
HAL Id: hal-02140851
https://hal.science/hal-02140851

Submitted on 27 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Throughput Model for Data Stream Processing on
Fog Computing

Felipe Rodrigo de Souza, Marcos Dias de Assuncao, Eddy Caron

To cite this version:
Felipe Rodrigo de Souza, Marcos Dias de Assuncao, Eddy Caron. A Throughput Model for Data
Stream Processing on Fog Computing. HPCS 2019 - 17th International Conference on High Perfor-
mance Computing & Simulation, Jul 2019, Dublin, Ireland. pp.1-7. �hal-02140851�

https://hal.science/hal-02140851
https://hal.archives-ouvertes.fr

A Throughput Model for Data Stream
Processing on Fog Computing
Felipe Rodrigo de Souza, Marcos Dias de Assunção, Eddy Caron

Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP
LYON Cedex 07, France

{felipe-rodrigo.de-souza, marcos.dias.de.assuncao, eddy.caron}@ens-lyon.fr.

Abstract—Today’s society faces an unprecedented deluge of
data that requires processing and analysis. Data Stream Process-
ing (DSP) applications are often employed to extract valuable
information in a timely manner as they can handle data as it is
generated. The typical approach for deploying these applications
explores the Cloud computing paradigm, which has limitations
when data sources are geographically distributed, hence intro-
ducing high latency and achieving low processing throughput.
To address these problems, current work attempts to take the
computation closer to the edges of the Internet, exploring Fog
computing. The effective adoption of this approach is achieved
with proper throughput modeling that accounts for character-
istics of the DSP application and Fog infrastructure, including
the location of devices, processing and bandwidth requirements
of the application, as well as selectivity and parallelism level of
operators. In this work, we propose a throughput model for DSP
applications embracing these characteristics. Results show that
the model estimates the application throughput with less than
1% error.

Index Terms—Data Stream Processing, Model, Evaluation,
Throughput, Fog

I. INTRODUCTION

The maturity of several IT technologies such as Cloud
computing and high-end devices and sensors has brought
our society to a big data era where data grows constantly
at unprecedented levels in terms of volume, variety, and
veracity [1], [2]. DSP applications have become a popular
solution to cope with the volume and velocity of big data
in a timely fashion. Such applications can process unbounded
data streams in near real-time as data events are generated [1].
A DSP application is often described as a directed graph, with
nodes representing operators, data sources and data sinks (data
consumers); and edges referring to the data flows between
operators. An operator is a processing unit that receives a
continuous incoming stream, applies operations over it and
generates a new output stream [1].

The Cloud has been the preferred infrastructure for deploy-
ing DSP applications due to its elastic capabilities and the
virtually unlimited number of resources that it can provide.
This is an efficient approach for applications that process data
that is either generated by systems hosted in the Cloud itselt –
like web analytics where the data is collected from web appli-
cations – or for applications that tolerate the delays posed by
transferring data to the cloud for processing. However, with ad-
vances on Internet of Things (IoT) and 5G technologies, there
is an increasing number of devices geographically distributed

at the edges of the network generating data that requires timely
processing and services with very short response time. For
these cases, Cloud deployment is an inefficient approach due
to the high latency that it introduces [3]. Recent work aims to
explore Fog computing to overcome this problem.

Fog computing is a paradigm that splits the network in-
frastructure into three layers as depicted in Fig. 1. The first
layer comprises numerous geographically distributed devices
(e.g., sensors, IoT devices) often acting as data sources. They
can be used for deploying DSP operators since they offer
non-negligible compute power, though they are constrained
in terms of memory, storage, and energy consumption when
compared to Cloud resources. The second layer contains
geographically distributed devices, without stringent energy
constraints and with more memory, storage and processing
capacity than the first layer. Routers, gateways, and micro
datacenters are examples of second-layer devices. The third
layer is the Cloud with thousands of high-end servers with
fewer constraints [4].

As Fog computing aims to push computation to the edges of
the network, it can be leveraged to offload DSP applications,
fully or partially, from the Cloud to devices on the first
and second layers of Fog computing, hence minimizing the
effects of network latency and traffic congestion during data
processing. However, the process of deciding which operators
from the DSP application to offload and on which Fog
resources to place them requires solving an issue known as
the operator placement problem. This problem consists of
finding a set of physical resources to deploy operators while
respecting the application requirements [5]. The application
requirements are often defined by a user who has little or
no knowledge on how to express them, mainly specifying
the processing capacity, bandwidth, and parallelism level of
operators [6]. Throughput is a metric commonly used to
measure the performance of the application and quality of
a deployment. Failure on properly specifying the application
requirements can lead to deployments that incur high costs,
application bottlenecks and low throughput.

This work presents a throughput model for DSP applications
that, based on a deployment plan for Fog computing provided
by a placement solution, can estimate the application through-
put with less than 1% error. The model is a building block for
deployment frameworks capable of estimating the parallelism
level of operators, processing and bandwidth requirements.

Local 1 Local 2 Local 3 Local 4

Micro
Datacenter 1

Micro
Datacenter 2

Layer 3

Layer 2

Layer 1

Cloud

Edge

Devices

Fog

Fig. 1. Three-layered Fog infrastructure.

The remaining sections of this paper are as follows: Section
II provides the envisioned architecture and background. In
Section III the operator placement model and the proposed
model are presented. Section V contains the setup information
about the evaluation of the proposed model and the results. We
discuss the related work in Section VI and finally Section VII
concludes the paper and presents future directions.

II. DATA STREAM PROCESSING ARCHITECTURE

In this work, we propose a model to evaluate the throughput
of deployment plans for DSP applications on Fog computing.
The architecture to assist deployment solutions and ease the
deployment process in highly distributed infrastructure is
depicted in Fig. 2. The architecture comprises modules to
manage and extract information from the physical resources
and a deployment engine for DSP applications.

The physical resources follow the layered structure of
Fog computing: IoT devices, micro datacenters, and Cloud
computing. A Node Manager manages and deploys operators
on a cloud or edge resource and is composed of two modules,
namely the Operator Management and Performance Moni-
toring. The former manages and deploys operators whereas
the second collects performance metrics from the device and
reports it to the Resource Manager in the Data Stream Pro-
cessing Engine, a centralized module responsible for managing
the physical resources. The Resource Manager employs tech-
niques such as Vivaldi [7] or Software Defined Networking
(SDN) [8] to discover the network topology and its status.

The deployment process begins with a user submitting a
dataflow and its deployment requirements to the Data Stream

Processing Engine via a Dataflow API. This application sub-
mission contains the description of the application graph,
the requirements and properties of each operator, and the
deployment goal, which can be throughput maximization,
latency minimization, cost minimization, or a combination
thereof. The application and its requirements are then passed
to the Application Scheduler, which along with information
of the infrastructure, devises a schedule/deployment plan.
Information on available resources, their residual capacity,
their network interconnections, and the network capacity is
provided by the Resource Manager.

The search for an application schedule or deployment plan
can employ techniques that consider one or multiple criteria
when placing DSP applications on a Fog environment. The
scheduler should ideally include a model for each considered
metric when aiming to optimize it. Finding a deployment
plan for placing operators on the available resources is often
termed as the Operator Placement Problem. In this context, the
proposed Throughput Model is designed to work as a plug-in
that during the search process provides a throughput evaluation
for all evaluated deployment plans, thus resulting in a plan that
maximizes the throughput.

After the Application Scheduler finds a solution, it provides
the deployment plan with the description of devices where
each operator should be placed, the requirements of each oper-
ator and the required network configuration. This deployment
plan is submitted to the Resource Manager that coordinates
with Node Managers and employs SDN techniques to enforce
the network configuration. The DSP application can then start
its execution.

III. SYSTEM MODEL AND PROBLEM STATEMENT

As mentioned earlier, the solution of the operator placement
problem produces a deployment plan, which establishes where
and how the operators should be deployed. This section intro-
duces the model for estimating the throughput of a deployment
plan for DSP applications on Fog computing. The notation
used to describe the model is summarized in Table I.

The Fog computing infrastructure is composed of three
device layers. The first layer comprises IoT devices, the second
layer represents micro datacenters, and the third layer refers
to the Cloud infrastructure. Hereafter these layers are called
IoT , Edge, and Cloud respectively. The infrastructure is
represented by the graph I = 〈〈D ∪H〉, C〉, where 〈D ∪H〉
comprises all devices capable of deploying operators, with
D representing the devices from the IoT layer and H the
resources from Edge and Cloud layers; and C contains
links interconnecting the devices inter and intra layers. The
bandwidth between devices i and k is given by Net(i, k).

A DSP application is a directed graph A = 〈O,E〉 where
O represents operators, data source(s) and data sink(s), and
E refers to the streams between operators, which are any
unbounded sequence of data (e.g., messages, packets, tuples,
file chunks) [9]. The application has at least one data source
responsible for generating the input data stream that the oper-
ators consume. Each operator receives the data stream, applies

IoT devices

Node Manager

Performance Monitoring

Operator Management

Edge Cloud

Deployed
application

User

Deployment plan

Deployment requirement

Data Stream
Processing Engine

Resource Manager

Dataflow API

Application Scheduler

Throughput Model

Fig. 2. System architecture.

TABLE I
NOTATION USED THROUGHOUT THE PAPER.

Notation Description
D Set of all IoT devices at layer 1
H Set of all computing resources at layers 2 and 3
L Set of network links interconnecting resources

I = 〈〈D∪H〉, L〉 Fog infrastructure graph
l Index of Fog layer (1, 2 or 3)

Source(l) Set of source operators hosted in layer l
Sink(l) Set of sink operators hosted in layer l
`(j) Deployment layer of operator j
O Set of all operators

A = 〈O,E〉 Application graph with operators O and streams E
Oi Set of all operators in device i
M(j) Set of all devices hosting operator j

GRj
i

Data rate received by source operator j in IoT device
i

ARj
i

Arrival data rate for operator j hosted by device i
DRj

i
Departure data rate for operator j hosted by device i

λji Function that provides the arrival data rate of operators
that are not application source

Dj Demand in bytes per second of operator j
Sj Selectivity rate of operator j

P(j′, j) Probability of operator j′ send data to j
Rate(l) Data throughput of layer l
PT (j) Processing time for sink operator j
PP (j) Higher processing time path for sink operator j
Prv(j) Set of all operators that send messages to j

Net(i, k)
Function that returns the bandwidth between devices i
and k

a transformation on it (e.g., filtering, projection, convolution)
and produces another output stream. A stream flows between
operators until it reaches a data sink. The application can have

multiple data sinks where the data is stored or provided to a
user or external system. An operator j is a processing unit
composed of the tuple 〈Dj , Sj〉, where Dj is the processing
requirements for the operator j, and selectivity Sj is the
volume difference (in terms of number of messages and size
of each message) in the data stream between the arrival and
departure data rate.

The proposed model considers that a deployment plan
follows the structure of the Fog computing infrastructure and
splits the set of operators O into three deployment sequences,
one for each layer l of the Fog (i.e., IoT , Edge, Cloud)
as depicted in Fig. 3. This division is used to compute the
throughput in each layer and account for the network effect
between layers. As it is essential to understand how the
operators deployed in one layer interact with operators from
other layers, we employ two functions Sink(l) and Source(l).
The function Source(l) provides the set of operators that
receive data from operators in others layers, or from data
sources in the IoT layer. Sink(l) on the other hand provides
all operators of layer l that stream data to operators in other
layers, or to the application data sinks in the Cloud. The layer
of an operator j is given by `(j).

IoT sequence Edge sequence Cloud sequence

Sink(IoT)

Source(IoT)

Op 6 Op 7

Source(Edge)

Sink(Edge)

Op 8 Op 9 SNK

Source(Cloud)

Sink(Cloud)

Op 2

Op 1SRC

Op 3

Op 4

Op 5

Fig. 3. Deployment sequences for each layer of Fog computing.

We assume that the deployment plan assigns the first

operator of an application to the sequence of the IoT layer,
so trying to make the best use of the Fog infrastructure. The
rationale behind this assumption comes from the fact that the
first operator of the application receives data directly from the
data source. To maximize the throughput it should be deployed
as close as possible to the data source.

Therefore for operators in the subsequence Source(IoT)
the arrival rate ARji (Eq. 1) is equal to the data generation rate
GRji in Bytes/s, of the number and size of generated messages.
For the remaining operators, in any device i ∈ 〈D ∪H〉, the
ARji considers the parallelism level of operator j (i.e., how
many operator instances/tasks are executed) and the departure
rate of all previous operators that send data to j (Prv(j)).
Function M(j) gives a map 〈operator, device〉 for all the
deployed instances of operator j; thus the parallelism level
of j is given by |M(j)|. The departure rate of all previous
operators that send data to j is given by λji (Eq. 2), and if j
and a previous operator j′ are on the same device, simply the
departure rate of j′ is considered. Otherwise, it should take
into account the departure rate of the devices deploying j′

(M(j′)). Moreover, since j′ could send its output stream to
various operators, the model considers the probability P(j′, j)
that j′ will send the outgoing stream to j.

ARji =

{
GRji , if j ∈ Source(IoT)
λj
i

|M(j)| otherwise
(1)

λji =
∑

j′∈Prv(j)

∑
k∈M(j′)

Sj,j
′

i,k (2)

Sj,j
′

i,k =

P(j
′, j)×DRj

′

k if i = k

min

[
P(j′,j)×DRj′

k

Max(PT (j′),1) , Net(k, i)

]
otherwise

(3)

The departure rate DRji (Eq. 4) applies the selectivity Sj on
the arrival rate, changing the number and size of messages in
the income stream to produce the output stream. As a product
of the arrival rate, the departure rate is also given in Bytes/s.

DRji = ARji × (1− Sj) (4)

The application graph contains several paths between
sources and sinks, and they can be decomposed as pipelines
to be executed in parallel. To compute the throughput of each
layer l the model applies the same notion, but considering the
paths between Source(l) and Sink(l), where the throughput
of each operator j ∈ Sink(l) considers the path with high
processing time from the Source(l) to the operator itself. For
instance, in the application in Fig. 3 the throughput of the Edge
layer is based on the throughput of Op 7, and the paths to this
operator are Op 4 → Op 6 → Op 7 and Op 5 → Op 7,
then it is chosen the one with high processing time. In the
model this process of identifying and selecting the path with
high processing time, from the Source(l) to j ∈ Sink(l), is
realized by function PP (j).

Op 4 Op 6 Op 7
3t

Op 4 Op 6 Op 7

1t 2t

1t 3t 2t

M1

M2

Time Difference

Fig. 4. Difference between the finish processing times of two consecutive
messages.

After selecting the path with high processing time, the
model computes the time difference between the departure
timestamp of two consecutive messages, from the last operator
on the path. Let us assume that for the throughput of the Edge
layer of the application in Fig. 3 the path with high processing
time is Op 4→ Op 6→ Op 7, the pipeline execution of this
path is depicted in Fig. 4. The message M1 arrives at Op 4 and
is processed during 1 time unit, after that is handed to Op 6.
While Op 6 starts to process M1, Op 4 starts to process M2.
After 1 time unit Op 4 finishes M2 and stores it in a queue
while Op 6 finishes processing M1. Both messages leave the
path in Op 7, so we compute the time difference with the
departure timestamp from this operator.

This time difference is given by PT (j)(Eq. 5), which is
used to compute the throughput for operator j. The model
computes this time difference for the arrival rate of the first
operator of the path; therefore if this time difference is lower
than one second, this means that operator j is able to process
more than the arrival rate. However, since the throughput is the
departure rate produced in one second, we consider one second
as the minimum time difference between two consecutive
messages.

PT (j) =
AR

first(PP (j))

Mfirst(PP (j))

Dfirst(PP (j))
+Q(j)−

∑
k∈PP (j)

ARkMk

Dk (5)

where Q(j) is given by:

Q(j) =
∑

k∈PP (j)


ARk

Mk

Dk k = last(PP (j))

max

[
ARk

Mk

Dk ,
ARk+1

Mk+1

Dk+1

]
otherwise

(6)

The proposed model computes the throughput for each
layer l (Eq. 7), based on the departure rate of all operators
j ∈ Sink(j) and the time difference PT (j). Since the
throughput is based on the departure rate, it is given in
Bytes/s. The throughput of the DSP application is given by
Rate(Cloud).

Rate(l) =
∑

j∈Sink(l)

DRjM(j)

max(PT (j), 1)
(7)

IV. EXPERIMENTAL SETUP

To evaluate the proposed model we use a real testbed as
our Fog environment on which we deploy a DSP application.

EdgeIoT Devices Cloud

100 Mb/s

10 Gb/s

Layer 1 Layer 2 Layer 3

Gateway OVS-1 OVS-2

IoT 1

IoT 2

IoT n

100 Mb/s
10

0
M
b/

s
10 Gb/s

10
 G

b/
s

10 G
b/s

Fig. 5. Experimental Fog Infrastructure.

We compare the throughput obtained by the model against
the throughput achieved by deploying the application on the
testbed.

A. Infrastructure

The Fog computing testbed depicted in Fig. 5 is organized
as follows. The IoT layer comprises 2 Raspberry PI’s 3 (i.e.,
ARMv7 at 1.2 GHz and 1 GB of RAM), both connected
to a gateway via a 100Mb/s network and latency of 0.4ms
[10]. The gateway is a server with an Intel® Xeon® E5-2620
at 2.10GHz and 64GB RAM, where the operators in the
subsequence Sink(IoT) of the IoT layer will publish their
output stream to be read by the subsequence Source(edge)
on the Edge layer.

The Edge and Cloud layers contain four servers with an
Intel® Xeon® X5550 at 2.67GHz with 32GB RAM and a
NetFPGA card with four 10Gb/s ports. Two of those servers
are used for the operator deployment, one in each layer (Edge
and Cloud), and the two remaining servers are used as routers
for the layers, running instances of Open vSwitch1 2.9 (OVS).
The servers and their respective OVS are connected by 10Gb/s
links, but due to limitations of the NetFPGA driver and from
OVS the maximum bandwidth achieved is '2.3Gb/s. The
latency between the gateway and the edge server is configured
as '24ms and the latency between the edge server and the
Cloud is '50ms [10].

B. Stream Processing Application

The proposed model estimates the throughput based on a
deployment plan for a DSP application. In this experiment we
use a sentiment analysis application [11], which evaluates the
positive or negative sentiment associated with a tweet. The
application structure is depicted in Fig. 6. The data source of
the application is a data set with 50K tweets as JSON-format
files with sizes ranging from 4 to 24 KB. The tweet data set
is recursively read during the application execution. The data
sink stores the data produced by the last operator.

The application is composed of a pipeline with five op-
erators. Each operator is coupled with a queue that works
as a buffer for the output data stream that will be read by
the following operator in a First In First Out (FIFO) manner.
The queues are implemented with Mosquitto MQTT2. The

1https://www.openvswitch.org/
2https://mosquitto.org/

operators are implemented in Java using the DSP framework
Apache Edgent3. Each operator is executed as an independent
instance of the Apache Edgent framework. The selectivity for
operators 1 to 5 are 9.5%, 0.4%, 8.7%, 52.4% and 117.1%
respectively, and the transformation on the data stream applied
by each operator are described as follows:
• Language Filter (Op 1): filters and discards every tweet

that is not in English.
• Special Characters Filter (Op 2): removes non-letter

characters from the tweet text.
• Non-sentiment Words Filter (Op 3): removes irrelevant

or non-sentiment words (e.g. the, and, or).
• Positive/Negative Words Counter (Op 4): creates a

score and counts the number of words with positive and
negative sentiments.

• Scorer (Op 5): scores the sentiment of the tweet based
on the number of positive and negative words.

Op 1 Op 2 Op 3 Op 5Op 4

SRC SNK

ScorerLanguage
Filter

Non-sentiment
Word Filter

Positive/Negative
Counter

Data
Source

Special
Characters

Filter

Data
Sink

Fig. 6. The operator graph for the sentiment analysis application.

C. Scenarios
We designed six scenarios to compare the estimated and the

actual throughput (Table II), each with a different deployment
plan for the sentiment analysis application (Fig. 6) consider-
ing the infrastructure (Fig. 5). The deployment proposal for
each scenario differs regarding the operator assigned for the
sequence of each layer. Data source and data sink have fixed
position at the IoT and Cloud sequence respectively. Also, each
sequence has at least one operator; therefore Op 1 is always in
the IoT sequence, and Op 5 is always in the Cloud sequence.
The sequence of each layer is replicated for all devices of the
layer.

The processing requirements of the operators change in
each scenario. The requirements are defined after profiling the
application execution according to the deployment plan for
the scenario, where the processing capacities of the resources
are shared among the operators deployed on the device. Since
Op 1 reads the tweets from a data set, the rate at which it
reads tweets is affected by the processing requirements of the
operator, hence the generation rates change according to the
scenario.

The evaluation executed the DSP application for 1440
seconds for each scenario. This time is large enough for the
application to execute beyond the warm-up phase, a period
needed for the application to achieve a state where all the
operators are processing messages at a given time. From
observation, the noise created by the warm up phase always
lasts less than 300 seconds. Therefore, to ensure that we
collect data during the stable phase, we disregard the first 300
seconds.

3http://edgent.apache.org/

TABLE II
DEPLOYMENT SCENARIOS.

Scenario IoT Edge Cloud
1 Op 1 Op 2 Op 3 Op 4 Op 5
2 Op 1 Op 2 Op 3 Op 4 Op 5
3 Op 1 Op 2 Op 3 Op 4 Op 5
4 Op 1 Op 2 Op 3 Op 4 Op 5
5 Op 1 Op 2 Op 3 Op 4 Op 5
6 Op 1 Op 2 Op 3 Op 4 Op 5

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
0

10

20

30

40

50

60

M
ea

n
Th

ro
ug

hp
ut

 (M
B/

s)

Throughput
Estimated

Fig. 7. Mean throughput and estimation.

V. PERFORMANCE EVALUATION RESULTS

The average of actual and estimated throughput is depicted
in Fig. 7. Once the system reaches a stable state, the through-
put does not vary much. The estimated throughput is close to
the actual throughput. Even in the first scenario that produced
a very low throughput, the model estimated a close value.

The reason for the low throughput under the first scenario
is that the deployment plan deploys three operators in a device
with constrained capacity (i.e. a Raspberry PI). The third
operator in particular, that removes non-sentimental words
from tweets, has a significant impact on the application perfor-
mance. It is very demanding in terms of processing capacity.
As it runs on a constrained device, it affects the throughput
of the whole application. This reinforces the importance of
setting the right requirements for each operator.

Another indicator of the quality of the proposed model is the
error of less than 1% in the difference between the estimation
and the collected values. We also computed the mean square
error to highlight estimated outliers and verify the quality of
results. The lower the values the better the quality of the
estimation. As depicted in Fig. 8, our estimation achieved low
values reinforcing the precision on the proposed model.

VI. RELATED WORK

The Cloud is often the infrastructure of choice for deploying
DSP applications. The DICE framework [16] is a tool to help

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
0

10 13

10 12
10 11

10 10

10 9

10 8
10 7

10 6
10 5

10 4

10 3

10 2
10 1

M
SE

0.013
0.155 0.108 0.088 0.075 0.06

Fig. 8. Mean square error.

in the development of analytical applications to Cloud deploy-
ment, including DSP for the Storm framework. The framework
also provides a module for estimating application performance
based on a deployment plan, but without estimating require-
ments to improve the performance and disregarding network
constraints. Sun and Rui [12] estimate the parallelism level of
operators to handle a given event arrival rate whilst respecting
the end-to-end latency. They deal with load variations and
reschedule operators in the critical path. Instead of estimating
the parallelism level of a operators, Pacaci and Özsu [13]
propose to balance the load between different instances of a
given operator. Li et al. [14] propose a framework to predict
the end-to-end latency of DSP applications. The prediction
is given by a Support Vector Regression model based on
collected statistics from a round-robin deployment. The predic-
tion determines the parallelism level and the position of each
operator, but not the bandwidth and processing requirements.
Souza et al. [15] propose an architecture for deploying DSP
applications where the operators are adapted to create event
batches to increase the application throughput. The batch size
along with the deployment are constant adapted based on the
load and execution metrics.

Existing work also focuses on providing elasticity on the
Cloud. After profiling the execution of a DSP application, De
Matteis and Mencagli [17] determine the proper parallelism
level for each operator in order to handle load variations.
Floratou et al. [18] introduce an architecture for automatically
scaling-in and out the requirements of the DSP application
in such a way that maximizes the throughput without over-
provisioning, while respecting the requirements of a user-
defined policy. Runsewe and Samaan [19] evaluate the his-
torical performance of an application and, based on a layered
multi-dimensional hidden Markov model, determine the re-
quired resources to scale up or down the application based on
the arrival rate load. Sun et al. [6] presented a similar solution,
where after profiling the execution of the application, the DSP
graph is optimized in terms of processing requirements and

parallelism level of operators.
With respect to Fog computing, Sajjad et al. [20] propose

a deployment solution to offload operators from the Cloud
to minimize the end-to-end latency and costs of using this
infrastructure without accounting for processing requirements.
Only the parallelism level of each operator is provided by
the user. Cardellini et al. [5] present a deployment solution
for Fog computing that estimates the best parallelism level
of each operator, but requires user provision of processing
requirements for each operator. Even though it is not DSP
oriented, another work [21] proposes a framework for de-
ploying IoT applications on the Fog, but the generality of
the proposed model does not account for characteristics of
DSP applications, leading to inefficient deployments. The
proposed model accounts for estimates of the throughput of
DSP applications deployed only on the Cloud or exploring
the location-aware from Fog, considering characteristics of the
application and the infrastructure. This model could be applied
to many of the presented deployment solutions to estimate
parallelism level, processing and bandwidth requirements to
maximize the application throughput.

VII. CONCLUSION

The deployment quality of DSP applications is measured
either by throughput or end-to-end latency. These are metrics
that the deployment solutions aim to improve, and this im-
provement is limited by the quality of the model employed to
the metric. When considering a distributed environment such
as Fog computing, building these models becomes challenging.
In this work, we presented a throughput model that accounts
for characteristics of Fog computing, the DSP application and
how they interact to produce the throughput.

Results of experiments realized in a real environment show
that the proposed model estimates the throughput with less
than 1% error. This result is an indication that the proposed
model considers most of the variables affecting the through-
out, and if applied to deployment solutions will result in
deployments with high throughout. Even further, this precision
opens the possibility for this model to be used by deployment
solutions to maximize the throughput, by estimating the exact
parallelism level, processing and bandwidth requirements for
the operators. These are requirements provided by users with
no or little expertise. The next step on this research is to use
this model as the cornerstone for a deployment solution that
estimates the requirements to maximize the throughput based
on characteristics of the DSP application.

ACKNOWLEDGEMENTS

This work is partially supported by “Fonds Recherche” via
the emerging project entitled “Algorithmes pour le placement
et la reconfiguration des services de traitement de flux de
données pour des applications IoT”.

REFERENCES

[1] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
replication and placement for distributed stream processing systems,”
ACM SIGMETRICS Performance Evaluation Review, vol. 44, no. 4, pp.
11–22, 2017.

[2] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems
to scale-in and scale-out on-demand,” in 2016 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2016, pp. 22–31.

[3] E. G. Renart, J. Diaz-Montes, and M. Parashar, “Data-driven stream
processing at the edge,” in Fog and Edge Computing (ICFEC), 2017
IEEE 1st International Conference on. IEEE, 2017, pp. 31–40.

[4] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and sustainable load balancing of edge data centers
in fog computing,” IEEE Communications Magazine, vol. 56, no. 5, pp.
60–65, 2018.

[5] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Joint oper-
ator replication and placement optimization for distributed streaming
applications,” in proceedings of the 10th EAI International Conference
on Performance Evaluation Methodologies and Tools on 10th EAI
International Conference on Performance Evaluation Methodologies and
Tools. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2017, pp. 263–270.

[6] D. Sun, H. Yan, S. Gao, X. Liu, and R. Buyya, “Rethinking elastic
online scheduling of big data streaming applications over high-velocity
continuous data streams,” The Journal of Supercomputing, vol. 74, no. 2,
pp. 615–636, 2018.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 34, no. 4. ACM, 2004, pp. 15–26.

[8] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[9] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,” in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems. ACM, 2016, pp. 69–80.

[10] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on
mobile applications,” in Proceedings of the 7th ACM SIGOPS Asia-
Pacific Workshop on Systems. ACM, 2016, p. 5.

[11] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
and Z. Zhang, “Timestream: Reliable stream computation in the cloud,”
in Proceedings of the 8th ACM European Conference on Computer
Systems. ACM, 2013, pp. 1–14.

[12] D. Sun and R. Huang, “A stable online scheduling strategy for real-
time stream computing over fluctuating big data streams,” IEEE Access,
vol. 4, pp. 8593–8607, 2016.

[13] A. Pacaci and M. T. Özsu, “Distribution-aware stream partitioning for
distributed stream processing systems,” in Proceedings of the 5th ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and
Beyond. ACM, 2018, p. 6.

[14] T. Li, J. Tang, and J. Xu, “Performance modeling and predictive
scheduling for distributed stream data processing,” IEEE Transactions
on Big Data, vol. 2, no. 4, pp. 353–364, 2016.

[15] P. R. de Souza, K. J. Matteussi, J. C. dos Anjos, J. D. dos Santos,
C. F. R. Geyer, and A. da Silva Veith, “Aten: A dispatcher for big
data applications in heterogeneous systems,” in 2018 International
Conference on High Performance Computing & Simulation (HPCS).
IEEE, 2018, pp. 585–592.

[16] “Dice consortium tech. reports,” 2016-2017. [Online]. Available:
http://www.dice-h2020.eu/deliverables/

[17] T. De Matteis and G. Mencagli, “Proactive elasticity and energy aware-
ness in data stream processing,” Journal of Systems and Software, vol.
127, pp. 302–319, 2017.

[18] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: self-regulating stream processing in heron,” Proceedings of
the VLDB Endowment, vol. 10, no. 12, pp. 1825–1836, 2017.

[19] O. Runsewe and N. Samaan, “Cloud resource scaling for big data
streaming applications using a layered multi-dimensional hidden markov
model,” in Cluster, Cloud and Grid Computing (CCGRID), 2017 17th
IEEE/ACM International Symposium on. IEEE, 2017, pp. 848–857.

[20] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in Edge Computing (SEC), IEEE/ACM Sympo-
sium on. IEEE, 2016, pp. 168–178.

[21] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos, “Fog based
framework for iot service provisioning,” in 2019 16th IEEE Annual
Consumer Communications & Networking Conference (CCNC). IEEE,
2019, pp. 1–6.

