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Abstract 24 

An improved high-performance anion-exchange chromatography with pulsed 25 

amperometric detection (HPAEC-PAD) method is described for the simultaneous 26 

determination of neutral sugars (hexoses, pentoses and deoxysugars), alditols and 27 

anhydrosugars commonly found in atmospheric and marine samples. The method uses a 28 

CarboPac MA1 column, at a flow rate of 0.3 mL min
‒1

, and a NaOH gradient (250-700 mM). 29 

The proposed method applies a temperature gradient (from 25 to 28 °C) to the column for the 30 

first 30 min of the analysis, followed by a constant temperature at 28 °C until the end of the 31 

analysis. These analytical conditions allowed the separation of 15 out of 17 carbohydrates in 32 

75 min with resolution factors better than 0.5 for the critical pairs levoglucosan/arabitol, 33 

galactosan/arabinose, arabinose/mannose and glucose/xylose.  34 

The application of this method to field samples revealed that anhydrosugars represented 35 

53% of total neutral carbohydrates (TCHO) in total suspended atmospheric particles (TSP), 36 

whereas they were detected for the first time in marine particulate organic matter (POM) and 37 

high-molecular-weight dissolved organic matter (HMWDOM) samples accounting 2% and 38 

3% of TCHO, respectively. Levoglucosan and/or galactosan were the major anhydrosugars in 39 

all samples however, their concentrations are undoubtedly underestimated because hydrolysis 40 

was applied to the marine samples prior to the HPAEC-PAD analysis. Despite this 41 

underestimation, their presence in the marine samples clearly indicates possible terrestrial 42 

input most likely via atmospheric deposition as these compounds are considered terrestrial 43 

burring biomass tracers. Finally, deoxysugars were also detected for the first time in the TSP 44 

sample representing 1% of TCHO, while alditols accounted for 0.4% and 0.3% of TCHO in 45 

POM and HMWDOM, respectively. 46 

 47 

 48 
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1. Introduction  49 

Carbohydrates are among the most abundant organic molecules on the earth because they 50 

are detected in all marine and terrestrial ecosystems (Giorio et al., 2018; He et al., 2010; 51 

Mopper, 1977; Mopper et al., 1980; Panagiotopoulos and Sempéré, 2005a; Repeta et al., 52 

2015; Theodosi et al., 2018). The determination of carbohydrates at the molecular level has 53 

been often used to determine different biogeochemical signatures such as terrestrial inputs in 54 

coastal marine environments (Cowie and Hedges, 1984; da Cunha et al., 2002; 55 

Panagiotopoulos et al., 2014), organic matter sources (He et al., 2010; Panagiotopoulos et al., 56 

2012; Wicks et al., 1991), and decomposition pathways (Amon et al., 2001; Giroldo et al., 57 

2003; Hedges et al., 1994; Opsahl and Benner, 1999). 58 

Previous environmental studies on atmospheric suspended particulate matter (PM2.5−10) 59 

showed that carbohydrates account for 0.2‒3% and 0.7‒11% of organic carbon (OC) and 60 

water-soluble organic carbon (WSOC), respectively (Theodosi et al., 2018; Tsai et al., 2015; 61 

Yang et al., 2005). The dominant carbohydrates reported in aerosols are glucose and sucrose 62 

released by terrestrial plants (Medeiros et al., 2006; Samaké et al., 2019), levoglucosan, 63 

galactosan and mannosan from biomass burning processes (Bhattarai et al., 2019; Simoneit et 64 

al., 2004, 1999), as well as mannitol and arabitol from airborne fungal spores and/or various 65 

vascular plants (Bauer et al., 2008; Samaké et al., 2019). Other minor carbohydrates reported 66 

in aerosols include some neutral sugars (e.g., arabinose, fructose, galactose, and mannose) and 67 

alditols (e.g., xylitol and sorbitol; Barbaro et al. 2015; Theodosi et al. 2018). It is worth noting 68 

that fucose and rhamnose, two important deoxysugars consistently found in bacterial 69 

heteropolysaccharides (Giroldo et al., 2003), soil organic matter (Bock et al., 2007), 70 

freshwater ecosystems (Cheng and Kaplan, 2003) as well as vascular plants (Opsahl and 71 

Benner, 1999) have never been reported in atmospheric samples. 72 
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Monomeric constituents of carbohydrates after acid hydrolysis (e.g., fucose, rhamnose, 73 

arabinose, galactose, glucose, mannose and xylose) have also been detected in the marine 74 

environment. As revealed by chromatographic techniques, these monosaccharides account for 75 

10‒15%, <10% and <20% in particulate, dissolved and sedimentary organic carbon, 76 

respectively (Panagiotopoulos and Sempéré, 2005a and references therein). These 77 

monosaccharides have also been reported in marine high-molecular-weight dissolved organic 78 

matter (HMWDOM) at equimolar concentrations although 
1
H nuclear magnetic resonance 79 

spectroscopy (NMR) showed the presence of much broader spectra of carbohydrates 80 

including unhydrolyzed polysaccharides and methylated sugars (Panagiotopoulos et al., 81 

2007). Other minor carbohydrate classes also reported in marine samples include amino 82 

sugars (Benner and Kaiser, 2003; Kaiser and Benner, 2009) and uronic acids (Bergamaschi et 83 

al., 1999; Engel and Händel, 2011; Hung et al., 2001). 84 

Surprisingly, alditols and anhydrosugars, two major carbohydrate categories consistently 85 

found in aerosols and ice cores (Gambaro et al., 2008; Giorio et al., 2018), have scarcely been 86 

reported in marine samples despite the growing evidence that dry or wet atmospheric 87 

deposition is an important process between the atmospheric and marine compartments 88 

(Pantelaki et al., 2018; Zheng et al., 2018). It is worth noting that only Panagiotopoulos et al. 89 

(2013) have identified anhydrosugars (levoglucosan, mannosan, and galactosan) in surface 90 

marine HMWDOM, in addition to the seven neutral sugars described above. This finding 91 

raises questions about the possible sources of anhydrosugars in marine water (terrestrial vs 92 

marine), which have been recently examined using compound-specific carbon isotopes 93 

analysis (Nouara et al., 2019). Nevertheless, to the best of our knowledge a well-established 94 

technique for the measurement of anhydrosugars and alditols does not exist for marine 95 

samples. Moreover, the lack of information about deoxysugars in atmospheric samples 96 
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hinders our understanding of their dynamics and clearly points to the need for a universal 97 

method to measure these carbohydrates in any environmental sample.  98 

High-performance anion-exchange chromatography with pulsed amperometric detection 99 

(HPAEC-PAD) is the most employed chromatographic technique for the analysis of 100 

carbohydrates in environmental samples (Benner and Kaiser, 2003; Caseiro et al., 2007; 101 

Iinuma et al., 2009; Mopper et al., 1992; Panagiotopoulos and Sempéré, 2005a; Sempéré et 102 

al., 2008). However, simple carbohydrates (e.g., monosaccharides) are not ionized in the same 103 

manner in alkaline media used in the HPAEC mobile phase, and therefore different 104 

concentrations of NaOH must be applied to separate these monosaccharide families (e.g., 105 

alditols, neutral sugars, and uronic acids). Due to  h   “  m  a    ”, most environmental 106 

applications of the HPAEC-PAD technique have focused on one family of carbohydrates 107 

(e.g., neutral sugars, or amino sugars) and few attempts have been made to date to separate a 108 

much broader spectrum of carbohydrate categories in the same run (Engel and Händel, 2011). 109 

The main objective of the present study is to establish a universal HPAEC-PAD method 110 

capable of simultaneously identifying several carbohydrate families including neutral sugars, 111 

alditols and anhydrosugars commonly found in terrestrial and marine ecosystems. This 112 

objective was achieved after the evaluation of the performance of two different anion-113 

exchange columns and the optimization of the mobile phase concentration, column 114 

temperature and flow rate. The proposed method was validated in three different 115 

environmental matrices, namely, total suspended atmospheric particles (TSP), marine 116 

particulate organic matter (POM), and marine HMWDOM. 117 

2. Materials and procedures 118 

2.1. Reagents 119 

Carbohydrate standards were purchased from Sigma-Aldrich or Interchim, at their purest 120 

available grade (>98%). A mixture of standard solutions at concentrations ranging from 50 121 
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nM to 10 µM was prepared by dilution with ultrapure water of a standard stock solution (1 122 

mM) of neutral sugars (fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose, 123 

fructose and ribose), alditols (xylitol, arabitol, sorbitol and mannitol), anhydrosugars 124 

(levoglucosan, mannosan and galactosan), and one disaccharide (sucrose). All the prepared 125 

solutions including the stock solution were stored     h   a k a  ‒25 °C          . Despite that 126 

no degradation was observed after melting and refrozen,  h    a  a             (50  M‒10 127 

µM) were renewed after 2 weeks. The HCl solution (37%, Sigma-Aldrich) diluted with 128 

ultrapure water to 1 M was used for sample hydrolysis, while the NaOH solution (50% w/v in 129 

H2O, low carbonate; PanReac AppliChem ITW Reagents) diluted with ultrapure water was 130 

used for the mobile phase of the HPAEC-PAD chromatography. The ultrapure water used in 131 

this work was produced by a Millipore Milli-Q system (Molsheim, France). 132 

 133 

2.2. Sampling and extraction of carbohydrates  134 

2.2.1. TSP 135 

The aerosol sample was collected on a precombusted (450 °C, 6 h) weighed Whatman 136 

quartz fiber filter (20.3 cm × 25.4 cm, nominal retention size, 0.7 µm) using an automatic 137 

sampler (Tisch Environmental USA; flow rate 85 m
3
 h

−1
). The sample was collected from 138 

March 10th to March 17th of 2016, from the rooftop of the Endoume Marine Station 139 

(Marseille; 43° 16' N - 5° 21' E). After collection, the sample was dried for 24 h in a 140 

desiccator, weighed, and then           a f   z   a  ‒25 °C in precombusted aluminum foil 141 

(450 °C, 6 h). A 1-cm
2
 section of the filter was extracted with 6 mL ultrapure water in an 142 

ultrasonic bath for 1 h and filtered through a Pasteur pipette packed with quartz wool (both 143 

precombusted at 450 °C for 6 h) to remove any remaining particles, and then analyzed 144 

immediately (Theodosi et al., 2018). The recovery yields of the extraction procedure were 145 

estimated after the extraction of a precombusted (450 ° C, 6 h) Whatman quartz fiber filter 146 
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spiked with a standard mixture of neutral carbohydrates spanning a concentration range from 147 

100 to 1000 nM (Theodosi et al., 2018). The obtained yields of neutral sugars for all the 148 

concentrations tested were between 101 and 119% (n = 5). The abovementioned analytical 149 

procedure allowed the extraction and identification only of the free neutral sugars present in 150 

the TSP sample and as such the composition of combined sugars was not determined in this 151 

study. 152 

 153 

2.2.2. Marine POM 154 

Sinking particles (marine POM) were collected over seven-day periods from January 6th to 155 

March 3rd, 2013, in the upwelling system located offshore of Lima (Peru) in the Pacific 156 

Oc a  (12° 02’ S - 77° 40’ W)      g     m      ap  (PPS3    ch  cap)   p  y       h  157 

oxycline/upper oxygen minimum zone (OMZ) layer at a depth of 34 m (Bretagnon et al., 158 

2018). To avoid the bio-degradation of POM, a solution of seawater with 5% formaldehyde 159 

was added to the bottom of the collection chamber. After trap recovery, the living and dead 160 

swimmers were carefully removed so that only detrital particles remained in the sample. 161 

These detrital particles (marine POM) were stored in the dark at 4 °C in the initial chambers 162 

used in the trap. On land, the samples were filtered through 25 mm precombusted (450 °C, 6 163 

h) Whatman GF/F filters, freeze-dried, and subsequently stored in the dark at 4 °C until 164 

further analysis. F    p        (40‒60 mg  ach)  f  ach  f  h  f     amp     b a     f  m  h  165 

respective collection chambers of the sediment trap were pooled together, resulting in ~265 166 

mg dry POM powder. To release neutral sugars, the POM powder was hydrolyzed with 1 M 167 

HCl at 100 °C for 20 h (Panagiotopoulos et al., 2014). The acid-soluble fraction recovered 168 

after centrifugation (2000 rpm) was then transferred into a precombusted (450 °C, 6 h) glass 169 

vial, and the acid was removed from the sample by three successive lyophilizations. The POM 170 

recovery (by weight) after acid hydrolysis was 84%. A part of the final dry powder was 171 
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weighed (25.61 mg), redissolved in 1 mL ultrapure water and filtered through a Pasteur 172 

pipette packed with quartz wool (both precombusted at 450 °C for 6 h). The filtrate was 173 

diluted 500 times with ultrapure water and filtered again to remove any remaining particles 174 

prior to injection into the chromatographic system. 175 

 176 

2.2.3. Marine HMWDOM 177 

The surface (15 m)   awa     amp   wa  c    c    f  m  h  Hawa   a  a (19° 43′ N - 156° 178 

03′ W)    D cember 2003 and processed at Woods Hole Oceanographic Institution (USA) as 179 

described by Panagiotopoulos et al. (2013). Briefly, the sample (8640 L) was filtered through 180 

0.8 µm and 0.2 µm duel cartridge filters, and then ultrafiltered using a cross-flow 181 

ultrafiltration system. The concentrated sample (40 L) that included the HMWDOM was 182 

further desalted by diafiltration with ultrapure water to a final volume of 2 L and freeze dried 183 

to obtain a fluffy white powder. The carbon composition of the HMWDOM collected was 184 

35% by weight, with a carbon/nitrogen ratio of 16. A part of the resultant HMWDOM powder 185 

(104 mg) was hydrolyzed to release the neutral sugars with 1 M HCl at 100 °C for 20 h, then 186 

the hydrolysis was stopped by placing the sample in an ice bath. The HCl was removed from 187 

the sample by lyophilization (3 times; final pH = 7). Then, a portion of the sample (55.83 mg) 188 

was redissolved in 1 mL ultrapure water, filtered through a Pasteur pipette packed with quartz 189 

wool (both precombusted at 450 °C for 6 h) and stored frozen at ‒20 °C. Before analysis, the 190 

sample was diluted 3 times with ultrapure water. 191 

 192 

2.3. Chromatographic system 193 

Carbohydrate analysis was performed using a Thermo-Dionex ICS-3000 anion-exchange 194 

chromatograph (HPAEC) equipped with a 250-µL injection loop and a pulsed amperometric 195 

detector (PAD). The waveform used for pulsed amperometric detection was the standard 196 
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quadruple potential for carbohydrate analysis (Panagiotopoulos et al., 2012). The ultrapure 197 

water used to prepare the mobile phase was sparged with high purity N2 for 30 min prior to 198 

use. The mobile phase consisted of ultrapure water (eluent A) and NaOH at 1 M (eluent B) 199 

prepared by dilution in degassed ultrapure water. The eluents were kept continuously under 200 

pure N2 pressure to avoid exposure to atmospheric CO2, which can cause a drastic decrease in 201 

column selectivity and loss of sugar resolution. In addition, an on-line degasser (RFIC eluent 202 

degasser, Thermo Fisher) was added before the analytical column to decrease interference 203 

from dissolved oxygen (Cheng and Kaplan, 2001). 204 

In this study, two anion-exchange analytical columns were tested for sugar separation: a 205 

CarboPac MA1 (7.5 µm, 4 × 250 mm; Thermo Fisher) and a CarboPac PA1 (10 µm, 4 × 250 206 

mm; Thermo Fisher), both fitted with their corresponding guard column (4 × 50 mm; Thermo 207 

Fisher). The Chromeleon software (Thermo Fisher) was used for processing and data 208 

acquisition. The performance of the chromatographic separation (resolution factor, Rs) 209 

between the two-carbohydrate species A and B is calculated according to the following 210 

formula: 211 

Rs = 2 [(tR)B − (tR)A] × [WA + WB] 
− 1

 212 

Where (tR)A and (tR)B are the retention times of the two species A and B, respectively, and 213 

WA and WB are their corresponding peak widths.  214 

3. Results and discussion 215 

3.1. Method optimization 216 

Although previous investigations described the simultaneous discrimination of some 217 

neutral sugars, alditols and anhydrosugars using CarboPac PA1 or CarboPac MA1 columns 218 

(Caseiro et al., 2007; Iinuma et al., 2009), the analytical HPAEC-PAD conditions used in 219 

previous studies were unable to fully resolve the 17-carbohydrate mixture assessed in the 220 
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present study. Application of the analytical protocol using the CarboPac MA1 column in 221 

Iinuma et al. (2009) revealed that the critical monosaccharide groups that required a further 222 

efficient separation were, by elution order: (a) levoglucosan, arabitol, fucose and rhamnose, 223 

(b) mannosan and sorbitol, (c) mannose, arabinose and galactosan, and (d) glucose and 224 

xylose. The optimization of the method therefore involved evaluating the effects of basic 225 

chromatographic parameters (flow rate, mobile phase composition and column temperature) 226 

to achieve optimal separation of the 17-carbohydrate mixture. Charged carbohydrates (e.g., 227 

uronic acids and phosphorylated sugars) were not considered in this study because they 228 

require different mobile phase conditions compared to neutral carbohydrates using 229 

CH3COONa as the eluent (Engel and Händel, 2011; Hu et al., 2012). 230 

 231 

3.1.1. Column selection 232 

Although several types of anion-exchange columns are available for carbohydrate analysis 233 

(CarboPac PA10, 20, 100 and 200; Ronkart et al. 2007; Meyer et al. 2008; Raessler et al. 234 

2010; Raessler 2011), the most recommended are: (1) the CarboPac PA1 column for analysis 235 

of neutral sugars (Cheng and Kaplan, 2001; Kerhervé et al., 2002; Panagiotopoulos et al., 236 

2012; Panagiotopoulos and Sempéré, 2005a; Theodosi et al., 2018), and (2) the CarboPac 237 

MA1 column for analysis of alditols, anhydrosugars and neutral sugars (Iinuma et al., 2009; 238 

Jung et al., 2014; Zhang et al., 2013). 239 

The CarboPac PA1 column is well-suited for the analysis of neutral monosaccharides. 240 

However, when alditols and anhydrosugars are included in the same run, a NaOH gradient is 241 

required because these compounds are eluted at lower NaOH concentrations (<1 mM) 242 

compared to neutral monosaccharides (>15 mM). However, the use of a NaOH gradient 243 

causes disequilibrium of the baseline signal, which further results in a positive (Sullivan et al., 244 
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2011) or a negative peak (Caseiro et al., 2007; Theodosi et al., 2018) that may potentially 245 

mask sugar peaks that are eluted within this time window.  246 

The CarboPac MA1 column was introduced much later than the CarboPac PA1 column 247 

and, to date, has never been applied to marine samples. Nevertheless, its macroporous 248 

stationary phase has a higher anion-exchange capacity over the CarboPac PA1 column (1450 249 

μ q/c   m  vs 100 μ q/c   m ), which further allows the use of gradient conditions without 250 

affecting the baseline stability (Iinuma et al., 2009; Zhang et al., 2013). Moreover, because 251 

the CarboPac MA1 column operates at high NaOH elution conditions (>200 mM), the pH 252 

values of the mobile phase are >12.5 and as such all the hemiacetal groups of sugars are 253 

deprotonated. This further increases the retention of sugars on the column and thus results in a 254 

better resolution (Thermo Fisher, Technical Note 20). Finally, the higher baseline stability of 255 

the CarboPac MA1 column over the CarboPac PA1 column offers an additional advantage in 256 

terms of the retention time of chromatographic peaks, which does not significantly shift over 257 

successive injections (Gremm and Kaplan, 1997). Due to these reasons, this study was 258 

conducted using the CarboPac MA1 column and different chromatographic parameters (flow 259 

rate, etc.) were appropriately adjusted for separation of different classes or sugars. 260 

 261 

3.1.2. Optimization of flow rate, mobile phase and column temperature 262 

According to the manufacturer, the CarboPac MA1 column operates at a recommended 263 

range of flow rates of 0.2‒0.5 mL min
−1

, and the flow rate is generally fixed at 0.4 mL min
−1

 264 

for environmental applications (Iinuma et al., 2009; Jung et al., 2014; Li et al., 2016). 265 

Nevertheless, the latter authors did not report co-elution problems because they did not 266 

consider fucose, rhamnose, arabinose, sorbitol and xylose in their standards. To overcome the 267 

co-elution problem, we first decreased the flow rate to 0.3 mL min
−1

. This resulted in a slight 268 
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improvement in the separation of the above compounds, and therefore this flow rate was 269 

maintained for all further improvements.  270 

Previous investigations employing the CarboPac MA1 column used NaOH concentrations 271 

ranging from 300 to 800 mM (Andersen and Sørensen, 2000) to elute alditols, anhydrosugars, 272 

and some neutral sugars (Iinuma et al., 2009). Nonetheless, such conditions were not optimal 273 

for the 17 carbohydrates considered in this study. Therefore, different NaOH gradient tests 274 

were performed at a fixed column temperature of 25 °C and a flow rate of 0.3 mL min
−1

. The 275 

improved separation of the first seven eluted monosaccharides (xylitol, levoglucosan, arabitol, 276 

fucose, rhamnose, sorbitol and mannosan) was achieved by applying an NaOH gradient 277 

ranging from 250 mM to 350 mM in the first 30 min (Fig. 1 a, Table 1). Unfortunately, fucose 278 

and rhamnose were not resolved (Rs = 0) under these conditions despite additional 279 

adjustments of the NaOH gradient. The 250 to 350 mM gradient was then followed by a 15 280 

min-NaOH gradient increasing from 350 to 450 mM that allowed an acceptable separation 281 

(with resolution factors close to or higher than 1) of mannitol, galactosan, arabinose and 282 

mannose. 283 

Following the chromatographic separation after 45 min, the NaOH concentration was 284 

increased from 450 to 700 mM and held for 55 min to elute glucose, xylose, galactose and 285 

fructose. Under these elution conditions, the xylose/galactose and galactose/fructose pairs 286 

were fully resolved (Rs > 1.5), while the glucose/xylose pair was partially resolved (Rs = 0.3). 287 

Additional tests of decreasing or increasing the final NaOH concentration (700 mM) did not 288 

improve the glucose/xylose resolution. Finally, by prolonging the 700 mM NaOH 289 

concentration for an additional 20 min, the last two carbohydrates (ribose and sucrose) were 290 

eluted with excellent resolution (Rs = 8.1). After 75 min, the column was equilibrated for 20 291 

min with the initial NaOH concentration (250 mM). Regeneration and clean-up of the column 292 
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were not necessary, because the high NaOH concentration (700 mM) reached at the end of the 293 

analysis was sufficient to restore column performance. 294 

Because pairs of levoglucosan/arabitol, fucose/rhamnose, galactosan/arabinose, 295 

arabinose/mannose and glucose/xylose were completely or partially overlapped under the 296 

NaOH gradient conditions optimized above, we also explored the effect of temperature on the 297 

resolution of these monosaccharide pairs. Earlier investigations have shown that temperature 298 

plays an important role in monosaccharide separation using the CarboPac PA1 column and 299 

that sub-ambient temperatures strongly affect the resolution of closely eluting 300 

monosaccharide pairs, notably fucose/rhamnose and mannose/xylose (Panagiotopoulos et al., 301 

2001). The results of this study indicated that glucose co-eluted with xylose at temperatures 302 

<20 °C, while arabinose overlapped with mannose at >30 °C. Moreover, fucose and rhamnose 303 

always co-eluted under both these temperature conditions. Overall, these results suggest that 304 

sub-ambient temperature conditions do not have a significant impact on the separation of the 305 

abovementioned carbohydrate pairs on the CarboPac MA1 column. 306 

By narrowing the temperature range between 25 and 30 °C, we found that these 307 

monosaccharide pairs were better resolved (except the fucose/rhamnose pair which again co-308 

eluted), as shown by their corresponding resolution factors (Fig. 2). The results showed that 309 

except for the arabinose/mannose (Rs = 0.4) and fucose/rhamnose pairs (Rs = 0), the resolution 310 

factors for the levoglucosan/arabitol (Rs = 0.7), galactosan/arabinose (Rs = 1.3), and 311 

glucose/xylose (Rs = 0.6) pairs were significantly improved at a temperature of 28 °C. 312 

Therefore, a temperature gradient was applied between 25 and 28 °C for the first 30 min of 313 

analysis. The latter temperature was maintained for the next 45 min to distinguish the 314 

galactosan/arabinose, arabinose/mannose and glucose/xylose pairs (Table 1, Table A 1; Fig. 1 315 

a). After 75 min, the temperature was reset to 25 °C during column re-equilibration (20 min) 316 

until the next injection. 317 
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3.2. Linearity, detection limit, precision and blanks  318 

The optimized method showed a linear response for all monosaccharides (R
2
 >0.999) over 319 

a concentration range of 50 nM to 10 µM, which is typical for environmental monosaccharide 320 

concentrations. The detection limits calculated at a signal-to-noise ratio (S/N) of three were 321 

4−51 nM for neutral sugars, 2−15 nM for alditols and 8−32  M for anhydrosugars (Table A 322 

1), in agreement with previous studies using different elution conditions and anion-exchange 323 

columns for monosaccharide determination (Caseiro et al., 2007; Iinuma et al., 2009; 324 

Panagiotopoulos et al., 2001; Theodosi et al., 2018). The high detection limit obtained for 325 

fructose (51 nM), also observed in a previous study (Iinuma et al., 2009), is probably due to 326 

the low detector response toward this compound. The precision of the method was calculated 327 

by performing six identical runs with the standard mixture of the 17 carbohydrates (50 nM 328 

each). The relative standard deviation (RSD%) ranged from 1.8 to 16.6% for the peak area 329 

and from 0.2 to 1.7% for the retention time (Table A 1). The procedural blank for the marine 330 

POM consisted of a 25-mm Whatman GF/F filter (precombusted at 450 °C for 6 h), 331 

hydrolyzed in the same manner as the samples. Similarly, the procedural blank for the TSP 332 

consisted of a Whatman quartz fiber filter (precombusted at 450 °C for 6 h) extracted with the 333 

ultrapure water. The results showed no detectable sugars in blanks (Fig. S 1).  334 

 335 

3.3. Comparison with the CarboPac PA1 column 336 

The final optimized MA1-HPAEC-PAD method (Table 1, Fig. 1 a) was compared with a 337 

different method employing the CarboPac PA1 column (Caseiro et al., 2007; Theodosi et al., 338 

2018). The chromatogram obtained with the latter column (Fig. 1 b) showed that, at low 339 

NaOH concentrations (1 mM; 0−15 min), xylitol, sorbitol, mannitol and mannosan peaks 340 

were partially resolved, while the arabitol/levoglucosan and galactosan/fucose pairs 341 

completely overlapped. Similar observations were made at high NaOH concentrations (19 342 
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mM; 15−53 min) for rhamnose/arabinose, mannose/xylose and ribose/sucrose pairs. Based on 343 

the above co-elutions, these results clearly suggest that loss of molecular level information 344 

may occur when a sample containing all of the abovementioned monosaccharides is analyzed 345 

with the CarboPac PA1 column. Moreover, these co-elutions may further induce erroneous 346 

quantification of these monosaccharides. Overall, these results indicate that the CarboPac 347 

MA1 column is more appropriate than the CarboPac PA1 column for environmental 348 

applications in terms of monosaccharide resolution and baseline stability.  349 

 350 

3.4. Application to environmental samples 351 

The method established in this study was tested on three different environmental matrices 352 

including TSP, marine POM and HMWDOM. The chromatograms of these matrices are 353 

presented in Fig. 3 and indicated the presence of large quantities of monosaccharides (Table 354 

2). 355 

3.4.1. TSP 356 

The major carbohydrate classes identified in the TSP sample included anhydrosugars and 357 

disaccharides, followed by neutral sugars and alditols. The sum of their concentration was 563 358 

ng m
−3

, representing the total neutral carbohydrate (TCHO) content recorded in the TSP 359 

sample. The results of this study showed that levoglucosan (261 ng m
−3

) and sucrose (178 ng 360 

m
−3

) were among the major neutral carbohydrates (Table 2; Fig. 3 a), which is in agreement 361 

with other studies of European urban atmospheres (Yttri et al., 2007). Anhydrosugars 362 

represented 53% of TCHO in the TSP sample and were dominated by levoglucosan and 363 

mannosan, which accounted for 87% and 10% of the anhydrosugar pool, respectively (Fig. 4 364 

a). Galactosan was also detected in the TSP sample but in lower concentrations (Table 2).  365 
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Neutral sugars accounted for 11% of the TCHO pool (Fig. 4 a) with fructose and glucose 366 

exhibiting the highest concentrations (Fig. 4 a, Table 2). The presence of these neutral sugars 367 

in the TSP sample strongly supports the influence of biogenic emission, which is typical of 368 

plants growth during spring (Fu et al., 2012; Medeiros et al., 2006). Other minor neutral 369 

sugars found in the TSP sample included the arabinose, mannose and xylose (Table 2). 370 

Finally, alditols represented the least abundant carbohydrate class, accounting for 4% of 371 

TCHO in the TSP sample (Fig. 4 a). The alditols decreased in abundance in the order of 372 

xylitol, mannitol, arabitol and sorbitol (Table 2), and their presence in the sample indicates 373 

inputs from fungal spores and/or microbial activities (Bauer et al., 2008; Dahlman et al., 374 

2003; Loos et al., 1994).  375 

Although fucose and rhamnose co-eluted under the current HPAEC-PAD conditions, they 376 

were also identified and quantified in the aerosol sample for the first time and accounted for 377 

1% of TCHO and 8% of neutral sugars. Fucose and rhamnose may have multiple sources in 378 

atmospheric particles including soil organic matter (Gunina and Kuzyakov, 2015; Ogner, 379 

1980; Simoneit et al., 2004), vascular plants (Bianchi, 2007; Popper et al., 2004; Schädel et 380 

al., 2010), microorganisms and bacteria (Cowie and Hedges, 1984; Fox et al., 1993; Petit et 381 

al., 2013), while recent studies indicated that marine sources via water/air exchange may also 382 

be an important contributor (Rastelli et al., 2017). 383 

Nevertheless, field measurements using gas chromatography (Alves et al., 2011) or nuclear 384 

magnetic resonance spectroscopy (Chalbot et al., 2013) identified only fucose or rhamnose 385 

but never simultaneously reported both sugars in atmospheric samples. On the other hand, 386 

studies using HPAEC-PAD have never reported fucose and rhamnose in atmospheric 387 

particles, probably because of the co-elution of these deoxysugars with other 388 

monosaccharides (fucose with galactosan and rhamnose with arabinose after analysis with the 389 
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CarboPac PA1 column; Fig. 1 b). Therefore, the presence of fucose and rhamnose in the 390 

sample has never been thoroughly assessed to date.  391 

The lack of data on deoxysugars in atmospheric samples may also be related to their 392 

original structure. As deoxysugars are mostly found in bacterial lipopolysaccharides (Perry et 393 

al., 1996; Weckesser et al., 1970; Zdorovenko et al., 2007) and/or plant structural 394 

polysaccharides (Colombini et al., 2002; Grössl et al., 2005; Popper et al., 2004; Schädel et 395 

al., 2010), they are either not efficiently recovered after water extraction (case of 396 

lipopolysaccharides) or are recovered in the water phase but cannot be released from 397 

carbohydrate polymer (case of structural polysaccharides) as no hydrolysis is applied.  398 

3.4.2. Marine POM 399 

The major carbohydrate classes identified in the marine POM sample included the neutral 400 

sugars followed by anhydrosugars and alditols. The sum of their concentration was 16.2 mg 401 

g
−1

. Neutral sugars accounted for 98% of the TCHO pool (Fig. 4 b) and were dominated by 402 

galactose (5.7 mg g
−1

) and glucose (3.8 mg g
−1

) (Table 2; Fig. 3 b). These monosaccharides 403 

were followed by fructose (2.0 mg g
−1

) and fucose/rhamnose (co-eluted; 1.8 mg g
−1

) while 404 

xylose, mannose and arabinose exhibited concentrations <1 mg g
−1

. These results are in good 405 

agreement with previously reported monosaccharide patterns for marine POM in several 406 

oceanic regimes (Hernes et al., 1996; Panagiotopoulos and Sempéré, 2005b; Skoog and 407 

Benner, 1997). Fructose and ribose, occasionally reported in marine POM samples due to 408 

their low recovery after acid hydrolysis (Borch and Kirchman, 1997; Panagiotopoulos and 409 

Sempéré, 2005a), were also identified in this sample (Table 2). This finding most likely 410 

indicates the presence of storage polysaccharides (fructans) and nonstructural labile 411 

compounds such as RNA or nucleotides originating from marine organisms (Cowie and 412 

Hedges, 1984; Haug and Mykelstad, 1976; Hicks et al., 1994; Panagiotopoulos and Sempéré, 413 

2005b). Alternatively, fructose may originate from sucrose. As sucrose was not detected in 414 
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the marine POM sample (the same holds for the HMWDOM sample), this most likely implies 415 

its complete hydrolysis under the acid conditions used for its extraction, which results in two 416 

monosaccharides (fructose and glucose).  417 

The proposed analytical method allowed the identification and quantification of alditols 418 

(0.4% of TCHO) and anhydrosugars (2% of TCHO), the two monosaccharide families that 419 

have been largely overlooked to date in marine environmental studies (Fig. 4 b). The results 420 

showed that xylitol was the major alditol type detected in the POM sample, followed by 421 

sorbitol, while arabitol and mannitol were not detected in the sample (Table 2). Alditols are 422 

generally reported as terrestrial tracers derived from fungal spores and/or microbial activities 423 

(Dahlman et al., 2003; Vandeska et al., 1995), therefore, their presence in the marine POM 424 

sample may suggest possible terrestrial input (van Pinxteren et al., 2012). Alternatively, 425 

alditols may have marine origin. As carbohydrates are an important fraction of the organic 426 

matter produced by marine primary production or released into the environment via 427 

degradation processes, it is highly possible that alditols are also part of the carbohydrate pool. 428 

Nevertheless, additional measurements using compound-specific 
13

C analysis are warranted to 429 

test this hypothesis and constrain the sources of alditols in the marine waters.  430 

Compositionally, anhydrosugars were dominated by galactosan followed by levoglucosan 431 

and mannosan, which represented for 63%, 25% and 13% of total anhydrosugars, respectively 432 

(Fig. 4 b). The dominance of galactosan over levoglucosan has also been reported for sea 433 

surface microlayer samples in Baltic sea (van Pinxteren et al., 2012) during different seasons 434 

of the year however, more data are warranted in the same time from both atmospheric and 435 

marine compartments to validate/confirm these findings.     436 

However, the anhydrosugar concentrations found in this sample (and in the HMWDOM 437 

sample) are most likely underestimated because these compounds are converted to their 438 

respective hexoses after acid hydrolysis (Blanco et al., 2018). Indeed, in an additional set of 439 
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experiments to investigate whether the hydrolysis conditions affect the stability of 440 

monosaccharides, we performed acid hydrolysis (1 M HCl, 100 °C, 20 h) on a standard 441 

monosaccharide mixture containing neutral sugars, alditols and anhydrosugars. The results 442 

showed that levoglucosan, mannosan and galactosan were completely converted to glucose, 443 

mannose and galactose, respectively, while minimal loss was observed for neutral sugars and 444 

alditols (Fig. S 2), which is consistent with previous studies (Skoog and Benner, 1997; Wang 445 

et al., 2016). 446 

Overall, these results revealed that the concentration of anhydrosugars is biased in 447 

environmental samples if these sugars are acid-extracted (POM and HMWDOM sample). 448 

Therefore, an alternative extraction method should be considered (e.g., extraction with water 449 

or MeOH). Despite the possible underestimation of the amount of the anhydrosugars found in 450 

the marine POM, their presence in this sample clearly indicates an external input, most likely 451 

via atmospheric deposition, as shown by the isotopic signature (δ
13

C) of levoglucosan and 452 

mannosan pointing to a terrestrial origin (Nouara et al., 2019).  453 

 454 

3.4.3. Marine HMWDOM 455 

The major carbohydrate classes identified in the HMWDOM sample included the neutral 456 

sugars followed by anhydrosugars and alditols. The sum of their concentration was 766 µg 457 

g
−1

. Neutral sugars accounted for 97% of the TCHO pool in the HMWDOM (Fig. 4 c). The 458 

results of this study revealed that fucose & rhamnose (300 µg g
−1

), glucose (122 µg g
−1

), 459 

mannose (103 µg g
−1

), galactose (83 µg g
−1

), xylose (74 µg g
−1

), and arabinose (34 µg g
−1

) 460 

were among the major monosaccharides, which agrees with the neutral sugar pattern reported 461 

in previous studies (Aluwihare et al., 1997; Repeta et al., 2002) (Table 2; Fig. 3c). Fructose 462 

and ribose were also quantified in the HMWDOM sample, and similar to POM, they most 463 

likely originate from storage polysaccharide or RNA.  464 
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Anhydrosugars accounted for 3% of TCHO and were dominated by levoglucosan, 465 

galactosan and mannosan, which represented 61%, 22% and 17% of total anhydrosugars, 466 

respectively (Fig. 4 c). The lower concentration of anhydrosugars in the HMWDOM sample 467 

(the same holds for the POM sample) compared to the TSP sample maybe due to the high 468 

dilution occurring at sea and also to photodegradation processes by OH
*
 radicals which take 469 

place in the atmosphere for these compounds (Hoffmann et al., 2010; Lai et al., 2014). In 470 

addition, as suggested for marine POM, the concentration of anhydrosugars in HMWDOM is 471 

most likely biased due to the acid extraction procedure. The presence of the anhydrosugars in 472 

the sample may indicate possible input of terrestrial organic matter (burning biomass tracers), 473 

although additional studies using 13
C are warranted to confirm this hypothesis. Finally, the 474 

least abundant carbohydrate class was the alditols, which accounted 0.3% of TCHO and 475 

represented by mannitol and xylitol (Fig. 4 c). 476 

 477 

4. Conclusions 478 

The results of this study indicated that under the optimized analytical conditions, neutral 479 

sugars, alditols, and anhydrosugars commonly found in most environmental samples can be 480 

analyzed with a single run in 75 min with satisfactory resolution except for the 481 

fucose/rhamnose pair that completely co-eluted. These deoxysugars were identified for the 482 

first time in the TSP sample by this improved HPAEC-PAD technique, which will facilitate 483 

future investigations by shedding light on bacterial and/or microorganism activities on 484 

atmospheric samples. However, additional deconvolution of these deoxysugars signals using 485 

the traditional HPAEC-PAD method for neutral sugar determination (Panagiotopoulos et al., 486 

2001) might also be useful. 487 

The proposed improved HPAEC-PAD method allowed, for the first time, the identification 488 

and quantification of anhydrosugars and alditols in marine samples (marine POM and 489 
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HMWDOM). These two carbohydrate families have largely been overlooked in the dissolved 490 

free monosaccharide pool (DFMS), and, to the best of our knowledge, they have never been 491 

reported in marine DOM. Indeed, anhydrosugars and alditols can easily be extracted from 492 

seawater using cation and anion-exchange resins (Kirchman et al., 2001; Mopper et al., 1992; 493 

Sempéré et al., 2008; Skoog and Benner, 1997; van Pinxteren et al., 2012) in the same manner 494 

as neutral sugars. However, because the subsequent PA1-HPAEC-PAD analysis has always 495 

been performed at >15 mM NaOH to elute the neutral sugars; anhydrosugars and alditols 496 

always co-elute at time window of 2‒5 min, therefore, they have never been identified in the 497 

DFMS pool.  498 

On the other hand, dissolved combined monosaccharides (DCHO) or polysaccharides in 499 

marine samples are generally measured as their monomeric constituents that are released after 500 

acid hydrolysis. Thus, if anhydrosugars are present in the sample, they will be counted in the 501 

hexose pool as the sample is hydrolyzed. Therefore, we recommend that DCHO analysis 502 

always be preceded or accompanied by the analysis of DFMS to evaluate the contribution of 503 

anhydrosugars – if present – in the sample. This strategy is particularly critical for samples 504 

from coastal areas that receive significant terrestrial inputs, particularly in wintertime, and are 505 

characterized by strong influence from wood burning.  506 

The proposed HPAEC method provides an acceptable resolution for most of the 507 

carbohydrates examined, and therefore its coupling with mass spectrometry may further help 508 

with the structural elucidation and confirmation of the analyzed carbohydrates. Moreover, its 509 

high potential may further be explored in other environmental matrices, including sediments, 510 

seawater, and marine biota, which will provide a more complete profile of carbohydrates in 511 

the environment. This complete profile, in turn, may be helpful to improve our understanding 512 

on carbohydrate dynamics in the marine and terrestrial ecosystems and potentially better 513 

evaluate the impact of biomass burning processes on marine waters. 514 
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Table and Figure captions 851 

Table 1: Optimal analytical conditions for the simultaneous analysis of neutral sugars, 852 

alditols, anhydrosugars and sucrose 853 

Table 2. Carbohydrate composition in atmospheric TSP, marine POM and marine 854 

HMWDOM samples. The carbohydrate concentrations presented in this table are not 855 

corrected for losses during the hydrolysis or the extraction procedure (see materials and 856 

methods), and therefore they should be considered as minimum concentrations found in 857 

the samples. 858 

Fig. 1. HPAEC-PAD chromatograms of a standard mixture of 17 monosaccharides (1 µM 859 

each) obtained with the (a) CarboPac MA1 column after optimization according to Table 860 

1 (Peak identification: 1 = xylitol, 2 = levoglucosan, 3 = arabitol, 4 = fucose/ rhamnose, 861 

5 = sorbitol, 6 = mannosan, 7 = mannitol, 8 = galactosan, 9 = arabinose, 10 = mannose, 862 

11 = glucose, 12 = xylose, 13 = galactose, 14 = fructose, 15 = ribose, 16 = sucrose) and 863 

(b) CarboPac PA1 column (Peak identification: 1 = xylitol, 2 = arabitol/levoglucosan, 3 864 

= sorbitol, 4 = mannitol, 5 = mannosan, 6 = galactosan, 7 = fucose, 8 = 865 

rhamnose/arabinose, 9 = galactose, 10 = glucose, 11 = mannose/xylose, 12 = fructose, 13 866 

= ribose/sucrose). The dotted line and secondary axis indicate the NaOH gradient. The 867 

analytical HPAEC-PAD conditions for the CarboPac PA1 column are as follows: flow 868 

rate 0.7 mL min
−1

, 0−15 min : 1 mM NaOH; 15−38 m   : 19 mM NaOH (c     5)  869 

column temperature 17 °C and detector temperature 20 °C (Theodosi et al., 2018). 870 

Fig. 2.  h              f     g  c  a /a ab     (♦)  f c   / ham     (×), galactosan/arabinose 871 

(■); arabinose/mannose (▲), and glucose/xylose (●) pairs with fixed temperatures (25, 872 

28 and 30 °C) applied during the whole HPAEC-PAD run under the optimized mobile 873 

phase and flow rate conditions.  874 
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Fig. 3. HPAEC-PAD chromatograms according to Table 1 of (a) total suspended atmospheric 875 

particles (TSP), (b) marine particulate organic matter (POM) and (c) marine high-876 

molecular-weight dissolved organic matter (HMWDOM). Peak identification: 1 = 877 

xylitol, 2 = levoglucosan, 3 = arabitol, 4 = fucose/rhamnose, 5 = sorbitol, 6 = mannosan, 878 

7 = mannitol, 8 = galactosan, 9 = arabinose, 10 = mannose, 11 = glucose, 12 = xylose, 879 

13 = galactose, 14 = fructose, 15 = ribose, 16 = sucrose. 880 

Fig. 4. Relative abundances (%) of neutral sugars, alditols, anhydrosugars and disaccharides 881 

within the TCHO pool for (a) total suspended atmospheric particles (TSP), (b) marine 882 

particulate organic matter (POM) and (c) marine high-molecular-weight dissolved 883 

organic matter (HMWDOM). The relative abundances (%) of levoglucosan, galactosan 884 

and mannosan within the anhydrosugar pool are given as well for the abovementioned 885 

environmental samples. 886 
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 888 
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Table 1 900 

Optimal analytical conditions for the simultaneous analysis of neutral sugars, alditols, anhydrosugars 901 
and sucrose. 902 

Parameters Conditions 

Column CarboPac MA1 (250 × 4 mm I.D.), Thermo Fisher 

Eluent flow rate (mL min
-1

) 0.3 

Detector temperature (°C) 25 

Sample loop size (µL) 250 

Injection volume (µL) 230 

 

Column oven temperature (°C) 

 

25‒28        (0‒30 m  ); c     5 

 28               (30‒75 m  ) 

 25               (75‒95 m  ) 

 

NaOH gradient (mM) 

 

250‒350     (0‒30 m  )   ; curve 5 

 350‒450     (30‒45 m  ) ; curve 5 

 450‒700     (45‒55 m  ) ; curve 5 

 700             (55‒75 m  )  

 250             (75‒95 m  )  

 903 

 904 

Table 2 905 

Carbohydrate composition in atmospheric TSP, marine POM and marine HMWDOM samples. The 906 
carbohydrate concentrations presented in this table are not corrected for losses during the hydrolysis or 907 
the extraction procedure (see materials and methods), and therefore they should be considered as 908 
minimum concentrations found in the samples. 909 

Carbohydrate  TSP (ng m
-3

) POM (mg g
-1

) HMWDOM (µg g
-1

) 

Xylitol 11 0.05 0.13* 

Levoglucosan 261 0.08 12 

Arabitol 3.4 ND ND 

Fucose & Rhamnose 5.0 1.8 300 

Sorbitol 1.9 0.02 ND 

Mannosan 30 0.04 3.4 

Mannitol 7.8 ND 2.3 

Galactosan 9.4 0.2 4.4 

Arabinose 2.1 0.1 34 

Mannose 1.2 0.8 103 

Glucose 15 3.8 122 

Xylose 1.2 0.9 74 

Galactose ND 5.7 83 

Fructose 36 2.0 11 

Ribose ND 0.7 19 

Sucrose 178 ND ND 

ND = Not detected 910 

* Xylitol concentration was outside the calibration range (50-1000 nM) but ~6 times higher than its 911 

detection limit (Table A 1), thus it was quantified with an uncertainty of ~24%.  912 
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Table S 1.  1007 

HPAEC-PAD performance after optimization (Table 1). The average retention time (tR), and 1008 

resolution factor (Rs) of the carbohydrate standards is given at 1 µM level (n = 3). The relative 1009 

standard deviations (RSD) of peak area and retention time of the same standards is calculated at 50 1010 

nM level (n = 6), except for fructose (1 µM level; n = 6). The detection limit (DL) was calculated at 1011 

signal to noise ratio of 3. 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

Carbohydrate tR (min) Rs Area RSD (%) tR RSD (%) DL (nM) 

Xylitol 19.9 3.1 5.6 0.2 2 

Levoglucosan 23.8 0.6 4.0 0.5 8 

Arabitol 24.4 1.3 6.7 0.4 13 

Fucose & Rhamnose
 

26.0 1.3 6.5 0.3 17 

Sorbitol 27.8 1.2 5.0 0.3 15 

Mannosan 29.3 3.2 1.9 0.3 18 

Mannitol 33.3 5.1 2.7 0.4 7 

Galactosan 40.2 0.8 9.3 0.4 32 

Arabinose 41.4 0.7 4.9 0.4 7 

Mannose 42.6 2.4 1.8 0.3 6 

Glucose 46.7 0.5 4.4 0.3 9 

Xylose 47.7 1.6 6.7 0.3 24 

Galactose 50.5 1.7 5.2 0.6 4 

Fructose 53.1 3.0 16.6 1.7 51 

Ribose 57.2 8.1 6.0 0.4 13 

Sucrose 68.9 - 5.8 0.7 13 
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 1020 

Fig. S 1. Example of HPAEC-PAD chromatograms of procedural blanks (a) ultrapure water (b) 1021 

TSP blank and (c) POM blank. Blanks were prepared in triplicate for each sample (TSP and marine 1022 

POM) and run according to the method established in Table 1. 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 
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 1035 

 1036 

Fig. S 2. High-performance liquid chromatography with refractive index detection (HPLC-RI) 1037 

chromatograms of a monosaccharide mixture (1 mM each) before hydrolysis (black solid line) and 1038 

after hydrolysis (red dotted line) with 1 M HCl under 100 °C for 20 h. Peak identification : 1 = 1039 

glucose, 2 = xylose, 3 = galactose & rhamnose, 4 = galactosan, 5 = arabinose & fucose, 6 = mannose, 1040 

7 = fructose, 8 = mannitol, 9 = levoglucosan, 10 = xylitol, 11 = sorbitol, 12 = mannosan. The 1041 

analytical HPLC-RI conditions are given in Nouara et al. (2019) and are as follows: cation exchange 1042 

column in Pb
2+

 form, isocratic elution with ultrapure water at 0.6 mL min
‒1

,
 
column temperature 75 1043 

°C.  1044 

 1045 

 1046 


