micromorphic model (see Fig. 1). We also provide the
results concerning the relaxed micromorphic single interface, which will be seen as an average behavior
with respect to the micromorphic slab of finite size. To this end, we chose the material parameters of
the relaxed micromorphic model as in Table 1.

λe µe µ∗e

[GPa] [GPa] [GPa]

− 0.77 17.34 0.67

λmicro µmicro µ∗micro

[GPa] [GPa] [GPa]

5.98 8.93 8.33

µc

[GPa]

2.2 · 10−3

Lc

[m]

0

λmacro µmacro µ∗macro

[GPa] [GPa] [GPa]

1.74 5.89 0.62

ρ η1 η2 η3 η∗1 η1 η2 η3 η∗1[
kg/m

3
]

[kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m] [kg/m]

1485 9.5 · 10−5 1 · 10−7 0.86 · 10−5 3.27 · 10−5 10−4 2 · 10−4 8 · 10−8 10−5

Table 1: Summary of the numerical values for the elastic (top) and inertia (bottom) parameters of the
tetragonal relaxed micromorphic model in the 2D plane-strain case. The macroscopic parameters of the
resulting homogenized Cauchy material (see [2, 10]) are also provided (top right).

The choice of the metamaterial parameters is made according to the procedure presented in [10],
which allows to determine the parameters of the relaxed micromorphic model on a specific metamaterial
by an inverse approach. This fitting procedure is based on the determination of the elastic parameters of
the relaxed micromorphic model via numerical static tests on the unit cell and of the remaining inertia
parameters via a simple inverse fitting of the dispersion curves on the analogous dispersion patterns as
obtained by Bloch-Floquet analysis (see [10] for details). The fitting of the bulk dispersion curves for
the periodic metamaterial, whose unit cell is shown in Fig. 2(b), is presented in Fig. 3.

(a) (b)

Figure 3: Dispersion diagrams for normal (a) and 45 degrees (b) incidence. The solid curves are obtained via
the tetragonal anisotropic relaxed micromorphic model, while the dashed curves are issued by Bloch-Floquet
analysis. In panel (a), green color stands for modes which are mostly activated by a shear incident wave, while
blue color indicates modes which are mostly activated by a longitudinal incident wave. This uncoupling between
L and S activated modes at normal incidence is analytically checked in the relaxed micromorphic model and
only approximate for Bloch-Floquet modes. In panel (b), we keep the same coloring, but all curves are coupled
together, which means that L and S incident waves may simultaneously activate all modes.

We checked that a sort of distinction between modes which are activated by an L or S incident wave
can be made for an incident wave which is orthogonal to the interface. This is exactly true for the
relaxed micromorphic model, but an analogous trend can be found for Bloch-Floquet modes at least for
the lower frequency modes (before the band-gap). The uncoupling between L and S activated modes is
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present only for θ = 0 (and, by symmetry, θ = π/2), but is lost for any other direction of propagation. In
general, for any given frequency, all modes which are pertinent at that frequency may be simultaneously
activated by an L or S incident wave (excluding the particular case of normal incidence). Nevertheless,
we will show that this uncoupling hypothesis can be retained with little error for angles of incidence
which are close to normal incidence.

Once the bulk properties of the considered metamaterial, as modeled by the relaxed micromorphic
model, have been established, they can be used to study the scattering problems presented before.

8.1 Scattering at a relaxed micromorphic slab

We start by presenting the reflection coefficient of the relaxed micromorphic slab as a function of the
frequency for two fixed directions of propagation of the incident wave (θ = π

2 and θ = π
4 ) and for both

longitudinal and shear incident waves.

(a) (b)

Figure 4: Reflection coefficient at the relaxed micromorphic slab for an incident L wave and for two directions
of propagation θ = π/2 (normal incidence) (a) and θ = π/4 (b). The red curve is generated by the analytical
tetragonal relaxed micromorphic model and the black dashed line indicates the microstructured model. The
green vertical lines denote the long-wave limit, below which the relaxed micromorphic model is equivalent to a
homogenized Cauchy model. The dispersion diagrams for θ = π/2 and θ = π/4, given in Fig. 3 are also rotated
and displayed on the top of each picture to allow for a better interpretation of results.

Figure 4 shows the behavior of the reflection coefficient for the considered microstructured slab in
the case of a longitudinal incident wave and for normal incidence (Fig. 4(a)) as well as for incidence at
45◦ (Fig. 4(b)). The black dashed line is the solution issued via the microstructured model obtained
by coding all the details of the unit cell presented in section 7. The red continuous line is obtained by
solving the relaxed micromorphic problem presented in section 6, using the software Mathematica.

It is immediately evident that the relaxed micromorphic model is able to capture the overall behavior
of the reflection coefficient for a very wide range of frequencies. More particularly, for lower frequencies
and up to the band-gap region, oscillations of the reflection coefficient due to the finite size of the slab
are observed in both models. The band-gap region is also correctly described and corresponds to the
frequency interval for which complete reflection (R = 1) is observed.

After the band-gap region, a characteristic frequency can be identified corresponding to which almost
complete transmission occurs. This phenomenon is related to internal resonances at the level of the
microstructure. It is easy to see that the relaxed micromorphic model is able to correctly describe also
the internal resonance phenomenon. The internal resonance is clearly visible in both the discrete and
the relaxed micromorphic model at normal incidence. It is, however, lost in the discrete simulation at
45◦ notwithstanding the presence of a zero group velocity mode in both models. Similar arguments can
be carried out for an S incident wave with reference to Fig. 5.

In addition to the comments carried out for an L incident wave, we remark in Fig. 5(a) the presence of
a spurious internal resonance in the lower part of the band-gap for the relaxed micromorphic model. This
spurious resonance can be eliminated by activating the non-locality of the model by setting Lc > 0. In
this case, the moderate transmission present in Fig. 5(a) before the band-gap can be reproduced. More
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(a) (b)

Figure 5: Reflection coefficient at the relaxed micromorphic slab for an incident S wave and for two directions
of propagation θ = π/2 (normal incidence) (a) and θ = π/4 (b).The red curve is generated by the analytical
tetragonal relaxed micromorphic model and the black dashed line indicates the microstructured model. The
green vertical lines denote the long-wave limit, below which the relaxed micromorphic model is equivalent to a
homogenized Cauchy model. The dispersion diagrams for θ = π/2 and θ = π/4, given in Fig. 3 are also rotated
and displayed on the top of each picture to allow for a better interpretation of results.

details about non-localities will be given in forthcoming papers. This moderate transmission observed in
the microstructured simulations are due to the imperfect uncoupling of the S (green) modes from the L
(blue) acoustic mode in the Bloch-Floquet dispersion diagram. Thus, there exist some small frequency
ranges, for which the L acoustic mode can be activated also by an S incident wave. The associated
transmission remains very small.

At this point, in order to fully present the potentialities of the relaxed micromorphic model, we depict
in Figures 6 and 7 the transmission coefficient (T = 1−R) as a function of both the angle and frequency
of the longitudinal incident wave for both the relaxed micromorphic and the microstructured models.

Figure 6 shows the broadband transmission coefficient’s behavior for an L incident wave as a function
of the frequency and angle of incidence. We observe an excellent agreement between the continuous
and discrete simulation for frequencies lower than the band-gap. Transmission is principally allowed
by the blue acoustic mode for all directions of propagation. Even if there exists some coupling at non-
orthogonal incidence with the other lower frequency modes, the blue acoustic mode is the one which is
predominantly activated by an L incident wave and it is, to a big extent, responsible for the transmission
across the metamaterial slab. The band-gap region is also correctly described. The validation of the
fitting performed on higher frequencies was impossible due to the difficulty of establishing the convergence
of the microstructured simulations with the semi-analytical results of relaxed micromorphic model this
issue deserves deeper investigations and will be left for forthcoming works.

Figure 7 depicts the analogous results for an S incident wave. For frequencies lower than the band-
gap, we observe once again an excellent agreement between the discrete and continuous simulations for
all angles of incidence.

We also remark additional interesting phenomena. Firstly, for smaller angles of incidence, we see that
the band-gap region extends to lower frequencies. This is related to the previously discussed acoustic
mode uncoupling, which is observed for angles close to normal incidence. A shear incident wave mostly
activates the green acoustic mode (see Fig. 3) which is almost entirely responsible for the propagation
pattern. Since the blue acoustic mode is not activated for angles close to normal incidence, the bottom
band-gap limit is consequently lower compared to the case of an L incident wave.

A first threshold value of the angle of incidence exists (around 5π/24), for which the two acoustic
modes start to couple and energy starts being transmitted. More remarkably, a second threshold value
of the incident angle exists (around π/3), for which the amount of transmission suddenly increases,
approaching a total transmission pattern. This is due to a stronger coupling between the two acoustic
modes which are activated by an S incident wave for incident angles beyond the second threshold. This
impressive pattern is clearly associated to the tetragonal symmetry of the metamaterial: the need for
introducing “generalized classes of symmetry” in an enriched continuum environment is now evident.
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The investigations for higher frequencies will be discussed in forthcoming works.
We deduce that the agreement is very satisfactory for all the considered angles (going from normal

incidence to incidence almost parallel to interface) and for the considered range of frequencies. This fact
corroborates the hypothesis, which has been made according to Neumann’s principle and which states
that the class of symmetry of the metamaterial at the macroscopic scale is the same as the symmetry of
the unit cell (tetragonal symmetry in this case).

We conclude this section by pointing out that the simulations performed to obtain Figures 6 and 7
took less than 1 hour for the relaxed micromorphic model and 3 weeks for the discrete model. Both
computations were made with 200 points in the frequency range and for 90 angles.

This tremendous gain in computational time underlines the usefulness of an enriched continuum
model versus a discrete one for the description of the mechanical behavior of finite-size metamaterials
structures. Metamaterial characterization through the relaxed micromorphic model opens the way to
effective FEM implementation of other morphologically complex metastructures.

(a) (b)

Figure 6: Transmission coefficient of the metamaterial slab as a function of the angle of incidence θ and of the
wave-frequency ω for an incident L wave. Panel (a) depicts the microstructured simulations, while panel (b) the
analytical relaxed micromorphic model. The origin coincides with normal incidence (θ = π/2), while the angle of
incidence decreases towards the right until it reaches the value θ = 0, which corresponds to the limit case where
the incidence is parallel to the interface. The band-gap region is highlighted by two dashed horizontal lines,
where, as expected, we observe no transmission. The dark blue zone shows that no transmission takes place,
while the gradual change from dark blue to red shows the increase of transmission, red being total transmission.
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(a) (b)

Figure 7: Transmission coefficient of the metamaterial slab as a function of the angle of incidence θ and of the
wave-frequency ω for an incident S wave. Panel (a) depicts the microstructured simulations, while panel (b) the
analytical relaxed micromorphic model. The origin coincides with normal incidence (θ = π/2), while the angle of
incidence decreases towards the right until it reaches the value θ = 0, which corresponds to the limit case where
the incidence is parallel to the interface. The band-gap region is highlighted by two dashed horizontal lines,
where, as expected, we observe no transmission. The dark blue zone shows that no transmission takes place,
while the gradual change from dark blue to red shows the increase of transmission, red being total transmission.

8.2 Scattering at a single relaxed micromorphic interface: Some hints to-
wards negative-refraction-like phenomena in enriched continua

In this subsection we show the results for the reflection coefficient obtained by using the single interface
boundary conditions for the relaxed micromorphic continuum as described in section 4.1.

Figure 8 shows the reflection coefficient as a function of the frequency for two different angles of
incidence (θ = π/2 and θ = π/4), when considering an L incident wave for the “single interface”
boundary conditions. Figure 9 shows the analogous results for an incident S wave. As expected, the
solution obtained using the “single interface” boundary conditions, provide a sort of average behavior for
the oscillation at lower frequencies. This is sensible, since when considering a semi-infinite metamaterial,
multiple reflections on the two boundaries of the slab are not accounted for. The difference between
“single” and “double interface” boundary conditions in the relaxed micromorphic model becomes less
pronounced for higher frequencies, since the wavelength of the considered waves is expected to be much
lower than the characteristic-size of the slab.

When processing the semi-analytical solution for the relaxed micromorphic model with single interface
boundary conditions, we were faced with an interesting phenomenon. For frequencies higher than the
band-gap and for angles of incidence smaller than normal incidence, we found a behavior provided by the
relaxed micromorphic model with single interface, which could be related to what is known as negative
refraction. We observed that for some frequency intervals, the third instead of the first (or the fourth
instead of the second) modes had to be chosen in order to satisfy conservation of energy at the interface.
This behavior has been observed for a wide range of directions of propagation and always for frequency
intervals higher than the band-gap and when the two modes are simultaneously propagative (see yellow
areas in Figures 10 and 11 for L and S incidence, respectively). When one of the two propagative modes
is negatively refracted (in the sense we just specified), the other remains positively refracted and the sum
of the two continues to be positively refracted. This phenomenon is similar to the one described in [41],
where homogenization methods for a laminate composite are presented.

We acknowledge that negative refraction can also be simulated when coding a problem corresponding
to the single interface, but involving all details of the microstructure. The results are only qualitative
and not conclusive and further investigations are needed to obtain accurate microstructured simulation
allowing the definitive validations of the relaxed micromorphic model also for higher frequencies. This
delicate task is left for future work.

In any case, we point out that this negative-refraction-like phenomenon occurs in the relaxed micro-
morphic model without the need of having negative group velocity (the dispersion curves for the relaxed
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(a) (b)

Figure 8: Reflection coefficient at the single interface for an incident L wave and for two directions of propagation
θ = π/2 (normal incidence) (a) and θ = π/4 (b). The blue curve is generated by the tetragonal relaxed
micromorphic model and the black dashed line indicates the microstructured model. The green vertical lines
denote the long-wave limit, below which the relaxed micromorphic model is equivalent to a homogenized Cauchy
model. The green shaded area is where the first transmitted mode is negatively refracted. The dispersion
diagrams for θ = π/2 and θ = π/4, given in Fig. 3 are also rotated and displayed on the top of each picture to
allow for a better interpretation of results.

(a) (b)

Figure 9: Reflection coefficient at the single interface for an incident S wave and for two directions of propagation
θ = π/2 (normal incidence) (a) and θ = π/4 (b). The blue curve is generated by the tetragonal relaxed
micromorphic model and the black dashed line indicates the microstructured model. The green vertical lines
denote the long-wave limit, below which the relaxed micromorphic model is equivalent to a homogenized Cauchy
model. The green shaded area is where the first transmitted mode is negatively refracted. The dispersion
diagrams for θ = π/2 and θ = π/4, given in Fig. 3 are also rotated and displayed on the top of each picture to
allow for a better interpretation of results.

micromorphic model are always monotonically increasing). This may be related to the fact that group
and energy velocity do not necessarily coincide when considering an anisotropic generalized continuum
[34]. This specific issue requires nonetheless deeper investigation and will be addressed in further work.

21



(a) (b)

Figure 10: Values of Im(k1) as a function of the angle of incidence θ and of the wave-frequency ω for the modes of
the relaxed micromorphic medium and for the case of an incident L wave. The origin coincides with normal incidence
(θ = π/2), while the angle of incidence decreases towards the right until it reaches the value θ = 0, which corresponds to
the limit case where the incidence is parallel to the interface. The red color in these plots means that the mode is Stoneley
and does not propagate, blue means that the mode is propagative and yellow that the mode is propagative and the sign of
k1 had to be switched in order to satisfy conservation of energy.

(a) (b)

Figure 11: Values of Im(k1) as a function of the angle of incidence θ and of the wave-frequency ω for the modes of
the relaxed micromorphic medium and for the case of an incident L wave. The origin coincides with normal incidence
(θ = π/2), while the angle of incidence decreases towards the right until it reaches the value θ = 0, which corresponds to
the limit case where the incidence is parallel to the interface. The red color in these plots means that the mode is Stoneley
and does not propagate, blue means that the mode is propagative and yellow that the mode is propagative and the sign of
k1 had to be switched in order to satisfy conservation of energy.

Figures 10 and 11 show the imaginary part of the modulus of the first component of the wave vectors,
given in equation (3.13), as a function of the frequency and the angle of incidence for L and S incident
waves, respectively. We see that, depending on the value of the frequency and of the angle of incidence,
these modes can be either propagative (Im(k1) 6= 0, blue region) or evanescent (Im(k1) = 0, red region).
In the same figures, the yellow regions indicate the frequency/angle-of- incidence regions for which the
sign of the mode must be changed (negative instead of positive) in order to verify conservation of energy
at the interface. This negative refraction-like phenomenon is observed here for the first time in the relaxed
micromorphic model and is interesting in itself. More accurate investigation is nonetheless needed to
better understand its possibilities of application.
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(a) (b)

Figure 12: Transmission coefficient of the single interface as a function of the angle of incidence θ and of the wave-
frequency ω. Panel (a) depicts the case of an incident L wave, while panel (b) the case of an incident S wave. The origin
coincides with normal incidence (θ = π/2), while the angle of incidence decreases towards the right until it reaches the
value θ = 0, which corresponds to the limit case where the incidence is parallel to the interface. The band-gap region is
highlighted by two dashed horizontal lines, where, as expected, we observe no transmission. The dark blue zone shows that
no transmission takes place, while the gradual change from dark blue to red shows the increase of transmission, red being
total transmission.

We conclude this subsection by showing the transmission coefficients at the “single interface”, as a
function of the frequency and the angle of incidence for L and S incident waves (Fig. 12(a) and 12(b),
respectively). Comparing Fig. 6(b) to 12(a) and 7(b) to 12(b), we can visualize the extent to which
the single interface can be considered to represent a metastructure of finite size. Although some basic
averaged information is contained in Figures 12(a) and 12(b) (band-gap, critical angles), the detailed
scattering behavior of the finite slab cannot be inferred from it. This provides additional evidence for
the real need to propose a framework in which macroscopic boundary conditions can be introduced in
a simplified way. Semi-infinite problems for metamaterials are solved in the context of homogenization
methods in [36, 38], but to the author’s knowledge, the rigorous solution of scattering problems for
metamaterials of finite size is not available in the literature.

9 Conclusions

In this paper we presented for the first time the scattering solution of a metamaterial slab of finite size,
modeled via a rigorous boundary value problem describing its homogenized behavior.

The correct macroscopic boundary conditions (continuity of macroscopic displacement and of gener-
alized tractions) are presented and are intrinsically compatible with the used macroscopic bulk PDEs.
The scattering properties of the considered finite-size metastructures, as obtained via the relaxed mi-
cromorphic model, are compared to a direct microstructured simulation. This simulation is obtained by
assuming that the metamaterial’s unit cell is periodic and linear-elastic. Excellent agreement is found
for all angles of incidence and for frequencies going from the long-wave limit to the first band-gap and
beyond. Further work will be devoted to better understanding the high-frequency behavior of the con-
sidered metamaterials so as to provide a final validation of the relaxed micromorphic model also for such
higher frequencies.

The results presented in this paper open the way to the future study of the scattering properties of
more complex 2D or 3D finite-sized metastructures in a simplified macroscopic environment.
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A Appendix

A.1 Energy flux for the anisotropic relaxed micromorphic model

A.1.1 Derivation of expression (2.10)

The total energy is given by:
E = J(u,t,∇u,t, P,t) +W (∇u, P,CurlP ), (A.1)

where J(u,t,∇u,t, P,t) and W (∇u, P,CurlP ) are defined in (2.5) and (2.6). Differentiating (A.1) with respect to
time13 we have:

E,t = 〈u,t, ρu,tt〉+ 〈symP,t, Jmicro symP,tt〉+ 〈skewP,t, Jc skewP,tt〉+ 〈sym∇u,t,Te sym∇u,tt〉
+ 〈skew∇u,t,Tc skew∇u,tt〉+ 〈Ce sym(∇u− P ), sym(∇u− P ),t〉+ 〈Cc skew(∇u− P ), skew(∇u− P ),t〉

+ 〈Cmicro symP, symP,t〉+ L2
c (〈Le sym CurlP, sym CurlP,t〉+ 〈Lc skew CurlP, skew CurlP,t〉) . (A.5)

Using the governing equations (2.8), definitions (2.9) for σ̃, σ̂, s,m and (A.2), (A.3), (A.4) we have:

〈u.t, ρ u,tt〉 = 〈u,t,Div(Te sym∇u,tt + Tc skew∇u,tt) + Div σ̃〉
= 〈u,t,Div σ̃〉+ 〈u,t,Div(Te sym∇u,tt + Tc skew∇u,tt︸ ︷︷ ︸

:=σ̂

)〉

= 〈u,t,Div σ̃〉+ 〈u,t,Div σ̂〉,

〈symP,t, Jmicro symP,tt〉+ 〈skewP,t, Jc skewP,tt〉
= 〈symP,t + skewP,t, Jmicro symP,tt〉+ 〈symP,t + skewP,t, Jc skewP,tt〉
= 〈P,t, Jmicro symP,tt + Jc skewP,tt〉 = 〈P,t, σ̃e − s− sym Curlm+ σ̃c − skew Curlm〉
= 〈P,t, σ̃ − s− Curlm〉 = 〈P,t, σ̃〉 − 〈P,t, s〉 − 〈P,t,Curlm〉,

〈sym∇u,t,Te sym∇u,tt〉+ 〈skew∇u,t,Tc skew∇u,tt〉
= 〈sym∇u,t + skew∇u,t,Te sym∇u,tt〉+ 〈sym∇u,t + skew∇u,t,Tc skew∇u,tt〉
= 〈∇u,t,Te sym∇u,tt + Tc skew∇u,tt︸ ︷︷ ︸

=σ̂

〉 = 〈∇u,t, σ̂〉 = Div(u,t · σ̂)− 〈u,t,Div σ̂〉,

〈Ce sym(∇u− P ), sym(∇u− P ),t〉+ 〈Cc skew(∇u− P ), skew(∇u− P ),t〉
= 〈Ce sym(∇u− P ), sym(∇u− P ),t + skew(∇u− P ),t〉
+ 〈Cc skew(∇u− P ), sym(∇u− P ),t + skew(∇u− P ),t〉
= 〈Ce sym(∇u− P ) + Cc skew(∇u− P ), (∇u− P ),t〉 = 〈σ̃, (∇u− P ),t〉
= 〈σ̃,∇u,t〉 − 〈σ̃, Pt〉 = Div(u,t · σ̃)− 〈u,t,Div σ̃〉 − 〈σ̃, Pt〉,

〈Cmicro symP, symP,t〉 = 〈Cmicro symP, symP,t + skewP,t〉 = 〈Cmicro symP, P,t〉 = 〈s, P,t〉,

L2
c (〈Le sym CurlP, sym CurlP,t〉+ 〈Lc skew CurlP, skew CurlP,t〉)

= L2
c (〈Le sym CurlP, sym CurlP,t + skew CurlP,t〉+ 〈Lc skew CurlP, sym CurlP,t + skew CurlP,t〉)

= 〈L2
c(Le sym CurlP + Lc skew CurlP ),CurlP,t〉 = 〈m,CurlP,t〉 = Div

(
(mT · P,t) : ε

)
− 〈Curlm,Pt〉.

So, by adding all the above and simplifying (A.5) becomes:

E,t = Div
[
(σ̃ + σ̂)T · u,t +

(
mT · P,t

)
: ε
]
, (A.6)

from which we can define the energy flux for the general anisotropic relaxed micromorphic model:

H = − (σ̃ + σ̂)T · u,t −
(
mT · P,t

)
: ε. (A.7)

13Let ψ be a vector field and A a second order tensor field. Then

〈∇ψ,A〉 = Div(ψ ·A)− 〈ψ,DivA〉. (A.2)

Taking ψ = u,t and A = σ̃ we have
〈∇u,t, σ̃〉 = Div(u,t · σ̃)− 〈u,t,Div σ̃〉 . (A.3)

Furthermore, we have the following identity

〈m,CurlP,t〉 = Div
(

(mT · P,t) : ε
)

+ 〈Curlm,P,t〉 , (A.4)

which follows from the identity div(v×w) = w · curl v−v · curlw, where v, w are suitable vector fields, × is the usual vector
product and : is the double contraction between tensors.
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A.1.2 Analytical expression of the flux for the relaxed micromorphic model when Lc = 0

The flux H of the relaxed micromorphic model when Lc = 0 can be written as (using Lemma 1)

H =
1

2
Re
[(
α1ω(−2ω2A+ B) + α2ω(−2ω2C +D)

)
E? +

(
α1ω (F + ω G + ω2H) + α2ω(I + ωJ + ω2K)

)
L?
]
,

(A.8)

with

A = k
(1)
1 φ

(1)
1

(
η̄1 +

1

2
η̄3

)
+ k0 φ

(1)
2 η̄3,

B = (λe + 2µe)
(
k

(1)
1 φ

(1)
1 − φ

(1)
3 ω

)
+ λe

(
k0 φ

(1)
2 − φ

(1)
6 ω

)
,

C = k
(2)
1 φ

(2)
1

(
η̄1 +

1

2
η̄3

)
+ k0 φ

(2)
2 η̄3,

D = (λe + 2µe)
(
k

(2)
1 φ

(2)
1 − φ

(2)
3 ω

)
+ λe

(
k0 φ

(2)
2 − φ

(2)
6 ω

)
,

E = α1φ
(1)
1 + α2φ

(2)
1 ,

F = k0 (µ∗e − µc)φ
(1)
1 + k

(1)
1 (µ∗e + µc)φ

(1)
2 , (A.9)

G = − (µ∗e − µc)φ
(1)
4 − (µ∗e + µc)φ

(1)
5 ,

H = k0 φ
(1)
1

(
1

4
η̄2 − η̄∗

)
− k(1)

1 φ
(1)
2

(
1

4
η̄2 + η̄∗

)
,

I = k0 (µ∗e − µc)φ
(2)
1 + k

(2)
1 (µ∗e + µc)φ

(2)
2 ,

J = − (µ∗e − µc)φ
(2)
4 − (µ∗e + µc)φ

(2)
5 ,

K = k0 φ
(2)
1

(
1

4
η̄2 − η̄∗

)
− k(2)

1 φ
(1)
2

(
1

4
η̄2 + η̄∗

)
,

L = α1φ
(1)
2 + α2φ

(2)
2 .

A.2 The matrix Â

We present the matrix row-wise. We have

Â1 =



−
(
ρ+ k21(2η̄1 + η̄3) + k22

(
1
4
η̄2 + η̄∗1

))
ω2 + k21(λe + 2µe) + k22 (µc + µ∗e)

k1k2
(
1
4
η̄2 − η̄3 + η̄∗1

)
ω2 + k1k2(λe − µc + µ∗e)

i k1(λe + 2µe)

i k2(µc + µ∗e)

i k2(−µc + µ∗e)

i k1λe



T

,

Â2 =



k1k2
(
1
4
η̄2 − η̄3 − η̄∗1

)
ω2 + k1k2 (λe − µc + µ∗e)

−
(
ρ+ k22(2η̄1 + η̄3) + k21

(
1
4
η̄2 + η̄∗1

))
ω2 + k22(λe + 2µe) + k21 (µc + µ∗e)

i k2λe

−i k1(µc − µ∗e)

i k1(µe + µ∗e)

i k2(λe + 2µe)



T

,

Â3 =



−i k1(λe + 2µe)

−i k2λe

−(2η1 + η3)ω2 + λe + λmicro + 2(µe + µmicro) + k22L
2
c

−k1k2L2
c

0

−η3 ω2 + λe + λmicro



T

, Â4 =



−i k2(µc + µ∗e)

i k1(µc − µ∗e)

−k1k2L2
c

−(η2 + η∗1)ω2 + µc + µ∗e + µ∗micro + k21L
2
c

(η2 − η∗1)ω2 − µc + µ∗e + µ∗micro

0



T

,
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Â5 =



i k2(µc − µ∗e)

−i k1(µc + µ∗e)

0

(η2 − η∗1)ω2 − µc + µ∗e + µ∗micro

−(η2 + η∗1)ω2 + µc + µ∗e + µ∗micro + k22L
2
c

−k1k2L2
c



T

, Â6 =



−i k1λe

−i k2(λe + 2µe)

−η3 ω2 + λe + λmicro

0

−k1k2L2
c

−(2η1 + η3)ω2 + λe + λmicro + 2(µe + µmicro) + k21L
2
c



T

,

Then, the matrix Â is

Â =
(
Â1, Â2, Â3, Â4, Â5, Â6

)T
(A.10)

A.3 Lemma 1

We have the following well-known result.

Lemma 1. Let
u1(x, t) = A(x)ei(ωt−kx), u2(x, t) = B(x)ei(ωt−kx)

be two functions with A,B : R3 → C. Then the following holds

1

T

∫ T

0

Re{u1(x, t)}Re{u2(x, t)} dt =
1

2
Re(AB∗), (A.11)

where T is the period of the functions u1, u2 and B∗ denotes the complex conjugate.

Proof. We have:

1

T

∫ T

0

Re{u1(x, t)}Re{u2(x, t)} dt =
1

T

∫ T

0

Re
(
Aei(ωt−kx)

)
Re
(
Bei(ωt−kx)

)
dt

=
1

T

∫ T

0

Aei(ωt−kx) +A∗e−i(ωt−kx)

2

Bei(ωt−kx) +B∗e−i(ωt−kx)

2
dt

=
1

T

∫ T

0

AB

4
e2iωt︸ ︷︷ ︸

periodic

e2ikx +
AB∗

4
+
A∗B

4
+
A∗B∗

4
e2iωt︸ ︷︷ ︸

periodic

e2ikxdt

=
1

T

∫ T

0

AB∗ +A∗B

4
dt =

1

2T

∫ T

0

Re (AB∗) dt =
1

2
Re (AB∗) , (A.12)

where we used the facts that the periodic function e2iωt integrated over its period is zero and that for any complex
number z ∈ C: Re(z) = z+z∗

2
. �
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