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Abstract—As a first step to Antarctic Blue Whale monitoring,
a new method based on a passive application of the Stochastic
Matched Filter (SMF) is developed. To perform Z-call detection
in noisy environment, improvements on the classical SMF re-
quirements are proposed. The signal’s reference is adjusted, the
background noise estimation is reevaluated to avoid operator’s
selection, and the time-dependent Signal to Noise Ratio (SNR)
estimation is revised by time-frequency analysis. To highlight the
SMF’s robustness against noise, it is applied on a Ocean Bottom
Seismometers hydrophone-recorded data and compared to the
classical Matched Filter: the output’s SNR is maximized and the
false alarm drastically decreased.

I. INTRODUCTION

Because of historic industrial whaling, blue whales have
been considered endangered and protected internationally
since 1965 [1]. The matter is now arousing worldwide
enthusiasm in monitoring remaining whales, understanding
their social behavior and interactions, following their
displacements and finally aiming to evaluate their population.
As for other blue whales [1],[2],[3], Passive Acoustic
Monitoring (PAM) seems to be a very efficient tool to
develop automatic Antarctic Blue Whale calls (Z-calls)
detection algorithms and then facilitate large data analysis
to monitor the specie in vast areas. They are mostly based
on signal cross-correlation theory: matched filters have been
applied [4], as well as spectrogram-based template matching
correlation [3], or more recently subspace-detection algorithm
[5],[6]. However, those methods do not perform well at
low Signal to Noise Ratio (SNR), whether it is due to
high background noise environment (e.g. boat noise or high
intensity vocalizing period) or distant call detection.

Z-call monitoring is usually performed using acoustic
measurements in the SOund Fixing And Ranging (SOFAR)
channel [2],[3],[6]. However, data recorded by three-
component Ocean Bottom Seismometers (OBS) and
hydrophone (OBSh) landed on the sea-floor, cover the desired
frequency range. Although OBS deployed by geologists
aim at exploring the deep Earth, data can be used for blue
whale monitoring as Dunn and Hernandez [1] in the Eastern
tropical Pacific Ocean, Franck and Ferris [7] in the Solomon
sea, or Harris et al. [8] in the North-East of the Atlantic Ocean.

Because of numerous noise sources e.g. high energy broad-
band noises due to seismic activity, boats spectrum etc., data
analysis in the Z-call frequency band is quite challenging. To
overcome fore-mentioned method’s limitations a new approach
based on the Stochastic Matched Filter (SMF) is proposed.
The SMF is an extension of the Matched Filter (MF) for
random signals corrupted by colored noise. The interest stands
in its efficiency for detection and classification tasks. After
the classical method presentation in § II, improvements on the
signal’s reference, the background noise evaluation and the
time-varying SNR estimation are described and illustrated in
§ III. The new method is tested on a representative dataset (in
terms of noise environment and signal variety) recorded by
a RHUM-RUM OBSh [9],[10], deployed at ⇠ 4000 m depth
on a mid-ocean ridge in the South West Indian ocean. Sound
records are sampled at f

s

= 100 Hz. One way to use the filter
output results to estimate calls time of arrival is presented in
§ IV.

II. SMF PRINCIPLE

The SMF, introduced by Cavassillas [11], is an extension
of the MF for random signal in colored noise. Different
improvements have been reported in [12], where it is presented
as a time-varying linear filter. In addition of being used as an
active sonar signal processing method, recent work [13],[14]
dealt with impulsive noise detection e.g. killer whale clicks,
suggesting the possibility of a passive approach. The interest
for the SMF comes from its ability to achieve both detection
and classification at once. This method searches through time
for spectral similarities between a reference signal and the
observation. It maximizes the filter’s output. However, an
accurate background noise estimation is needed, that can be
challenging in a passive context. The following development
presents the classical SMF approach that will be extended in
§ III to a passive processing tool dedicated to Z-call detection.

The observation of size M , is considered as an additive
superposition of signal and noise as Z[m] = �

S

S0[m] +

�

N

N0[m], with respectively S0[m] and N0[m] their zero-
mean centered realizations and �

2
S,N

the associated power
[12]. The classical SMF can be decomposed as a preprocessing
stage as shown by Fig. 1 block diagram, followed with an
on-line procedure illustrated in Fig. 2. According to Fig. 1,
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Fig. 2. Scheme of the SMF on-line processing.

the method requires both signal and noise references for the
preprocessing stage such as �

S0S0 and �

N0N0 , respectively the
signal’s and noise’s covariance matrices. These inputs are used
in the following Generalized Eigenvalue Problem (GEP) [12]:

�

S0S0�m

= �

m

�

N0N0�m

, (1)

to calculate the linear short band filter bank h using �

m

eigen-
vectors as well as the �

m

eigenvalues. The current observation
Z

k

, where k denotes the sliding window’s index, and the
previously computed parameters, are then performed on-line
to estimate the reconstructed observation ˜

S

Q[k][k] (Fig. 2). It
is important to notice that here the key parameter, the time-
dependent SNR ⇢

k

, is estimated from the power ratio

⇢

k

=

�

2
Zk

� �

2
N

�

2
N

, (2)

providing the real-time parameter to choose how to filter Z
k

.
Since a low ⇢

k

indicates the absence of the signal in the
observation, it would realize the first filter selection only,
inducing a strong filtering operation that cancels the noise.
A contario, a high ⇢

k

, mirroring the presence of the signal,
would select the maximum number of filters: the operation
would be then equivalent to a signal-bandpass filtering of the
observation.

To conclude, the classical SMF requires :
- a background noise sample, long enough to be conside-
red as a reference or an equivalent noise simulation,

- a prior knowledge of the expected signal’s spectral
content and,

- SNR estimation tools.

III. IMPROVED SMF FOR Z-CALL PASSIVE DETECTION

While section II presents the classical theory of the SMF, it
is introduced here as an innovative tool for Antarctic blue
whale detection in a passive context. The signal reference
is first adjusted to fit the problematic, then the background
noise estimation is reassessed and a new time-varying SNR
evaluation method is presented.

A. Signal’s reference: Antarctic blue whale call
Antarctic blue whale (Balaenoptera musculus intermedia)

highly recognizable time-frequency call pattern, as presented
in Fig 3b, gave it the name of Z-call. It consists of 3 short
units composing the whole call lasting about 20 s, repeated
about every 60 s in a phrase. Those phrases can occur from
few minutes to several hours. Z-calls are composed from :

- unit A, the highest tonal part of the call with frequency
between 25.5 and 27 Hz, lasting about 8 s,

- unit B, a ⇠ 2 s-long down sweep from unit A to C and,
- unit C, a slightly modulated 8 s-long tone between 17

and 20 Hz.
Antarctic blue whale call levels in the Indian ocean have
recently been evaluated for the [17�30] Hz frequency band at
179± 5 dB ref.1µPa@1 m [15]. According to Fig. 3a, unit A
carries more energy than the rest of the call that causes differed
arrival of acoustic paths producing Fig. 3b persisting ”trail”
even after the down-sweep. Socheleau et al. [5] presented a Z-
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Fig. 3. Z-call: (a) spectrum showing unit A and C (b) spectrogram
and parametric model with length of the Z-call T

Zcall

= 20 s, f
c

=
22.6 Hz, L = [�4.5;�4;�3.5] Hz, U = [3.2; 3.6; 4] Hz, M =
[TZcall

2 ; (TZcall+0.5)
2 ; (TZcall+1)

2 ] s and ↵ = 1.8.

call parametric model, for frequency modulated signals, based
on the complex form of an acoustic signal s(n) = a(n)e

j'(n),
with a(n) the time-varying amplitude and '(n) the time-
varying phase. From the definition of the instantaneous fre-
quency and its parametric expression

f(t) = f

c

+

1

2⇡

d'(t)
dt

= f

c

+ L+

U � L

1 + e

↵(t�M)
, (3)

it is possible to derive the expression of the time-varying phase
'(n) as

'(n) = 2⇡

✓
L

n

f

s

+

U � L

↵

ln

✓
1 + e

�↵M

1 + e

↵( n
fs

�M)

◆◆
+'0, (4)

where f

c

is the central frequency in the [15 � 30] Hz band-
width, L and U are respectively linked to the lower and upper
asymptotes, M represents the time shift and ↵ the grow rate.
To generate the most accurate signal reference, providing for
the different type of calls, it is simulated here as the summation
of several frequency modulated signals, with parameters set as
shown in Fig. 3b. This ”signature” is then used to compute
�

S0S0 as one of the input parameters of the GEP eq. (1).

B. Background noise estimation
Classical SMF noise estimation (§ II) rests on the strong

assumptions that a portion of the observation can be signal-
free. Although it is quite easy to manage when considering
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human-produced sounds e.g. active sonar emission, PAM does
not benefit of the same ease. Useful signal can occur anytime.
In this direction, an overall background noise estimation is
realized using the outliers-smoothing properties of median
filters. It is applied on each frequency canal of the K-lengthen
observation’s Short-Time Fourier Transform (STFT) P (k, f),
through a w sliding window of greater length than a call
duration. The result is noted P

med

(k, f). Considering the
60 min-long observation containing both signal of interest
and strong diverse noises displayed in Fig. 6a, the corres-
ponding spectrogram |P

med

(k, f)|

2 is plotted on Fig. 4a.
Resulting background noise covariance matrices estimation
�

N0N0 before and after median filter application are displayed
in Fig. 4b and Fig. 4c respectively. It highlights that this stage
is equivalent to a whitening of the noise [16].
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Fig. 4. Effect of the median filter on the background noise estimation when
applied to the observation in Fig.6a. (a) |P

med

(k, f)|2 spectrogram, w =
65 s, (b) Classical SMF �

N0N0 , (c) Median filter SMF �
N0N0 .

Considering classical SMF requirements, this processing
stage is a step forward to a more autonomous method, by-
passing the operator background noise selection: the SMF
becomes suitable for passive detection. The whitening pro-
cess provides a time-independent and robust computation of
�

N0N0 . Since both inputs of the GEP (eq. (1)) are now fixed,
it is possible to realize a definitive off-line computation of
the optimum filter bank with respect to the Z-call pattern.
Fig. 5 illustrates the frequency response of filters H1, H10 and
H

Qmax

, where H
Q

denotes the superposition of the Q-first
filters of the linear filter bank denoted h

Q

in § II, compared
to the spectral representation HOpt of the signal’s reference
(§ III-A). The first filter H1 is a short-band filter centered on
the call’s unit A (⇠ 26.3 Hz), containing most of the energy
of the Z-call. As the theory demonstrates in § II, the role
of the first filter is to maximize the output SNR; it cancels
the noise when the estimation of ⇢

k

indicates there is no
signal. The superposition of the first 10 filters H10 leads to
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Fig. 5. Spectrum of three filters (H1, H10, H
Qmax

) of the permanent filter
bank compared to the spectral representation of the reference signal (HOpt).

two slightly larger bandpass filters, respectively centered on
units A (⇠ 18.6 Hz) and C (⇠ 26.3 Hz) of the call. H

Qmax

represents the superposition of the maximum number of filters
that is applied when the estimated input ⇢

k

(see § III-C) is
high enough. The filter’s pattern is then close to HOpt. When
applied, it bandpass filters the observation in the exact signal
range. However, due to the influence of the background noise,
amplitudes do not match completely the reference’s signature,
especially between 22 Hz and 24 Hz, to maximize the output
SNR.

Again, the passive approach with real marine noise requires
some adjustments on the ⇢

k

evaluation to perform reliable
detection, as it is the well-known key parameter of the SMF.
They are presented in § III-C.

C. Time-dependant SNR calculation

The time-varying input SNR ⇢

k

is used as a decision
criterion on the proper number of filters to apply to a Z

observation. As a key parameter to the SMF, its estimate has
to be accurate. Yet, its classical definition (eq. (2)) does not
fit a low SNR passive context. To improve the sharpness of
its estimation when dealing with real underwater noises and
decrease the false alarm, ⇢

k

is completed with a frequency
criterion following P

med

(k, f) calculation. For every k obser-
vation sample, there are three different steps:

7! Step 1: The signal presence is quantified in the unit
A of the call frequency band, as the ratio

zcall

k

=

���������

max

f2A

P (k, f)

1
K

KP
k=1

P

med

(k, f

0
)

���������

, f

0
2 A. (5)

Instantaneous value P (k, f) compared to P

med

(k, f)

indicates the presence of a short-duration signal in unit A
frequency band as soon as the ratio is greater than one.
However, it does not differentiate Z-calls from seismic
noise.
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7! Step 2: A background noise estimation is realized out
of the frequency band of the Z-call as the ratio

trans

k

= max

f

����
P (k, f)

P

med

(k, f)

���� ,

f 2 [0, inf(C)[[] sup(A),

f

s

2

[.

(6)

aiming to prevent false alarm due to broadband noise.
7! Step 3: The time dependent SNR ⇢

k

, is then deter-
mined in dB as the ratio of (5) and (6) as

⇢

k

= 20 log

✓
zcall

k

trans

k

◆
. (7)

To perform detection, a threshold � is applied to ⇢

k

for
whole observation (K) duration, depending on the background
noise estimation as

� =

(
0 if M > 0

M elswise,
(8)

with M =

1
K

KP
k=1

(zcall

k

� trans

k

). Only positive values of

⇢

k

trigger the reconstruction of the observation.
Fig. 6a is representative of OBSh signals revealing boat

tonal noise that occurs for several hours with multiple har-
monics and broadband seismic activity that covers the Z-call
band. They last from few seconds to several minutes and carry
high energy. Seven Z-calls can be noticed on the spectrogram
however they are overlapped by seismic activity at 1.5 min
and 30 min. There might be some (distant) other type of whale
calls between 10 and 20 min.

Fig. 6 presents the difference between the former (eq. (2),
Fig. 6b) and the new frequency dependent (eq. (7), Fig. 6c)
estimation of ⇢

k

relative to the observation time-frequency
representation Fig. 6a. It highlights that the original calculation
of ⇢

k

(eq. (2)) does not achieve the expected operation: in
comparison to e.g. seismic broadband noise, the presence of Z-
calls does not significantly increase its estimated instantaneous
level. Consequently, the SMF using this estimation of ⇢

k

would not fit a passive detection problem with no signal
excess. However, the new method based on the median-filtered
STFT and introducing a frequency-dependence, increases the
⇢

k

on Z-calls but not on seismic noises. It is more suitable
to trigger detection even at low average SNR due to high
background noise environment or distant calls. The frequency
discrimination reduces the probability of false alarm and
increases the detection probability.
Basically, the main improvements to the SMF are:

- the expected signal’s time-frequency pattern is known
and modeled,

- no more need for background noise selection due to the
observation’s median-filter whitening and,

- the time-dependent SNR ⇢

k

estimation is revised by
time-frequency analysis.

In addition, changes on signal and noise references, lead to an
off-line calculation of a generalized h-filter bank that is more
robust and enhances the computational time.
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Fig. 6. (a) Spectrogram of the considered observation with |P (k, f)|2
Nfft = 2048 and overlap � = 95%. Broadband noise correspond to
earthquakes and tonal noise to ship noise. (b) & (c) Former and new time
varying SNR calculation. Visually checked Z-calls are denoted by red markers.

Now that every step of the SMF is optimized for a robust
detection of Z-calls in a passive context, section IV presents
a way to use the output of the SMF for calls time of arrival
estimation.

IV. TIME OF ARRIVAL CALCULATION

Input and output of the SMF can be compared in Fig. 7a.
On the SMF output, the observation is fully reconstructed in
the signal’s bandwidth (Fig. 5) for every marked Z-call despite
broadband seismic noises. It stresses both the influence of the
accurate estimation of ⇢

k

and the noise-canceling property
of the first filter. Fig. 7b displays the correlation maximum
(Corr.

max

) between the windowed input observation and the
signal’s reference described in § III-A, noted MF. It is to be
compared with Fig. 7c, the correlation maximum between the
windowed output of the SMF and the signal’s reference, noted
SMF + MF. Both of these results are plotted normalized so that
the maximum, the reference signal autocorrelation, is 1. Since
in both cases, 100% of Z-calls are detected, the false alarm rate
that is used to point up the benefit of the SMF: if a threshold is
set at 0.007 in Fig. 7b, 4 peaks are due to the seismic noise at
the MF output whereas the SMF + MF output Fig. 7c does not
generate false alarm. In addition of being able to compare the
results with the classical MF method, using correlation at the
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output of the SMF to create detection peaks can be useful for
similarities measurements. Also, it provides a systematic call
time of arrival estimation, first step to a multi-sensor approach,
to discriminate different whales paths for individual tracking
that can lead to an estimation of individuals in the region.

V. CONCLUSION

Several SMF improvements are presented to suit passive
detection of Antarctic blue whale Z-calls in noisy underwa-
ter environment. The signal’s reference [5] is updated from
spectrogram-analyzed OBSh data. A new method for back-
ground noise estimation, based on the observation’s median-
filtered STFT, bypasses the selection by an operator. As it
is assimilated to a whitening process, now both necessary
inputs loose their time dependency resulting in a definitive
off-line evaluation of the SMF’s linear filter bank. The key
parameter estimation of the time-varying SNR ⇢

k

is revised
from time-frequency analysis, with a frequency criterion that
reduces false alarms in presence of broadband high energy
seismic noise. Each step of the method’s changes is illustrated
to result in an application on a really noisy observation. The
new SMF’s output correlated with the signal’s reference is then
compared to the MF, showing greater robustness to impulsive
noise and drastic false alarm reduction. It can also be used

to measure similarities and determine call-time of arrivals,
providing new opportunities for automatic source localizations
and whale tracking. Next stage to this work is to evaluate
the method in terms of performances (ROC and performance
curves) by applying it to marked observations with different
background noise environments, including other types of calls
or in presence of distant Z-calls.
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