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Abstract

We introduce a new second-order inertial optimization method for machine learning
called INNA. It exploits the geometry of the loss function while only requiring stochastic
approximations of the function values and the generalized gradients. This makes INNA
fully implementable and adapted to large-scale optimization problems such as the training
of deep neural networks. The algorithm combines both gradient-descent and Newton-like
behaviors as well as inertia. We prove the convergence of INNA for most deep learning
problems. To do so, we provide a well-suited framework to analyze deep learning loss
functions involving tame optimization in which we study a continuous dynamical system
together with its discrete stochastic approximations. We prove sublinear convergence for the
continuous-time differential inclusion which underlies our algorithm. Additionally, we also
show how standard optimization mini-batch methods applied to non-smooth non-convex
problems can yield a certain type of spurious stationary points never discussed before. We
address this issue by providing a theoretical framework around the new idea of D-criticality;
we then give a simple asymptotic analysis of INNA. Our algorithm allows for using an
aggressive learning rate of o(1/ log k). From an empirical viewpoint, we show that INNA
returns competitive results with respect to state of the art (stochastic gradient descent,
ADAGRAD, ADAM) on popular deep learning benchmark problems.

Keywords. deep learning, non-convex optimization, second-order methods, dynamical systems,
stochastic optimization

1 Introduction
Can we devise a learning algorithm for general deep neural networks (DNNs) featuring inertia
and Newtonian directional intelligence only by means of backpropagation? In an optimization
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jargon: can we use second-order ideas in time and space for non-smooth non-convex optimization
by only using a subgradient oracle? Before providing some answers to this question, let us have
a glimpse at some of the fundamental optimization algorithms for training DNNs.

The backpropagation algorithm is, to this day, the fundamental block to compute gradients
in deep learning (DL). It is used in most instances of the Stochastic Gradient Descent (SGD)
algorithm (Robbins and Monro, 1951). The latter is powerful, flexible, capable of handling
large-size problems, noise, and further comes with theoretical guarantees of many kinds. We refer
to Bottou and Bousquet (2008), Moulines and Bach (2011) in a convex machine learning context
and Bottou et al. (2018) for a recent account highlighting the importance of DL applications
and their challenges. In the non-convex setting, recent works of Adil (2018), Davis et al. (2020)
follow the Ordinary Differential Equations (ODE) approach introduced in Ljung (1977), and
further developed in Benaïm (1999), Kushner and Yin (2003), Benaïm et al. (2005), Borkar
(2009). Two research directions have been explored in order to improve SGD’s training efficiency:

– using local geometry of empirical loss functions to obtain steeper descent directions,

– using past steps history to design larger step-sizes in the present.

The first approach is akin to quasi-Newton methods while the second revolves around Polyak’s
inertial method (Polyak, 1964). The latter is inspired by the following appealing mechanical
thought-experiment. Consider a heavy ball evolving on the graph of the loss (the loss landscape),
subject to gravity and stabilized by some friction effects. Friction generates energy dissipation,
so that the particle will eventually reach a steady state which one hopes to be a local minimum.
These two approaches are already present in the DL literature: among the most popular
algorithms for training DNNs, ADAGRAD (Duchi et al., 2011) features local geometrical aspects
while ADAM (Kingma and Ba, 2015) combines inertial ideas with step-sizes similar to the
ones of ADAGRAD. Stochastic Newton and quasi-Newton algorithms have been considered by
Martens (2010), Byrd et al. (2011, 2016) and recently reported to perform efficiently on several
problems (Berahas et al., 2020, Xu et al., 2020). The work of Wilson et al. (2017) demonstrates
that carefully tuned SGD and heavy-ball algorithms are competitive with concurrent methods.

However, deviating from the simplicity of SGD also comes with major challenges because of
the high dimensionality of DL problems and the severe absence of regularity in DL (differential
regularity is generally absent, but even weaker regularity such as semi-convexity or Clarke
regularity are not always available). All sorts of practical and theoretical hardships are met:
computing and even defining the Hessians is delicate, inverting them is unthinkable to this day,
first and second-order Taylor approximations are unavailable due to non-smoothness, and finally
one has to deal with “shocks” which are inherent to inertial approaches in a non-smooth context
(“corners” and “walls” in the landscape of the loss generate velocity discontinuity). This makes
in particular the study of the popular algorithms ADAGRAD and ADAM in full generality
quite difficult, with recent progresses reported in Barakat and Bianchi (2021).

Our approach is inspired by the following continuous-time dynamical system introduced in
Alvarez et al. (2002) and referred to as DIN (standing for “dynamical inertial Newton”):

θ̈(t)︸︷︷︸
Inertial term

+ α θ̇(t)︸ ︷︷ ︸
Friction term

+ β∇2J (θ(t))θ̇(t)︸ ︷︷ ︸
Newtonian effects

+ ∇J (θ(t))︸ ︷︷ ︸
Gravity effect

= 0, for t ∈ [0,+∞), (1)

where t is the time parameter which acts as a continuous epoch counter, J is a given loss
function (e.g., the empirical loss in DL applications), for now assumed C2 (twice-differentiable),
with gradient ∇J and Hessian ∇2J . It can be shown that solutions to (1) converge to critical
points of J (Alvarez et al., 2002). As such the discretization of (1) can support the design of
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algorithms that optimize J and that leverage inertial properties with Newton’s method. To
adapt this dynamics to DL we must first overcome the computational or conceptual difficulties
raised by the second-order objects θ̈ and ∇2J (θ) appearing in (1). To do this, we propose in
this paper to combine a phase-space lifting method introduced in Alvarez et al. (2002) with
the use of Clarke subdifferential ∂J . Clarke subdifferential defines a notion of differentiability
for non-convex and non-smooth functions. This approach results in the study of a first-order
differential inclusion in place of (1), namely,{

θ̇(t) + β∂J (θ(t)) +(α− 1
β
)θ(t) + 1

β
ψ(t) 3 0

ψ̇(t) +(α− 1
β
)θ(t) + 1

β
ψ(t) 3 0

, for a.e. t ∈ (0,+∞). (2)

This differential inclusion can then be discretized to obtain the practical algorithm INNA that is
introduced in Section 2, together with a rigorous presentation of the concepts mentioned above.

Computation of the (sub)gradients and convergence proofs (in batch or mini-batch settings)
typically rely on the sum-rule in smooth or convex settings, i.e., ∂(J1 + J2) = ∂J1 + ∂J2.
Unfortunately this sum-rule does not hold in general in the non-convex setting using the
standard Clarke subdifferential. Yet, many DL studies ignore the failure of the sum rule:
they use it in practice, but circumvent the theoretical problem by modeling their method
through simple dynamics (e.g., smooth or convex). We tackle this difficulty as is, and show
that such practice can create additional spurious stationary points that are not Clarke-critical.
To address this question, we introduce the notion of D-criticality. It is less stringent than
Clarke-criticality and it describes more accurately real-world implementation. We then show
convergence of INNA to such D-critical points. Our theoretical results are general, simple
and allow for aggressive step-sizes in o(1/ log k). We first provide adequate calculus rules and
tame non-smooth Sard’s-like results for the new steady states we introduced. We then combine
these results with a Lyapunov analysis from Alvarez et al. (2002) and the differential inclusion
approximation method (Benaïm et al., 2005) to characterize the asymptotics of our algorithm
similarly to Davis et al. (2020), Adil (2018). This provides a strong theoretical ground to our
study since we can prove that our method converges to a connected component of the set of
steady states even for networks with ReLU or other non-smooth activation functions. For the
smooth deterministic dynamics, we also show that convergence in values is of the form O(1/t)
where t is the running time. For doing so we provide a general result for the solutions of a
family of differential inclusions having a certain type of favorable Lyapunov functions.

Our algorithm INNA shows great efficiency in practice. It has similar computational
complexity to state-of-the-art methods SGD, ADAGRAD and ADAM, often achieves better
training accuracy and shows good robustness to hyper-parameters selection. INNA can avoid
parasitic oscillations and produce acceleration; a first illustration of the behavior of the induced
dynamics is given in Figure 1 for a simple non-smooth and non-convex function in R2.

The rest of the paper is organized as follows. INNA is introduced in details in Section 2 and
its convergence is established in Section 3. Convergence rates of the underlying continuous-time
differential inclusion are obtained in Section 4. Section 5 describes experimental DL results on
synthetic and real data sets (MNIST, CIFAR-10, CIFAR-100).

2 INNA: an Inertial Newton Algorithm for Deep Learning
We first introduce our functional framework and then we describe step by step the process of
building INNA from (1).
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Figure 1: Illustration of INNA applied to the non-smooth function J (θ1, θ2) = 100(θ2 − |θ1|)2 +
|1− θ1|. Subplots (a-c) represent the trajectories of the parameters θ1 and θ2 in R2 for three
choices of hyper-parameters α and β, see (1) for an intuitive explanation. Subplot (d) displays
the values of the objective function J (θ1, θ2) for the three settings considered.

2.1 Neural Networks with Lipschitz Continuous Prediction Function
and Loss Functions

We consider DNNs of a general type represented by a function f : (x, θ) ∈ RM × RP 7→ y ∈ RD

that is locally Lipschitz continuous in θ. This includes for instance feed-forward, convolutional or
residual networks used with ReLU, sigmoid, or tanh activation functions. Recall that a function
F : RP → R is locally Lipschitz continuous, if for any θ ∈ RP , there exists a neighborhood V of
θ and a constant C > 0 such that for any θ1, θ2 ∈ V ,

|F (θ1)− F (θ2)| ≤ C ‖θ1 − θ2‖ ,

where ‖·‖ is any norm on RP . A function F : RP → RD is locally Lipschitz continuous if each
of its coordinates is locally Lipschitz continuous. The variable θ ∈ RP is the parameter of the
model (P can be very large), while x ∈ RM and y ∈ RD represent input and output data. For
instance, the vector x may embody an image while y is a label explaining its content. Consider
further a data set of N samples (xn, yn)n=1,...,N . Training the network amounts to finding a
value of the parameter θ such that, for each input data xn of the data set, the output f(xn, θ)
of the model predicts the real value yn with good accuracy. To do so, we follow the traditional
approach of minimizing an empirical risk loss function,

RP 3 θ 7→ J (θ) =
N∑
n=1

l(f(xn, θ), yn), (3)

4



where l : RD × RD → R is a locally Lipschitz continuous dissimilarity measure. In the sequel,
for n ≥ 1, we will sometimes denote by Jn the n-th term of the sum: Jn(θ) , l(f(xn, θ), yn),
so that J =

∑N
n=1 Jn. Despite the non-smoothness and the non-convexity of typical DL loss

functions, they generally possess a very strong property sometimes called tameness. We now
introduce this notion which is essential to obtain the convergence results of Section 3.

2.2 Neural Networks and Tameness in a Nutshell

Tameness refers to an ubiquitous geometrical property of loss functions and constraints encom-
passing most finite dimensional optimization problems met in practice. Prominent classes of
tame objects are piecewise-linear or piecewise-polynomial objects (with finitely many pieces),
and more generally, semi-algebraic objects. However, the notion is much more general, as we
intend to convey below. The formal definition is given at the end of this subsection (Definition 1).

Informally, sets or functions are called tame when they can be described by a finite number
of basic formulas, inequalities, or Boolean operations involving standard functions such as
polynomial, exponential, or max functions. We refer to Attouch et al. (2010) for illustrations,
recipes and examples within a general optimization setting or Davis et al. (2020) for illustrations
in the context of neural networks. The reader is referred to Van den Dries (1998), Coste (2000),
Shiota (2012) for foundational material. To apprehend the strength behind tameness it is
convenient to remember that it models non-smoothness by confining the study to sets and
functions which are union of smooth pieces. This is the so-called stratification property of tame
sets and functions. It was this property which motivated the term of tame topology,1 see Van
den Dries (1998). In a non-convex optimization settings, the stratification property is crucial to
generalize qualitative algorithmic results to non-smooth objects.

Most finite dimensional DL optimization models we are aware of yield tame loss functions
J . To understand this assertion and illustrate the wide scope of tameness assumptions, let
us provide concrete examples (see also Davis et al. 2020). Assume that the DNNs under
consideration are built from the following traditional components:

– the network architecture describing f is fixed with an arbitrary number of layers of arbitrary
dimensions and arbitrary Directed Acyclic Graph (DAG) representing computations,

– the activation functions are among classical ones: ReLU, sigmoid, SQNL, RReLU, tanh,
APL, soft plus, soft clipping, and many others including multivariate activations (norm,
sorting), or activations defined piecewise with polynomials, exponential and logarithm,

– the dissimilarity function l is a standard loss such as `p norms, logistic loss or cross-
entropy, or more generally a function defined piecewise using polynomials, exponentials
and logarithms,

then one can easily show, by elementary quantifier elimination arguments (property (iii) below),
that the corresponding loss, J , is tame.

For the sake of completeness, we provide below the formal definition of tameness and
o-minimality.

Definition 1. [o-minimal structure] (Coste, 2000, Definition 1.5) An o-minimal structure
on (R,+, .) is a countable collection of sets O = {Oq}q≥1 where each Oq is itself a collection of
subsets of Rq, called definable subsets. They must have the following properties, for each q ≥ 1:

1“La topologie modérée” wished for by Grothendieck.
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(i) (Boolean properties) Oq contains the empty set, is stable by finite union, finite intersection
and complementation;

(ii) (Lifting property) if A belongs to Oq, then A× R and R× A belong to Oq+1.

(iii) (Projection or quantifier elimination property) if Π : Rq+1 → Rq is the canonical projection
onto Rq then for any A in Oq+1, the set Π(A) belongs to Oq.

(iv) (Semi-algebraicity) Oq contains the family of algebraic subsets of Rq, that is, every set of
the form

{θ ∈ Rq | ζ(θ) = 0},
where ζ : Rq → R is a polynomial function.

(v) (Minimality property), the elements of O1 are exactly the finite unions of intervals and
points.

A mapping F : S ⊂ Rm → Rq is said to be definable in O if its graph is definable in O as a
subset of Rm×Rq. For illustration of o-minimality in the context of optimization one is referred
to Attouch et al. (2010), Davis et al. (2020).

From now on we fix an o-minimal structure O and a set or a mapping definable
in O will be called tame.

2.3 From DIN to INNA

We describe in this section the construction of our proposed algorithm INNA from the discretiza-
tion of the second-order ODE (1).

2.3.1 Handling Non-smoothness and Non-convexity

We first show how the formalism offered by Clarke’s subdifferential can be applied to generalize
(1) to the non-smooth non-convex setting. Recall that the dynamical system (1) is described by,

θ̈(t) + αθ̇(t) + β∇2J (θ(t))θ̇(t) +∇J (θ(t)) = 0, (4)

where J is a twice-differentiable potential, α > 0, β > 0 are two hyper-parameters and
θ : R+ → RP . We cannot exploit (4) directly since in most DL applications J is not twice
differentiable (and even not differentiable at all). We first overcome the explicit use of the
Hessian matrix ∇2J by introducing an auxiliary variable ψ : R+ → RP like in Alvarez et al.
(2002). Consider the following dynamical system (defined for J merely differentiable),{

θ̇(t) + β∇J (θ(t)) +(α− 1
β
)θ(t) + 1

β
ψ(t) = 0

ψ̇(t) +(α− 1
β
)θ(t) + 1

β
ψ(t) = 0

, for a.e. t ∈ (0,+∞). (5)

As explained in Alvarez et al. (2002), (4) is equivalent to (5) when J is twice differentiable.
Indeed, one can rewrite (4) into (5) by introducing ψ = −βθ̇−β2∇J (θ)− (αβ−1)θ. Conversely,
one can substitute the first line of (5) into the second one to retrieve (4). Note however that (5)
does not require the existence of second-order derivatives.

Let us now introduce a new non-convex non-differentiable version of (5). By Rademacher’s
theorem, locally Lipschitz continuous functions J : RP → R are differentiable almost everywhere.
Denote by R the set of points where J is differentiable. Then, RP \R has zero Lebesgue measure.
It follows that for any θ? ∈ RP \ R, there exists a sequence of points in R whose limit is this θ?.
This motivates the introduction of the subdifferential due to Clarke (1990), defined next.
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Definition 2 (Clarke subdifferential of Lipschitz functions). For any locally Lipschitz continuous
function F : RP → R, the Clarke subdifferential of F at θ ∈ RP , denoted ∂F (θ), is the set
defined by,

∂F (θ) = conv
{
v ∈ RP | ∃(θk)k∈N ∈ RN, such that θk −−−→

k→∞
θ and ∇F (θk) −−−→

k→∞
v
}
, (6)

where conv denotes the convex hull operator. The elements of the Clarke subdifferential are
called Clarke subgradients.

The Clarke subdifferential is a nonempty compact convex set. It coincides with the gradient
for smooth functions and with the traditional subdifferential for non-smooth convex functions.
As already mentioned, and contrarily to the (sub)differential operator, it does not enjoy a sum
rule.

Thanks to Definition 2, we can extend (5) to non-differentiable functions. Since ∂J (θ) is a
set, we no longer study a differential equation but rather a differential inclusion, given by,{

θ̇(t) + β∂J (θ(t)) +(α− 1
β
)θ(t) + 1

β
ψ(t) 3 0

ψ̇(t) +(α− 1
β
)θ(t) + 1

β
ψ(t) 3 0

, for a.e. t ∈ (0,+∞). (7)

For a given initial condition (θ0, ψ0) ∈ RP × RP , we call solution (or trajectory) of this system
any absolutely continuous curve (θ, ψ) from R+ to RP × RP for which (θ(0), ψ(0)) = (θ0, ψ0)
and (7) holds. We recall that absolute continuity amounts to the fact that θ is differentiable
almost everywhere with integrable derivative and,

θ(t)− θ(0) =

∫ t

0

θ̇(s) ds, for t ∈ [0,+∞).

Due to the properties of the Clarke subdifferential, existence of a solution to differential inclusions
such as (7) is ensured, see Aubin and Cellina (2012); note however that uniqueness of the
solution does not hold in general. We will now use the structure of (7) to build a new algorithm
to train DNNs.

2.3.2 Discretization of the Differential Inclusion

To obtain the basic form of our algorithm, we discretize (7) according to the classical explicit
Euler method. Given (θ, ψ) a solution of (7) and any time tk, set θk = θ(tk) and ψk = ψ(tk).
Then, at time tk+1 = tk + γk with γk positive small, one can approximate θ̇(tk+1) and ψ̇(tk+1) by

θ̇(tk+1) '
θk+1 − θk

γk
, ψ̇(tk+1) '

ψk+1 − ψk
γk

.

This discretization yields the following algorithm,
vk ∈ ∂J (θk)

θk+1 = θk + γk

(
( 1
β
− α)θk − 1

β
ψk − βvk

)
ψk+1 = ψk + γk

(
( 1
β
− α)θk − 1

β
ψk

) (8)

Although the algorithm above is well defined for our problem, it is not suited to DL. First,
the computation of ∂J (θk) is generally not possible since there is no general operational calculus
for Clarke’s subdifferential; secondly, a mini-batch strategy must be designed to cope with the
large dimension of DL problems which makes the absence of sum rule even more critical.

The next section is meant to address these issues and design a practical algorithm.
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2.3.3 INNA Algorithm and a New Notion of Steady States

In order to compute or approximate the subdifferential of J at each iteration and to cope with
large data sets, J can be approximated by mini-batches, reducing the memory footprint and
computational cost of evaluation. For any B ⊂ {1, . . . , N}, let us define

JB : θ 7→
∑
n∈B

l(f(xn, θ), yn). (9)

Unlike in the differentiable case, subgradients do not in general sum up to a subgradient of the
sum, that is ∂JB(θ) 6= ∑n∈B ∂l(f(xn, θ), yn) in general. To see this, take for example 0 = | · |−|·|,
the Clarke subgradient of this function at 0 is {0}, whereas ∂(|0|) + ∂(−|0|) = [−1, 1] + [−1, 1] =
[−2, 2]. Standard DL solvers use backpropagation algorithms which implement smooth calculus
on non-smooth and non-convex objects. Due to the absence of qualification conditions, the
resulting objects are not Clarke subgradients in general. In order to match the real-world practice
of DL, we introduce a notion of steady states that corresponds to the stationary points generated
by a generic mini-batch approach. As we shall see, this allows both for practical applications and
convergence analysis (despite the sum rule failure for Clarke subdifferential). We emphasize
once more that our goal is to capture the stationary points that are actually met in practice.

For any B ⊂ {1, . . . , N}, we introduce the following objects,

DJB =
∑
n∈B

∂ [l(f(xn, ·), yn)] , DJ =
N∑
n=1

∂ [l(f(xn, ·), yn)] . (10)

Observe that, for each B, we have DJB ⊃ ∂JB and that JB is differentiable almost everywhere
with DJB = ∂JB = {∇JB}, see Clarke (1990). In particular DJ = ∂J almost everywhere so
that the potential differences with the Clarke subgradient occur on a negligible set. When J is
tame the equalities even hold on the complement of a finite union of manifolds of dimension
strictly lower than P—use the classical stratification results for o-minimal structures, Coste
(2000). A point satisfying DJ (θ) 3 0 will be called D-critical. Note that Clarke-critical
points (0 ∈ ∂J ) are D-critical points but that the converse is not true. This terminology is
motivated by favorable properties: sum and chain rules along curves (see Lemmas 3.2 and 3.3
below) and the existence of a tame Sard’s theorem (see Lemma 3.4). To our knowledge, this
notion of a steady state has not previously been used in the literature and a direct approach
modelling the mini-batch practice has never been considered before.2 While this notion is needed
for the theoretical analysis, one should keep in mind that DJ is actually what is computed
numerically provided that the automatic differentiation library returns a Clarke subgradient.
This computation is usually done with a backpropagation algorithm, similarly to the seminal
method of Rumelhart and Hinton (1986).

Ultimately, one can rewrite (7) by replacing ∂J by DJ , which yields a differential inclusion
adapted to study mini-batch approximations of non-smooth loss functions J . This reads,{

θ̇(t) + βDJ (θ(t)) +(α− 1
β
)θ(t) + 1

β
ψ(t) 3 0

ψ̇(t) +(α− 1
β
)θ(t) + 1

β
ψ(t) 3 0

, for a.e. t ∈ (0,+∞). (11)

Discretizing this system gives a workable version of INNA. Let us consider a sequence (Bk)k∈N
of nonempty subsets of {1, . . . , N}, chosen independently and uniformly at random with

2Following the first arXiv preprint of this work (Castera et al., 2019), Bolte and Pauwels (2020a) have further
developed the present ideas and in particular the connection to the backpropagation algorithm.
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replacement, and a sequence of positive step-sizes (γk)k∈N. For a given initialization (θ0, ψ0) ∈
RP × RP , at iteration k ≥ 1, our algorithm reads,

(INNA)


vk ∈ DJBk

(θk)

θk+1 = θk + γk

(
( 1
β
− α)θk − 1

β
ψk − βvk

)
ψk+1 = ψk + γk

(
( 1
β
− α)θk − 1

β
ψk

) (12)

Here again α > 0 and β > 0 are hyper-parameters of the algorithm. The mini-batch procedure
forms a stochastic approximation of the deterministic dynamics obtained by choosing Bk =
{1, . . . , N}, i.e., when JBk

= J (batch version). This can be seen by observing that the vectors
vk above may be written as vk = ṽk+ηk, where ṽk ∈ DJ (θk) and ηk compensates for the missing
subgradients and can be seen as a zero-mean noise. Hence, INNA admits the following general
abstract stochastic formulation,

wk ∈ DJ (θk)

θk+1 = θk + γk

(
( 1
β
− α)θk − 1

β
ψk − βwk + ξk

)
ψk+1 = ψk + γk

(
( 1
β
− α)θk − 1

β
ψk

) (13)

where (ξk)k∈N is a martingale difference noise sequence adapted to the filtration induced by
(random) iterates up to k. While (12) is the version implemented in practice, its equivalent
form (13) is more convenient for the convergence analysis of the next section. We stress that
the equivalence between (12) and (13) relies on the use of DJ and would not hold with with
the use of ∂J as in (8).

INNA in its general and practical form is summarized in Table 1.

Inertial Newton Algorithm for Deep Learning (INNA)

Objective function: J =
∑N

n=1 Jn, with Jn : RP 7→ R locally Lipschitz.
Hyper-parameters: (α, β) positive.
Mini-batches: (Bk)k∈N, nonempty subsets of {1, . . . , N}.
step-sizes: (γk)k∈N positive.
Initialization: (θ0, ψ0) ∈ RP × RP .

For k ∈ N: 
vk ∈ ∑

n∈Bk
∂ [Jn(θk)]

θk+1 = θk + γk

(
( 1
β
− α)θk − 1

β
ψk − βvk

)
ψk+1 = ψk + γk

(
( 1
β
− α)θk − 1

β
ψk

)

Table 1: INNA in a nutshell.

3 Convergence Results for INNA
We first state our main result.
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3.1 Main result: Accumulation Points of INNA are Critical

We now study the convergence of INNA. The main idea here is to prove that the discrete algo-
rithm (12) asymptotically behaves like the solutions of the continuous differential inclusion (11).
In addition to tameness, our main assumption is the following:

Assumption 1 (Stochastic approximation). The sets (Bk)k∈N are taken independently uniformly
at random with replacement. The step-size sequence γk is positive with

∑
k γk = +∞ and satisfies

γk = o
(

1
log k

)
, that is lim sup

k→+∞
|γk log k| = 0.

Typical admissible choices are γk = C(k + 1)−a with a ∈ (0, 1], C > 0. The main theoretical
result of the paper follows.

Theorem 3.1 (INNA converges to the set of D-critical points of J ). Assume that for
n ∈ {1, . . . , N}, each Jn is locally Lipschitz continuous, tame and that the step-sizes sat-
isfy Assumption 1. Set an initial condition (θ0, ψ0) and assume that there exists M > 0 such that
supk≥0 ‖(θk, ψk)‖ ≤M almost surely, where (θk, ψk)k∈N are generated by INNA. Then, almost
surely, any accumulation point θ̄ of the sequence (θk)k∈N satisfies DJ (θ̄) 3 0. In addition
(J (θk))k∈N converges.

Before proving Theorem 3.1, we will first make some comments and illustrate this result.

3.2 Comments on the Results of Theorem 3.1

– On the step-sizes. First, Assumption 1 offers much more flexibility than the usual O(1/
√
k)

assumption commonly used for SGD. We leverage the boundedness assumption on the
norms of (θk, ψk), the local Lipschitz continuity and finite-sum structure of J , so that the
noise is actually uniformly bounded and hence sub-Gaussian, allowing for much larger
step-sizes than in the more common bounded second moment setting. See Benaïm et al.
(2005, Remark 1.5) and Benaïm (1999) for more details. The interest of this aggressive
strategy is highlighted in Figure 4 of the experimental section.

– On the scope of the theorem. Our result actually holds for general locally Lipschitz
continuous tame functions with finite-sum structure and for the general stochastic process
under uniformly bounded martingale increment noise. We do not use any other specific
structure of DL loss functions. Other variants could be considered depending on the
assumptions on the noise, see Benaïm et al. (2005).

– On D-criticality. The result of Theorem 3.1 states that the bounded discrete trajectories
of INNA are attracted by the D-critical points. Recall that D-critical points include local
minimizers and thus our theoretical finding agrees with our empirical observations that
most initializations lead to “valuable weights” θ and to efficient training. In particular for
smooth networks where J is differentiable, limit points of INNA are simply critical points
of J . The reader should however remember that when the algorithm is initialized on the
D-critical set, the algorithm is stationary as well, even when the initialization is non-Clarke
critical. This last point shows that D-points are not introduced to simplify the analysis but
to sharply model the use of mini-batch methods on non-convex and non-smooth problems.
Hopefully, in practice one can expect to avoid such points with overwhelming probability.
Indeed, Bolte and Pauwels (2020b) proved that SGD converges with probability one to the
set of Clarke-critical points. In other words, D-critical points that are not Clarke-critical
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are not seen by the dynamics (see also Bianchi et al. 2020). The key argument is to prove
that the set of initializations and step-sizes that leads the algorithm to reach points where
DJ 6= ∂J has zero-measure. The same result can be hoped for INNA.

– On the boundedness assumption. The bounded assumption on the iterates is a classical
assumption for first or second-order algorithms, see for instance Davis et al. (2020),
Duchi and Ruan (2018). When using deterministic algorithms (i.e., without mini-batch
approximations), properties such as the coercivity of J can be sufficient to remove the
boundedness assumption for descent algorithms. This does not remain true when dealing
with mini-batch approximations, yet, in the case of INNA, the coercivity of J would
guarantee at least that the solutions of the continuous underlying differential inclusion
(11) remain bounded. Indeed, we will prove in Section 3.4 that for any solution (θ, ψ) of

(11), the function E(θ(t), ψ(t)) , 2(1 +αβ)J (θ(t)) +
∥∥∥(α− 1

β
)θ(t) + 1

β
ψ(t)

∥∥∥2 is decreasing
in time (see Lemma 3.6 hereafter). As a consequence, we cannot have J (θ(t)) −−−→

t→∞
∞

so ‖θ(t)‖ 6→ ∞ due to the coercivity of J . In addition this guarantees ‖ψ(t)‖ 6→ ∞ as
well. However DL loss functions are not coercive in general and studying the boundedness
issue in DL or even for non-convex semi-algebraic problems is far beyond the scope of this
paper. Let us however mention that it is not uncommon to project the iterates on a given
large ball to ensure boundedness; this is a matter for future research.

3.3 Preliminary Variational Results

Prior to proving Theorem 3, we extend some results known for the Clarke subdifferential of
tame functions to the operator D that we previously introduced. First, we recall a useful result
of Davis et al. (2020) which follows from the projection formula in Bolte et al. (2007b).

Lemma 3.2 (Chain rule for the Clarke subdifferential). Let J : RP → R be a locally Lipschitz
continuous tame function, then J admits a chain rule, meaning that for all absolutely continuous
curves θ : R+ → RP , J ◦ θ is differentiable a.e. and for a.e. t ≥ 0,

dJ
dt

(θ(t)) = 〈θ̇(t), ∂J (θ(t))〉 = 〈θ̇(t), v〉, ∀v ∈ ∂J (θ(t)). (14)

Note that, even though J is non-differentiable on RP , the function t 7→ J (θ(t)) is differen-
tiable for a.e. t > 0. Indeed, as introduced in Section 2.3.1, an absolutely continuous curve from
t ≥ 0 to RP is differentiable for a.e. t > 0. This, combined with the chain-rule of Lemma 3.2
allows to differentiate J ◦ θ for a.e. t > 0 whenever J is tame and locally Lipschitz continuous.
Additionally, notice that the value of dJ

dt
(θ(t)) in (14) does not depend on the element v taken

in ∂J (θ(t)) which justifies the notation 〈θ̇(t), ∂J (θ(t))〉.
Consider now a function with an additive finite-sum structure (such as in DL):

J : RP 3 θ 7→
N∑
n=1

Jn(θ), (15)

where each Jn : RP 7→ R is locally Lipschitz continuous and tame. We define for any θ ∈ RP

DJ (θ) =
N∑
n=1

∂Jn(θ).

The following lemma is a direct generalization of the above chain rule.

11



Lemma 3.3 (Chain rule for DJ ). Let J be a sum of tame functions like in (15). Let
c : [0, 1] 7→ RP be an absolutely continuous curve so that t 7→ J (c(t)) is differentiable almost
everywhere. For a.e. t ∈ [0, 1], and for all v ∈ DJ (c(t)),

d

dt
J (c(t)) = 〈v, ċ(t)〉 .

Proof. By local Lipschitz continuity and absolute continuity, each Jn is differentiable almost
everywhere and Lemma 3.2 can be applied:

d

dt
Jn(c(t)) = 〈vn, ċ(t)〉 , for all vn ∈ ∂Jn(c(t)) and for a.e. t ≥ 0.

Thus

d

dt
J (c(t)) =

N∑
n=1

d

dt
Jn(c(t)) =

N∑
n=1

〈vn, ċ(t)〉 ,

for any vn ∈ ∂Jn(c(t)), for all n = {1, . . . , N}, and for a.e. t ≥ 0. This proves the desired
result.

We finish this section with a Sard lemma for D-critical values, in the spirit of Bolte et al.
(2007b).

Lemma 3.4 (A Sard’s theorem for tame D-critical values). Let,

S = D-crit ,
{
θ ∈ RP | DJ (θ) 3 0

}
,

then J (S) is finite.

Proof. The set S is tame and hence it has a finite number of connected components. It is
sufficient to prove that J is constant on each connected component of S. Without loss of
generality, assume that S is connected and consider θ0, θ1 ∈ S. By Whitney regularity (Van
den Dries, 1998, 4.15), there exists a tame continuous path Γ joining θ0 to θ1. Because of
the tame nature of the result, we should here conclude with only tame arguments and use
the projection formula in Bolte et al. (2007b), but for convenience of readers who are not
familiar with this result we use Lemma 3.2. Since Γ is tame, the monotonicity lemma (see
for example Kurdyka 1998, Lemma 2) gives the existence of a finite collection of real numbers
0 = a0 < a1 < . . . < aq = 1, such that Γ is C1 on each segment (aj−1, aj), j = 1, . . . , q. Applying
Lemma 3.2 to each Γ|(ai,ai+1), we see that J is constant except perhaps on a finite number of
points, thus J is constant by continuity.

3.4 Proof of Convergence for INNA

Our approach follows the stochastic method for differential inclusions developed in Benaïm et al.
(2005) for which the differential system (11) and its Lyapunov properties play fundamental roles.
The steady states of (11) are given by,

S =
{

(θ, ψ) ∈ RP × RP | 0 ∈ DJ (θ), ψ = (1− αβ)θ
}
. (16)

These points are initialization values for which the system does not evolve and remains constant.
Observe that the first coordinates of these points are D-critical for J and that conversely any
D-critical point of J corresponds to a unique rest point in S.
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Definition 3 (Lyapunov function). Let A be a subset of RP ×RP , we say that E : RP ×RP → R
is a Lyapunov function for the set A and the dynamics (11) if

(i) for any solution (θ, ψ) of (11) with initial condition (θ0, ψ0) ∈ RP × RP , we have:
E(θ(t), ψ(t)) ≤ E(θ0, ψ0) a.e. on R.

(ii) for any solution (θ, ψ) of (11) with initial condition (θ0, ψ0) ∈ RP × RP \ A, we have:
E(θ(t), ψ(t)) < E(θ0, ψ0) a.e. on R.

In practice, to establish that a functional is Lyapunov, one can simply use differentiation
through chain rule results, with in particular Lemma 3.2. In the context of INNA, we will use
Lemma 3.3. To build a Lyapunov function for the dynamics (11) and the set S, consider the
two following energy-like functions,Emin(θ(t), ψ(t)) = (1−√αβ)2J (θ(t)) + 1

2

∥∥∥(α− 1
β
)θ(t) + 1

β
ψ(t)

∥∥∥2
Emax(θ(t), ψ(t)) = (1 +

√
αβ)2J (θ(t)) + 1

2

∥∥∥(α− 1
β
)θ(t) + 1

β
ψ(t)

∥∥∥2 . (17)

Then the following lemma applies.

Lemma 3.5 (Differentiation along DIN trajectories). Let (θ, ψ) be a solution of (11) with initial
condition (θ0, ψ0). For a.e. t > 0, θ and ψ are differentiable at t, (11) holds, θ̇(t)−ψ̇(t)

β
∈ DJ (θ(t))

and

dEmin

dt
(θ(t), ψ(t)) = −

∥∥∥∥√αθ̇(t)− 1√
β

(
ψ̇(t)− θ̇(t)

)∥∥∥∥2
dEmax

dt
(θ(t), ψ(t)) = −

∥∥∥∥√αθ̇(t) +
1√
β

(
ψ̇(t)− θ̇(t)

)∥∥∥∥2

Proof. Define Eλ(θ, ψ) = λJ (θ) +
1

2

∥∥∥∥(α− 1

β
)θ +

1

β
ψ

∥∥∥∥2. We aim to choose λ so that Eλ is a

Lyapunov function. Because J is tame and locally Lipschitz continuous, using Lemma 3.3 we
know that for any absolutely continuous trajectory θ : R+ → RP and for a.e. t > 0,

dJ
dt

(θ(t)) = 〈θ̇(t), DJ (θ(t))〉 = 〈θ̇(t), v(t)〉, ∀v(t) ∈ DJ (θ(t)). (18)

Let θ and ψ be solutions of (DIN). For a.e. t ≥ 0, we can differentiate Eλ(θ, ψ) to obtain

dEλ
dt

(θ(t), ψ(t)) =λ〈θ̇(t), v(t)〉+ (α− 1

β
)〈θ̇(t), (α− 1

β
)θ(t) +

1

β
ψ(t)〉

+
1

β
〈 ˙ψ(t), (α− 1

β
)θ(t) +

1

β
ψ(t)〉

(19)

for all v(t) ∈ DJ (θ(t)). Using (11), we get 1
β
(θ̇(t)− ψ̇(t)) ∈ DJ (θ(t)) and −ψ̇(t) = (α− 1

β
)θ(t)+

1
β
ψ(t) a.e. Choosing v(t) = 1

β
(θ̇(t)− ψ̇(t)) yields:

dEλ
dt

(θ(t), ψ(t)) = λ

〈
θ̇(t),

θ̇(t)− ψ̇(t)

β

〉
− (α− 1

β
)
〈
θ̇(t), ψ̇(t)

〉
− 1

β

〈
ψ̇(t), ψ̇(t)

〉
.
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Then, expressing everything as a function of θ̇ and 1
β
(ψ − θ), one can show that a.e. on R+:

dEλ
dt

(θ, ψ)(t) = −α‖θ̇(t)‖2 − β
∥∥∥∥∥ θ̇(t)− ψ̇(t)

β

∥∥∥∥∥
2

+ (λ− αβ − 1) 〈θ̇(t), θ̇(t)− ψ̇(t)

β
〉

= −
∥∥∥∥∥√αθ̇(t) +

αβ + 1− λ
2
√
α

θ̇(t)− ψ̇(t)

β

∥∥∥∥∥
2

−
(
β − (αβ + 1− λ)2

4α

)∥∥∥∥∥ θ̇(t)− ψ̇(t)

β

∥∥∥∥∥
2

.

We aim to choose λ so that Eλ is decreasing that is
(
β − (αβ+1−λ)2

4α

)
> 0. This holds whenever

λ ∈
[
(1−√αβ)2, (1 +

√
αβ)2

]
. We choose λmin = (1 − √αβ)2, and λmax = (1 +

√
αβ)2, for

these two values we obtain for a.e. t > 0 ,
Ėλmin

(θ(t), ψ(t)) = −
∥∥∥√αθ̇(t) + 1√

β

(
θ̇(t)− ψ̇(t)

)∥∥∥2
Ėλmax(θ(t), ψ(t)) = −

∥∥∥√αθ̇(t)− 1√
β

(
θ̇(t)− ψ̇(t)

)∥∥∥2 (20)

Remark finally that by definition Emin = Eλmin
and Emax = Eλmax .

Recall that S =
{

(θ, ψ) ∈ RP × RP | 0 ∈ DJ(θ), ψ = (1− αβ)θ)
}
and define E = Emin +

Emax. By a direct integration argument, we obtain the following lemma.

Lemma 3.6 (E is Lyapunov function for INNA with respect to S). For all (θ0, ψ0) /∈ S and for
any solution (θ, ψ) with initial condition (θ0, ψ0),

E(θ(t), ψ(t)) < E(θ0, ψ0), for a.e. t > 0. (21)

We are now in position to provide the desired proof.
Proof of Theorem 3.1 Lemmas 3.5 and 3.6 state that E is a Lyapunov function for the
set S and the dynamics (11). Let C = {θ ∈ RP | (θ, ψ) ∈ S} which is actually the set of
D-critical points of J . Using Lemma 3.4 of Section 3.3, J (C) is finite. Moreover, since
E(θ, ψ) = 2(1 + αβ)J (θ) for all (θ, ψ) ∈ S, E takes a finite number of values on S, and in
particular, E(S) has empty interior.

Denote by L the set of accumulation points of a the sequences ((θk, ψk))k∈N produced by (12)
starting at (θ0, ψ0) and L1 its projection on RP × {0}. We have the 3 following properties:

– By assumption, we have ‖(θk, ψk)‖ ≤M almost surely, for all k ∈ N.

– By local Lipschitz continuity ∂JB(θ) is uniformly bounded for ‖θ‖ ≤ M and any
B ⊂ {1, . . . , N}, hence the centered noise (ξk)k∈N is a uniformly bounded martingale
difference sequence.

– By Assumption 1, the sequence (γk)k∈N is chosen such that γk = o( 1
log k

) (see Section 3.2).

Then the sufficient conditions of Remark 1.5 of Benaïm et al. (2005) state that the discrete
process (θk, ψk)k∈N asymptotically behaves like the solutions of (11). We can then combine
Proposition 3.27 and Theorem 3.6 of Benaïm et al. (2005), to obtain that the limit set L of the
discrete process is contained in the set S where the Lyapunov has vanishing derivatives. Thus
the set L1 (the set of the first coordinates of all accumulation points) contains only D-critical
points of J . In addition, E(L) is a singleton, and for all (θ, ψ) ∈ S, we have E(θ, ψ) = J (θ), so
J (L1) is also a singleton and the theorem follows.
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4 Towards Convergence Rates for INNA
In the previous section, connecting INNA to (11) was one of the keys to prove the convergence
of the discrete dynamics. Let us now focus on the continuous dynamical system (7) in the
deterministic case where J and ∂J are not approximated anymore—we thus no longer use DJ
although this would be possible but would require more technical proofs. In this section and in
this section only, we pertain to loss functions J that are real semi-algebraic (a particular case
of tame functions).3 Recall that a set is called semi-algebraic if it is a finite union of sets of the
form,

{θ ∈ RP | ζ(θ) = 0, ζi(θ) < 0}
where ζ, ζi are real polynomial functions. A function is called semi-algebraic if its graph is
semi-algebraic.

We will characterize the convergence rate of the solutions of the continuous-time system
(7) to critical points. Let us first introduce an essential mechanism to obtain such convergence
rates: the Kurdyka-Łojasiewicz (KL) property.

4.1 The Non-smooth Kurdyka-Łojasiewicz Property for the Clarke
Subdifferential

The non-smooth Kurdyka-Łojasiewicz (KL) property, as introduced in (Bolte et al., 2010), is a
measure of “amenability to sharpness” (as illustrated at the end of Section 4.3). Here we provide
a uniform version for the Clarke subdifferential of semi-algebraic functions as in Bolte et al.
(2007b) and Bolte et al. (2014). In the sequel we denote by “dist” any given distance on RP .

Lemma 4.1 (Uniform Non-smooth KL Property for the Clarke Subdifferential). Let K be a
nonempty compact set and let L : RP → R be a semi-algebraic locally Lipschitz continuous
function. Assume that L is constant on K, with value L?. Then there exist ε > 0, δ > 0,
a ∈ (0, 1) and ρ > 0 such that, for all

v ∈
{
v ∈ RP | dist(v,K) < ε

}
∩
{
v ∈ RP | L? < L(v) < L? + δ

}
,

it holds that,
ρ(1− a) (L(v)− L(v̄))−a dist (0, ∂L(v)) > 1. (22)

The proof directly follows from the general inequality provided in Bolte et al. (2007b) or
the local result of Bolte et al. (2007b) with the compactness arguments of Bolte et al. (2014,
Lemma 6). In the sequel, we make an abuse of notation by writing ‖∂J (·)‖ , dist(0, ∂J (·)).
To obtain a convergence rate we will use inequality (22) on the Lyapunov function E. But first
we state a general result of convergence that is built around the KL property.

4.2 A General Asymptotic Rate Result

We state a general theorem that leads to the existence of a convergence rate. This theorem will
hold in particular for (7). We start by stating the result.

3We could extend the results of this section to more general objects including analytic functions on bounded
sets. The semi-algebraicity assumption is made here for the sake of clarity.
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Theorem 4.2. Let X : [0,+∞) → RP be a bounded absolutely continuous trajectory and let
L : RP → R be a semi-algebraic locally Lipschitz continuous function. If there exists c1 > 0 such
that for a.e. t > 0,

dL

dt
(X(t)) ≤ −c1‖(∂L)(X(t))‖2, (i)

then L(X(t)) converges to a limit value L? and,

|L(X(t))− L?| = O

(
1

t

)
.

If in addition there exists c2 > 0 such that for a.e. t > 0,

c2‖Ẋ(t)‖ ≤ ‖(∂L)(X(t))‖, (ii)

then, X converges to a critical point of L with a rate of the form O(1/tb) with b > 0.4

Proof. We first prove the convergence of L(X(·)). Suppose that (i) holds. Since X is bounded
and L is continuous, L(X(·)) is bounded. Moreover from (i), L(X(·)) is decreasing, so it
converges to some value L?. To simplify suppose L ≥ 0 and L? = 0. Define,

I =
{
x ∈ RP | L(x) = 0

}
.

Suppose first that there exists s ≥ 0, such that X(s) ∈ I. Since L(X(·)) is decreasing with limit
0, then for all t ≥ s, L(X(t)) = 0 and the convergence rate holds true.

Let us thus assume that for all t ≥ 0, L(X(t)) > 0. The trajectory X is bounded in RP ,
hence there exists a compact set C ⊂ RP such that X(t) ∈ C for all t ≥ 0. Define K = I ∩ C. It
is a compact set since I is closed (by continuity of L) and C is compact. Moreover, L is constant
on K. As such by Lemma 4.1, there exist ε > 0, δ > 0, a ∈ (0, 1) and a constant ρ > 0 such
that for all

v ∈
{
v ∈ RP , dist(v,K) < ε

}
∩ {0 < L(v) < δ} ,

it holds that
ρ(1− a) (L(v))−a dist (0, ∂L(v)) > 1.

We have L(X(t))→ 0 so there exists t0 ≥ 0 such that for all t ≥ t0, 0 < L(X(t)) < δ. Without
loss of generality, we assume t0 = 0. Similarly, we have dist(X(t), K)→ 0, so we may assume
that for all t ≥ 0, dist (X(t),K) < ε. Thus, for all t ≥ 0,

ρ(1− a)L(X(t))−a‖∂L(X(t))‖ > 1.

Going back to assumption (i), for a.e. t > 0, one has

dL

dt
(X(t)) ≤ −c1‖(∂L)(X(t))‖2,

but the KL property implies that for a.e. t > 0,

−‖∂L(X(t))‖2 < − 1

ρ2(1− a)2
L(X(t))2a.

Therefore,
dL

dt
(X(t)) < − c1

ρ2(1− a)2
L(X(t))2a.

4In some cases we even have linear rates or finite convergence as detailed in the proof.
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We consider two cases depending on the value of a. If 0 < a ≤ 1/2, then for t large, L(X(t)) < 1
so −L(X(t))2a < −L(X(t)) and hence,

dL

dt
(X(t)) < − c1

ρ2(1− a)2
L(X(t)),

so we obtain a linear rate. When 1/2 < a < 1, we have for a.e. t > 0,

L(X(t))−2a
d

dt
L(X(t)) =

1

1− 2a

d

dt
L(X(t))1−2a < − c1

(ρ2(1− a)2)
, (23)

with 1− 2a < 0. We can integrate from 0 to t > 0:

L(X(t))1−2a >
(2a− 1)c1
ρ2(1− a)2

t+ L(X(0))1−2a >
(2a− 1)c1
ρ2(1− a)2

t.

Since 1
1−2a < −1, one obtains a convergence rate of the form O

(
t

1
1−2a

)
. In both cases the rate

is at least O
(
1
t

)
.

We assume now that both (i) and (ii) holds and prove convergence of the trajectory with a
convergence rate. Let t > s > 0, by the fundamental theorem of calculus and the triangular
inequality,

‖X(t)−X(s)‖ ≤
∥∥∥∥∫ t

s

Ẋ(τ) dτ

∥∥∥∥ ≤ ∫ t

s

‖Ẋ(τ)‖ dτ. (24)

We wish to bound ‖Ẋ‖ using L. Using the chain rule (Lemma 3.2 of Section 3.3), for a.e. τ > 0,
d

dτ
L(X(τ))1−a = (1− a)L(X(τ))−a〈Ẋ(τ), (∂L)(X(τ))〉. (25)

Then, from (i), we deduce that for a.e. τ > 0,

〈Ẋ(τ), (∂L)(X(τ))〉 =
dL

dτ
(X(τ)) ≤ −c1‖(∂L)(X(τ))‖2, (26)

so
d

dτ
L(X(τ))1−a ≤ −c1(1− a)L(X(τ))−a‖(∂L)(X(τ))‖2. (27)

The KL property (22) implies that for a.e. τ > 0,

−(1− a)L(X(τ))−a‖(∂L)(X(τ))‖ < −1

ρ
. (28)

Putting this in (27) and using assumption (ii) we finally obtain
d

dt
L(X(τ))1−a < −c1

ρ
‖(∂L)(X(τ))‖ ≤ −c1c2

ρ
‖Ẋ(τ)‖. (29)

We can use that in (24),

‖X(t)−X(s)‖ ≤ − ρ

c1c2

∫ t

s

d

dt
L(X(τ))1−a dτ

=
ρ

c1c2
(L(X(s))1−a − L(X(t))1−a).

(30)

Then, using the convergence rate we already proved for L, we deduce that the Cauchy criterion
holds for X inside the compact (hence complete) subset C ⊂ RP containing the trajectory. Thus,
X converges, and from (i) we have that lim inft→+∞ ‖∂L(X(t))‖ = 0 because ∂L has closed
graph. This shows that the limit is a critical points of L. Finally, taking the limit in (30) and
using the convergence rate of L we obtain a rate for X as well.
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Remark 1. Theorem 4.2 takes the form of a general recipe to obtain a convergence rate since it
may be applied in many cases, to curves or flows, provided that a convenient Lyapunov function
is given. Note also that it is sufficient for assumptions (i) and (ii) to hold only after some time
t0 > 0 as in such case, one could simply do a time shift to use the theorem.

4.3 Application to INNA

We now apply Theorem 4.2 to the deterministic continuous dynamical model of INNA (7).

Theorem 4.3 (Convergence rates). Suppose that J is semi-algebraic locally Lipschitz continuous
and lower bounded. Then, any bounded trajectory (θ, ψ) that solves (7) converges to a point
(θ̄, ψ̄) ∈ S, with a convergence rate of the form O

(
t−b
)
with b > 0. Moreover J (θ(t)) converges

to its limit J̄ with rate
∣∣J (θ(t))− J̄

∣∣ = O
(
1
t

)
.

Proof. Let (θ, ψ) be a bounded solution of (7). We would like to use Theorem 4.2 withX = (θ, ψ),
and a well chosen function. In the proof of Theorem 3.1 we proved a descent property along

the trajectory for the function E(θ, ψ) = 2(1 + αβ)J (θ) +
∥∥∥(α− 1

β
)θ + 1

β
ψ
∥∥∥2. This function is

semi-algebraic, locally Lipschitz continuous, so it remains to prove that (i) and (ii) hold for E
along (θ, ψ).

For t ≥ 0, denote w(t) = (α− 1
β
)θ(t) + 1

β
ψ(t), then according to Lemma 3.5 for a.e. t > 0,

dE

dt
(θ(t), ψ(t)) = −‖√αθ̇(t)− 1√

β

(
ψ̇(t)− θ̇(t)

)
‖2 − ‖√αθ̇(t) +

1√
β

(
ψ̇(t)− θ̇(t)

)
‖2

= −2α‖θ̇(t)‖2 − 2

β
‖ψ̇(t)− θ̇(t)‖2 = −2α‖θ̇(t)‖2 − 2

β
‖β∂J (θ(t))‖2

= −2α‖ − β∂J (θ(t))− w(t)‖2 − 2β‖∂J (θ(t))‖2.

(31)

On the other hand, by standard results on the sum rule, we have for all (θ, ψ) ∈ RP × RP ,

∂E(θ, ψ) = 2

(1 + αβ)∂J (θ) + (α− 1
β
)
(

(α− 1
β
)θ + 1

β
ψ
)

1
β

(
(α− 1

β
)θ + 1

β
ψ
)  , (32)

so for a.e. t > 0,

‖∂E(θ(t), ψ(t))‖2
4

=

∥∥∥∥(1 + αβ)∂J (θ(t)) + (α− 1

β
)w(t)

∥∥∥∥2 +

∥∥∥∥ 1

β
w(t)

∥∥∥∥2 . (33)

We wish to find c1 > 0, such that 1
2
dE
dt

+ c1
4
‖∂E‖2 < 0. This follows from the following claim.

Claim: let r1 > 0, r2 ∈ R, r3 > 0, then there exist C1 and C2 two positive constants such
that for any a, b ∈ R,

C1(a
2 + b2) ≤ (r1a+ r2b)

2 + r3b
2 ≤ C2(a

2 + b2). (34)

Indeed, the function Q : (a, b) 7→ (r1a + r2b)
2 + r3b

2 is a positive definite quadratic form, C1

and C2 can be taken to be two eigenvalues of the positive definite matrix which represents Q.
Hence (34) holds for all a and b.

Applying the previous claim to (33) and (31) leads to the existence of c1 > 0 such that for
a.e. t > 0,

dE

dt
(θ(t), ψ(t)) ≤ −c1‖∂E(θ(t), ψ(t))‖2,
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so assumption (i) holds for INNA.
It now remains to show that (ii) of Theorem 4.2 holds i.e. that there exists c2 > 0 such that

for (θ, ψ) solution of (7) and for a.e. t > 0, ‖∂E(θ(t), ψ(t))‖2 ≥ c2

(
‖θ̇(t)‖2 + ‖ψ̇(t)‖2

)
. Using

(7) and (33) we obtain:

‖∂E(θ(t), ψ(t))‖2
4

=

∥∥∥∥ 1

β
(1 + αβ)θ̇(t) +

[
(α− 1

β
)− 1

β
(1 + αβ)

]
ψ̇(t)

∥∥∥∥2 +
1

β2
‖ψ̇(t)‖2, (35)

and applying the claim (34) again to (35) one can show that there exist c2 > 0, such that for
a.e. t > 0,

‖∂E(θ(t), ψ(t))‖2 ≥ c2

(
‖θ̇(t)‖2 + ‖ψ̇(t)‖2

)
.

So assumption (ii) holds for (7). To conclude, we can apply Theorem 4.2 to (7) and the proof is
complete.

Remark 2. (a) Since the discrete algorithm INNA asymptotically resembles its continuous-time
version (see the proof of Theorem 3.1), the results above suggest that similar behaviors and
rates could be hoped for INNA itself. Yet, these results remain difficult to obtain in the case of
DL, in particular in the mini-batch setting because of the noise (ξk)k∈N.
(b) The proof above is significantly simpler when αβ > 1 since Alvarez et al. (2002) proved that
in this case, (7) is equivalent to a gradient system, thus assumptions (i) and (ii) of Theorem 4.2
instantly holds.
(c) Theorems 4.2 and 4.3 can be adapted to the case when the Clarke subdifferential is replaced
by DJ , but we do not state it here for the sake of simplicity.
(d) Theorems 4.2 and 4.3 are actually valid by assuming that J belongs to a polynomially
bounded o-minimal structure. One of the most common instance of such structures is the one
given by globally subanalytic sets (as illustrated in a example below). We refer to Bolte et al.
(2007a) for a definition and further references.

Let us now comment the results of Theorem 4.3. First, we restrained here to semi-algebraic
loss functions J , which are a subset of tame loss functions. Most networks, activations and
dissimilarity measures mentioned in Section 2.2 fall into this category. Nonetheless, the loss
functions of the DL experiments of Section 5.2 are not semi-algebraic. Indeed, the dissimilarity
measure l used is the cross-entropy: l(f(xn, θ), yn) = −∑D

d=1 1[yn]d=1 log([f(xn, θ)]d). Such a
function cannot be described by polynomials and presents a singularity whenever [f(xn, θ)]d = 0.
Fortunately, due to the numerical precision but also to the “soft-max” functions often used in
classification experiments, the outputs of the network f , for inputs restricted to a compact
set, have values in [ε, 1] for some small ε > 0. Therefore, the singularity at 0 is harmless and
the cross-entropy acts as a globally subanalytic function. As a consequence the non-smooth
Łojasiewicz inequality holds, and the theorems apply (see also numerical experiments).

The rate of convergence of the trajectory in Theorem 4.3 is non-explicit in the sense that the
exponent b > 0 is unknown in general. In the light of the proof of Theorem 4.2, this exponent
depends on the KL exponent a of the Lyapunov function, which is itself hard to determine in
practice. However the intuition is that small exponents a may yield faster convergence rates
(indeed, when a ∈ (0, 1/2) we actually have a linear rate). As an example, for the function:
t ∈ R 7→ |t|c with c > 1, the exponent at 0 is a = 1− 1

c
and thus, the closer c is to 1, the smaller

a is, and the faster the convergence becomes.
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5 Experiments
In this section we first discuss the role and influence of the hyper-parameters of INNA using the
2D example given in Figure 1. We then compare INNA with SGD, ADAGRAD and ADAM on
deep learning problems for image recognition.

5.1 Understanding the Role of the Hyper-parameters of INNA

Both hyper-parameters α and β can be seen as damping coefficients from the viewpoint of
mechanics as discussed by Alvarez et al. (2002) and sketched in the introduction. Recall the
second-order time continuous dynamics which served as a model to the design INNA:

θ̈(t) + α θ̇(t) + β∇2J (θ(t))θ̇(t) +∇J (θ(t)) = 0.

This differential equation was inspired by Newton’s second law of dynamics asserting that the
acceleration of a material point coincides with the sum of forces applied to the particle. As
recalled in the introduction three forces are at stake: the gravity and two friction terms. The
parameter α calibrates the viscous damping intensity as in the Heavy Ball friction method of
Polyak (1964). It acts as a dissipation term but it can also be seen as a proximity parameter
of the system with the usual gradient descent: the higher α is, the more DIN behaves like a
pure gradient descent.5 On the other hand the parameter β can be seen as a Newton damping
which takes into account the geometry of the landscape to brake or accelerate the dynamics in
an adaptive anisotropic fashion, see Alvarez and Pérez (1998), Alvarez et al. (2002) for further
insights.

We now turn our attention to INNA, and illustrate the versatility of the hyper-parameters
α and β in this case. We proceed on a 2D visual non-smooth ill-conditioned example à la
Rosenbrock, see Figure 1. For this example, we aim to find the minimum of the function
J (θ1, θ2) = 100(θ2 − |θ1|)2 + |1− θ1|. This function has a V-shaped valley, and a unique critical
point at (1, 1) which is also the global minimum. Starting from the point (−1, 1.5) (the black
cross), we apply INNA with constant steps γk = 10−4. Figure 1 shows that when β is too
small, the trajectory presents many transverse oscillations as well as longitudinal ones close to
the critical point (subplot a). Then, increasing β significantly reduces transverse oscillations
(subplot b). Finally, the longitudinal oscillations are reduced by choosing a higher α (subplot c).
In addition, these behaviors are also reflected in the values of the objective function (subplot d).
The orange curve (first setting) presents large oscillations. Moreover, looking at the red curve,
corresponding to plot (c), there is a short period between 20, 000 and 60, 000 iterations when
the decrease is slower than for the other values of α and β, but still it presents fewer oscillations.
In the longer term, the third choice (α = 1.3, β = 0.1) provides remarkably good performance.

The choice of these hyper-parameters may come with rates of convergence for convex and
strongly convex smooth functions (Attouch et al., 2020). Following this work, one may also
consider to make α and β vary in time (for example like the famous Nesterov damping coefficient
α
t
). In our DL experiments we will however keep these parameters constant so that our theorems

still hold. Yet, different behaviors depending on (α, β) can also be observed for DL problems
as illustrated on Figure 2 and described next. Although we did not evidence some universal
method to choose (α, β), we used mechanical intuitions to tune these parameters. The coefficient
α induces viscous damping, thus one may try to reduce it when convergence appears to be slow.
On the other hand, one may want to increase β when large oscillations are observed. Yet, since
β affects directly the subgradient effect in (12), taking β too large may jeopardize the numerical

5This is easier to see when one rescales J by α.
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Figure 2: Analysis of the sensibility of INNA to the choice of α and β using NiN for three
different image classification problems. Top: logarithm of the loss function J (θ) during the
training. Bottom: classification accuracy on the test set.

stability of the algorithm. It would be interesting to relate the roles of these coefficients with
more structural aspects of the dynamics. Indeed, as mentioned in Remark 2-b, when αβ ≥ 1,
(11) can be shown to be a gradient system. On the other hand, when αβ < 1 the dynamics is of
a different type, we refer to Alvarez et al. (2002) for further comments on this matter.

5.2 Training a DNN with INNA

Before comparing INNA to state-of-the-art algorithms in DL, we first describe the methodology
we followed.

5.2.1 Methodology

– We train a DNN for classification using the three most common image data sets (MNIST,
CIFAR-10, CIFAR-100) (LeCun et al., 1998, Krizhevsky, 2009). These data sets are
composed of 60, 000 small images associated with a label (numbers, objects, animals, etc.).
We split the data sets into 50, 000 images for training and 10, 000 for testing.

– Regarding the network, we use a slightly modified version of the popular Network in
Network (NiN) (Lin et al., 2014). It is a reasonably large convolutional network with
P ∼ 106 parameters to optimize. We use ReLU activation functions.
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– The dissimilarity measure l that is used in the empirical loss J given by (3) is set to the
cross-entropy. The loss J is optimized with respect to θ (the weights of the DNN) on the
training data. The classification accuracy of the trained DNN is measured using the test
data of 10, 000 images. Measuring the accuracy boils down to counting how many of the
10, 000 were correctly classified (in percentage).

– Based on the results of Section 5.1, we run INNA for four different values of (α, β):

(α, β) ∈ {(0.1, 0.1), (0.5, 0.1), (0.5, 0.5), (0.5, 1)} .

Given an initialisation of the weights θ0, we initialize ψ0 such that the initial velocity is in
the direction of −∇J (θ0). More precisely, we use ψ0 = (1− αβ)θ0 − (β2 − β)∇J (θ0).

– We compare our algorithm INNA with the classical SGD algorithm and the popular
ADAGRAD (Duchi et al., 2011) and ADAM(Kingma and Ba, 2015) algorithms. At each
iteration k, we compute the approximation of ∂J (θ) on a subset Bk ⊂ {1, . . . , 50, 000}
of size 32. The algorithms are initialized with the same random weights (drawn from a
normal distribution). Five random initializations are considered for each experiment.

– Regarding the selection of step-sizes, ADAGRAD and ADAM both use an adaptive
procedure based on past gradients, see Duchi et al. (2011), Kingma and Ba (2015). For the
other two algorithms (INNA and SGD), we use the classical step-size schedule γk = γ0√

k+1
,

which meets Assumption 1. For all four algorithms, choosing the right initial step length
γ0 is often critical in terms of efficiency. We choose this γ0 using a grid-search: for each
algorithm we select the initial step-size that most decreases the training error J after
fifteen epochs (one epoch consisting in a complete pass over the data). The test data is
not used to chose the initial step-size nor other hyper-parameters. Note that we could use
more flexible step-size schedules but chose a standard schedule for simplicity. Other decay
schemes are considered in Figure 4.

For these experiments, we used Keras 2.2.4 (Chollet, 2015) with Tensorflow 1.13.1 (Abadi
et al., 2016) as backend. The INNA algorithm is available in Pytorch, Keras and Tensorflow:
https://github.com/camcastera/Inna-for-DeepLearning/ (Castera, 2019).

5.2.2 Results

Figure 2 displays the training loss J and test accuracy with respect to epochs for INNA in its
four hyper-parameter configurations considered and for the three data sets considered. Figure 3
displays the performance of INNA with the hyper-parameter configuration that led to smallest
average training error in Figure 2, with comparison to SGD, ADAGRAD and ADAM. In these
two figures (and also in subsequent Figure 4), solid lines represent mean values and pale surfaces
represent the best and worst runs in terms of training loss and validation accuracy over five
random initializations.

Figure 2 suggests that the tuning of the hyper-parameters α and β is not crucial to obtain
satisfactory results both for training and testing. It mostly affects the training speed. Thus,
INNA looks quite stable with respect to these hyper-parameters. Setting (α, β) = (0.5, 0.1)
appears to be a good default choice when necessary. Nevertheless, tuning these hyper-parameters
is of course advised to get the most from INNA.

Figure 3 shows that best performing methods achieve state-of-the art accuracy using NiN
and represent what can be achieved with a moderately large network and coarse grid-search

22

https://github.com/camcastera/Inna-for-DeepLearning/


(a) CIFAR-10 (b) CIFAR-100 (c) MNIST

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0
Epochs

-1.0

-0.5

0.0

0.5

1.0

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

0 25 50 75 100 125 150 175 200
Epochs

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.10

0.20

0.30

0.40

0.50
Te

st
A

cc
ur

ac
y

0 25 50 75 100 125 150 175 200
Epochs

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

SGD
ADAM
ADAGRAD

INNA,
(α, β)=(0.1,0.1)
INNA,
(α, β)=(0.5,0.1)

Figure 3: Comparison of INNA with state-of-the-art algorithms SGD, ADAM and ADAGRAD.
Top: logarithm of the loss function J (θ) during the training. Bottom: classification accuracy
on the test set.

tuning of the initial step-size. In our comparison, INNA and ADAM outperform SGD and
ADAGRAD for training. While ADAM seems to be faster in the early training phase, INNA
achieves the best accuracy almost every time especially on CIFAR-100 (Figure 3(b)). Thus
INNA appears to be competitive in comparison to the other algorithms with the advantage of
having solid theoretical foundations and a simple step-size rule as compared to ADAM and
ADAGRAD.

Finally let us point out that although ADAM was faster in the experiments of Figure 3,
INNA can outperform ADAM using the slow step-size decay discussed in Section 3.2. Indeed,
in the previous experiments we used a standard decreasing step-size of the form γ0/

√
k + 1 for

simplicity, but Assumption 1 allows for step-sizes decreasing much more slowly. As such, we
also considered decays of the form γ0(k+ 1)−q with q ≤ 1/2. The results are displayed on top of
Figure 4. Except when q is too small (too slow decay, e.g., q = 1/16), these results show that
some decays slower than q = 1/2 make INNA a little bit faster than any of the other algorithms
we tried. In particular, with a step-size decay proportional to k−1/4, INNA outperforms ADAM
(bottom of Figure 4). This suggests that tuning q can also significantly accelerate the training
process.
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Figure 4: On top: Training loss of INNA on three image classification problems with various
step-size decays. In the legend, k−q means a step-size decay at iteration k of the form γk = γ0k

−q.
The bottom row show the comparison between INNA with a well-chosen step-size decay and
ADAM.

6 Conclusion
We introduced a novel stochastic optimization algorithm featuring inertial and Newtonian behav-
ior motivated by applications to deep learning. We provided a powerful algorithmic convergence
analysis under weak hypotheses applicable to most DL problems. We also provided new general
results to study differential inclusions on Clarke subdifferential and obtain convergence rates for
the continuous-time counterpart of our algorithm. We would like to point out that, apart from
SGD (Davis et al., 2020), the convergence of concurrent methods in such a general setting is still
an open question. Our result seems moreover to be the first one to be able to rigorously handle
the analysis of mini-batch subsampling for ReLU DNNs via the introduction of the D-critical
points. Our experiments show that INNA is very competitive with state-of-the-art algorithms
for DL but also very malleable. We stress that these numerical manipulations were performed on
substantial DL benchmarks with only limited algorithm tuning. This facilitates reproducibility
and allows to stay as close as possible to the reality of DL applications in machine learning.
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