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Keep calm, we know each other: kin recognition affects 1 

aggressiveness and conflict resolution in a solitary 2 

parasitoid 3 

  4 

Abstract - Intraspecific competition for indivisible resources can trigger the expression of 5 

agonistic behaviour in individuals of many animal species. Aggressiveness and conflict 6 

resolution may be influenced by the value individuals place in the resource (subjective resource 7 

value) but also by genetic relatedness between competitors. The ability to differentiate 8 

genetically related from unrelated individuals (i.e., kin recognition) can play a key role in the 9 

dynamics of agonistic interactions between individuals. In this context, the theory of kin 10 

selection predicts that competitors should display fewer aggressive behaviours towards closely 11 

related individuals. Recognition of kin conspecifics can be driven by the perception of (1) 12 

genetically-linked phenotypic cues (phenotypic matching) and/or (2) environmental cues 13 

(familiarity). In the hymenopteran solitary parasitoid Eupelmus vuilleti, individuals develop on 14 

larvae and pupae of their host, Callosobruchus maculatus, which infest cowpea seeds (Vigna 15 

unguiculata). Eupelmus vuilleti females can fight for the host on which they lay their eggs. 16 

Here, we investigated the effect of genetic relatedness (genotype) and familiarity (the seed 17 

containing the host on which they develop as juvenile) on aggressiveness and contests outcome 18 

over hosts in E. vuilleti females. We first demonstrated that the probability of a conflict 19 

escalating was affected by the interaction between genetic relatedness and familiarity among 20 

females. We then found that familiarity alone affected the likelihood of contest resolution. The 21 

occurrence of escalated conflicts was reduced between related and familiar females, and 22 

contests were more likely to be clearly resolved when occurring between familiar competitors. 23 
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Our results highlighted a parasitoid wasp’s abilities to identify and discriminate kin, showing 24 

for the first time that two kin recognition components can interact in mediating competition 25 

avoidance for resource access in a solitary insect species. 26 

Key words: Eupelmus vuilleti, familiarity, genetic relatedness, phenotype matching, subjective 27 

resource value.   28 

 29 

INTRODUCTION 30 

Intraspecific competition for an indivisible resource can lead to direct interactions 31 

between individuals (i.e., conflicts, Hardy & Briffa, 2013). To prevent other individuals from 32 

accessing the resource, animals often exhibit agonistic behaviour during contests (Hack et al., 33 

1997; Riechert, 1998). Winning a conflict can improve access to sexual partners (West-34 

Eberhard, 1979), food resources (Vogel, 2005), territories (Festa-Bianchet et al., 1990) or 35 

dominance status (Chase, 1974), but being aggressive can potentially be costly in terms of 36 

energy expenditure (Maynard Smith, 1974), physical injuries (Palombit, 1993; Innocent et al., 37 

2011), or increased predation risk (Jakobsson et al., 1995). Animals should therefore evaluate 38 

the costs and benefits of exhibiting agonistic behaviours and adjust their behaviour accordingly 39 

(Maynard Smith & Price, 1973). In the case of dyadic interactions, game theory predicts that 40 

contest outcome should be influenced by the asymmetries that exist between contestants in 41 

terms of their intrinsic ability to obtain and hold access to a resource (‘Resource Holding 42 

Potential’, RHP; Maynard Smith, 1974; Parker, 1974), and the value they place on the resource 43 

(‘Subjective Resource Value’, SRV; Maynard Smith & Parker, 1976; Hammerstein, 1981; 44 

Enquist & Leimar, 1987). Individuals with higher RHP (e.g., bigger contestants) typically win 45 

the resource (Maynard Smith, 1982; Elias et al., 2008; Arnott & Elwood, 2009), and individuals 46 

with higher SRV (e.g., with greater egg load or lower food intake) are expected to be more 47 
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motivated to fight and have a higher probability of winning contests (Stokkebo & Hardy, 2000; 48 

Dissanayake et al., 2009). Moreover, these factors have been shown to influence 49 

aggressiveness, the most aggressive contestants being generally more likely to win conflicts 50 

(Goubault et al., 2007; Mohamad et al., 2010; Mathiron et al., 2018). 51 

Aggressiveness during conflict can also vary with the degree of genetic relatedness 52 

between competitors (West et al., 2002). Kin selection theory postulates that a trait that does 53 

not provide a direct fitness benefit (or to some extent, a negative effect) to the individual who 54 

expresses it, can be selected for if it improves the fitness of the individuals carrying the same 55 

genes as the protagonist (i.e., indirect fitness; Hamilton, 1964). In the context of conflicts, it 56 

would be advantageous for an individual to be less aggressive towards genetically related 57 

conspecifics (Hamilton & May, 1977; Griffin & West, 2002; Lizé et al., 2012) because this 58 

would maximize their inclusive fitness (West et al., 2001). However, avoiding conflicts 59 

between relatives implies kin recognition, i.e. the identification (neurophysiological process), 60 

and discrimination (the expression of different behaviours) of genetically related individuals. 61 

Two types of recognition exist: (i) recognition based on the perception of genetically encoded 62 

phenotypic indices (Gadagkar, 1985) and (ii) familiarity, which refers to the recognition of 63 

individuals regardless of their genetic relatedness (Lizé et al., 2012). For instance, two 64 

individuals can be considered familiar if they meet often, or if they come from the same 65 

environment. The ability to recognize and discriminate genetically related individuals has been 66 

observed in various animal taxa, such as nematodes (Kapranas et al., 2016), anuran amphibians 67 

(Blaustein & Waldman, 1992) and mammals (Heth et al., 1998). In social insects, for example, 68 

kin recognition and avoidance of competition between relatives have been demonstrated in 69 

many species, like in sweat bees Lasioglossum zephyrum, honey bees Apis mellifera (West-70 

Eberhard, 1989), and in the socially polymorphic ant, Pheidole pallidula (Fournier et al., 2016). 71 

In non-social insects, on the other hand, this phenomenon seems rarer (for reviews, see 72 
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Fellowes, 1998 and Griffin & West, 2002) or even absent, like in the parasitoid wasps Aphidius 73 

matricariae (Bourdais & Hance, 2009) and Cotesia glomerata (Ruf et al., 2010). Theoretical 74 

models also predict that kin discrimination may not evolve in populations with a low dispersion 75 

of individuals due to the high risk of competition for resource between relatives (West et al., 76 

2002). 77 

In hymenopteran parasitoids (i.e. organisms that feed and develop at the expense of a 78 

host, resulting in its death), females may compete to feed and lay their eggs on (i.e. 79 

ectoparasitoid) or in (i.e. endoparasitoid) a host. Because offspring survival directly depends on 80 

the mother’s ability to acquire and defend the host (Petersen & Hardy, 1996), agonistic 81 

interactions may occur between females that may, in some cases, be fatal, as described in some 82 

Melittobia species (Godfray, 1994; Hartley & Matthews, 2003; Innocent et al., 2011). In this 83 

context, four main factors acting on RHP and/or SRV appear to influence conflict resolution: 84 

(1) relative size and age of the opponents, (2) order of arrival on the resource (resident or 85 

intruder), (3) egg load, and (4) previous experience. Bigger and older females usually win 86 

contests (Petersen & Hardy, 1996; Humphries et al., 2006; Tsai et al., 2014), as do residents 87 

(Maynard Smith & Parker, 1976; Enquist & Leimar, 1987), even if they are smaller than 88 

intruders (Bentley et al., 2009). In addition, individuals with a greater egg load are generally 89 

advantaged during combat; these females value the resource more because a greater egg load 90 

would allow them to oviposit on the host sooner (Stokkebo & Hardy, 2000; Mohamad et al., 91 

2010; but see Goubault et al., 2007). Finally, females that have experienced low quality hosts 92 

or low host densities are usually more aggressive and win more often in the presence of high 93 

quality hosts (Mohamad et al., 2010; Mathiron et al., 2018). Although the ability to treat kin 94 

differentially may influence the dynamics of contests between parasitoids competing for hosts, 95 

this has been rarely tested empirically. To our knowledge, only two studies measured the effect 96 

of kin recognition on competition avoidance and aggression in hymenopteran parasitoids: (1) 97 
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in the polyembryonic wasp (i.e. clonal multiplication of eggs within the host) Copidosoma 98 

floridanum (Giron et al., 2004) and (2) in the gregarious (i.e. several larvae develop on the same 99 

host) parasitoid Goniozus legneri (Lizé et al., 2012). In the latter study, Lizé et al. (2012) 100 

showed that adult females recognized their relatives through phenotypic cues and familiarity 101 

(development on the same host), adjusting their aggressiveness accordingly. Familiarity would 102 

thus act as a proxy for kinship. However, no study has measured the effect of genetic relatedness 103 

on aggression and conflict resolution in a solitary parasitoid species.  104 

Here, we explored the effect of kin recognition on aggressiveness and resolution of 105 

conflict in females of the solitary ectoparasitoid wasp, Eupelmus vuilleti (Hymenoptera: 106 

Eupelmidae). Females parasitize and feed upon larvae and pupae of the cowpea seed beetle 107 

Callosobruchus maculatus (Coleoptera: Bruchidae), which infest seeds of Vigna unguiculata 108 

(Fabaceae). Eupelmus vuilleti is a solitary parasitoid, which implies that only one individual 109 

develops per host (supernumerary larvae are eliminated by larval competition; Fisher, 1961). 110 

When several females are simultaneously present on a patch, they tend to protect the host by 111 

directing agonistic behaviours towards conspecific competitors (Mohamad et al., 2010; 112 

Mathiron et al., 2018). In sub-Saharan Africa, farmers traditionally stored cowpea seeds in 113 

granaries, sometimes resulting in populations of both hosts and parasitoids reaching high 114 

densities. Since seeds often contain several hosts, several individuals of E. vuilleti can emerge 115 

from the same seed, leading females to experience intense intraspecific competition with both 116 

kin and non-kin conspecifics. 117 

We therefore tested whether wasps are able to adjust their aggressiveness during 118 

contests for host access depending on their level of genetic relatedness with their competitor. 119 

Because reducing the costs associated with conflicts between kin may be beneficial in terms of 120 

inclusive fitness, we expected a decrease in aggressiveness and conflict escalation between 121 

related females. Moreover, if kin recognition is effective in E. vuilleti females, this recognition 122 
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might be based on phenotypic matching, familiarity, or both. Females may use cues coming 123 

from genetically encoded phenotypic traits and/or from a common environment. For example, 124 

the seed containing hosts on which wasps developed may itself act as a way to identify kin. 125 

Using a full factorial design, we made genetically related or unrelated juveniles develop on 126 

hosts within the same seed (familiar) or different seeds (unfamiliar). We then investigated the 127 

effects of (1) genetic relatedness among adult females (genetically related vs. unrelated), (2) 128 

the seed containing the hosts on which females developed (same vs. different seeds, i.e. familiar 129 

vs. unfamiliar), (3) the absolute difference in SRV (number of ready-to-lay eggs) of individuals, 130 

and (4) the interaction between these variables on aggressiveness, contest escalation and 131 

resolution. As contests are predicted to be clearly settled and less aggressive when contestants 132 

show a large difference in SRV (Maynard Smith & Parker, 1976), we expected contests in 133 

which the absolute difference in egg load between contestants was large to be less aggressive 134 

and often won by the most gravid female. If females recognize kin and avoid fighting against 135 

them, this effect of SRV asymmetry should be stronger between unrelated/unfamiliar females. 136 

 137 

MATERIAL AND METHODS 138 

Laboratory breeding 139 

We tested individuals of E. vuilleti that were collected on cowpea seeds from crops 140 

cultivated in Togo in 2007. Wasps were brought to the laboratory (Institut de Recherche sur la 141 

Biologie de l'Insecte, Université de Tours, France) and reared on juvenile stages of C. 142 

maculatus, as described by Jaloux et al. (2004). We performed all experimental procedures in 143 

a climate room (temperature = 30 °C and photoperiod = 12:12 h light: dark). 144 

Genotypes 145 
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To study the influence of genetic relatedness between females on competition for host 146 

access, we bred four genetically inbred strains. Working on individuals coming from more than 147 

two genotypes minimized the risk of bias due to contest behaviours specific to those genotypes.  148 

To do so, we separately introduced four mating pairs from the same breeding in Petri dishes 149 

(diameter: 8.5 cm, height: 2.7 cm) with cowpea seeds infested by C. maculatus and a piece of 150 

cotton soaked in water. We isolated females at emergence so that they were virgin and we 151 

placed them in the presence of a male. We left couples in contact for one to two days so that 152 

females could mate and parasitize hosts. We then removed the wasps to allow offspring 153 

development (generation 1, G1). At the emergence of G1 offspring (about 15 days after 154 

hatching; Jaloux et al., 2004), we mated one son and one daughter from each original mating 155 

pair to produce the second generation (G2). We repeated this operation until the 17th generation 156 

(G17). Theoretical models estimate that inbred lineages become fixed from G20 in diploid 157 

species (Hamilton, 2009). As E. vuilleti is a haplodiploid species, fixation process is likely to 158 

be more rapid; we therefore assumed that we had generated four different, highly inbred 159 

genotypes (referred as genotypes ‘A’, ‘B’, ‘C’ and ‘D’). We then individually placed G17 160 

females in Petri dishes with a brother male and supplied them with infested cowpea seeds for 7 161 

days, in order to obtain G18 daughters that were (1) familiar (same seed) and related (same 162 

genotype), (2) familiar (same seed) and unrelated (different genotypes), (3) unfamiliar 163 

(different seeds) and related (same genotype) and (4) unfamiliar (different seeds) and unrelated 164 

(different genotypes). To obtain familiar – unrelated females (i.e., coming from the same seed 165 

but genetically different), we cut seeds into halves, placed each half in different Petri dishes 166 

and allowed G17 mothers from different genotypes to separately parasitize hosts contained in 167 

each half of the seeds (Fig. 1). The difficulty in obtaining wasps that emerge synchronously 168 

from each half seeds explains the relatively small sample size of contests performed between 169 

these unrelated–familiar females (see the ‘experimental procedure’ section). 170 
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 Females preparation for contests 171 

At the emergence of G18 individuals, we isolated wasps to prevent them from having 172 

any competition experience and introduced them separately in Petri dishes supplied with a piece 173 

of cotton soaked in water (Fig. 1). During the 3 days preceding behavioural observations, we 174 

provided females with one C. maculatus pupa, which was replaced daily. To do so, we dissected 175 

cowpea seeds to collect pupae. We then individually placed them in standard transparent 176 

gelatine capsule (length: 2 cm, diameter: 0.6 cm). These artificial seeds allow for better 177 

observation of laid eggs, without altering females’ oviposition behaviour (Gauthier & Monge, 178 

1999; Jaloux et al., 2004). Moreover, as E. vuilleti is a synovigenic species (i.e. they possess a 179 

few mature eggs at emergence and egg maturation continues throughout adult life), we added a 180 

male to the females' petri dishes for 24h to stimulate oogenesis (Terrasse & Rojas‐Rousse, 181 

1986). In addition, to facilitate individual identification during contests, we marked them on 182 

the dorsal part of their thorax with a dot of bright yellow or bright red acrylic paint. On the day 183 

of behavioural observations, we removed the hosts and deprived females of hosts for at least 2h 184 

before the start of the contest so that they were more motivated to oviposit. We then observed 185 

contests between females fighting for a 4th instar larva of C. maculatus. 186 

 187 

Experimental procedure 188 

At the start of the observation, we simultaneously introduced two parasitoid females 189 

into an arena consisting of a plastic block made of three chambers linked by a narrow channel 190 

(adapted from Petersen & Hardy, 1996). We placed females in the central chamber already 191 

containing a 4th instar larva of C. maculatus previously placed in a capsule. Mathiron et al. 192 

(2018) showed that females with oviposition pre-experience on pupae were more motivated to 193 

gain access to a 4th instar larva. Contestants were of the same age (3 days old), marked with 194 
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different colours and visually matched for size (a posteriori analysis confirmed that contestants 195 

did not differ significantly in body mass; Wilcoxon signed-ranks test: T = 2463, N = 92, P = 196 

0.14). We set up four different types of contests (Fig. 1), with different combinations of 197 

genotypes: (1) females emerged from the same seed that were from the same genotype (i.e. 198 

familiar – related , N = 19; genotype combinations: ‘AA’, N = 7; ‘BB’, N = 5; ‘CC’, N = 2; 199 

‘DD’, N = 5), (2) females emerged from the same seed that were from different genotypes (i.e. 200 

familiar – unrelated, N = 9; genotypes combinations: ‘AD’, N = 1; ‘BC’, N = 2; ‘BD’, N = 1; 201 

‘CD’, N = 5), (3) females emerged from different seeds that were from the same genotype (i.e. 202 

unfamiliar – related, N = 25; genotype combinations: ‘AA’, N = 9; ‘BB’, N = 5; ‘CC’, N = 7; 203 

‘DD’, N = 4) and (4) females emerged from different seeds that were from different genotypes 204 

(i.e. unrelated – unfamiliar, N = 39; genotypes combinations: ‘AB’, N = 6; ‘AC’, N = 5; ‘AD’, 205 

N = 8; ‘BC’, N = 6; ‘BD’, N = 7; ‘CD’, N = 7). Wasps from the same genotype were full sisters. 206 

During all tests, we recorded oviposition and aggressive behaviours displayed by each 207 

female. When wasps detect a conspecific (identified by females raising their antennae in the 208 

direction of their opponent), they frequently stop their behavioural oviposition sequence 209 

(Mohamad et al., 2010). Females can either display defensive behaviour, kicking the opponent 210 

with their legs without taking their ovipositor out of the capsule, or they can exhibit a full attack, 211 

in which case one parasitoid usually hits her opponent with her head, chases her away from the 212 

capsule, or even mounts her. This hitting, chasing, or mounting can lead the loser to quit the 213 

central chamber of the arena. We therefore considered only these behaviours, collectively 214 

termed as ‘attack’, in the rest of the study. We conducted behavioural observations during 1h 215 

or stopped the contests when one female left the central chamber for at least 2 min. We also 216 

stopped contests when neither of the females touched the host nor displayed any aggressive 217 

interactions for at least 2min. We considered a contest as resolved when a female chased her 218 
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opponent out of the central chamber, or when only one female displayed oviposition behaviour 219 

(i.e. the winning female) during the experiment time. 220 

At the end of experiments, we immediately froze the wasps at -20°C. We then weighed 221 

them using an electronic balance (Ohaus Discovery® model, accuracy: 0.01mg) and we 222 

counted the number of mature eggs in their abdomen (i.e. egg load) by dissecting them. Finally, 223 

we noted for each contest the number of eggs laid on the host by the winning females to 224 

determine their initial egg load (i.e. at the start of the contest). 225 

Statistical analysis 226 

We analysed our data with the software R (R Development Core Team, 2016; version 227 

3.5.0), using α = 0.05. Instead of transforming data to fit standard assumptions, we chose to 228 

perform parametric analyses in which the assumed distribution of residuals was matched to the 229 

data (Wilson & Hardy, 2002; Briffa et al., 2013).  230 

We first defined contest aggressiveness as a binary response: 0 = no aggressive 231 

behaviour occurred during a replicate and 1 = aggressive behaviours occurred (N = 92 contests). 232 

We then performed a generalized linear model (GLM) with a binomial error distribution (link 233 

function = ‘logit’) to investigate the influence of absolute difference in initial egg load between 234 

contestants, genetic relatedness and familiarity among females on the probability that 235 

aggressive behaviours would be exhibited during contest. The model included the three main 236 

effects and two-way interactions between variables. We used the same procedure to explore the 237 

influence of absolute difference in initial egg load between contestants, genetic relatedness and 238 

familiarity among females on the probability of contest resolution. We thus defined contest 239 

resolution as a binary response: 0 = the contest was unresolved and 1 = there was a clear winner 240 

(N = 92 contests).  241 

We finally examine the influence of absolute difference in initial egg load between 242 

contestants, genetic relatedness and familiarity among females on the total number of attacks 243 



Page 11 

displayed by both females during contest. To account for overdispersion, we ran a GLM 244 

assuming a quasi-Poisson distribution of residuals (link function = ‘log’), considering only 245 

aggressive contests (i.e. contests where at least one attack was observed; N = 76). The model 246 

included main effects and two-way interactions between variables. We also included in the 247 

model the logarithm of contest duration as an offset term to account for differences in contest 248 

duration. 249 

For all analyses, we started with the maximal model and removed non-significant 250 

interactions to test the significance of main effects. Likelihood-ratio chi-square and F-statistics 251 

were calculated using the ‘Anova’ function (package car), which performs type-II analysis of 252 

variance for GLM models, i.e. without a priori of the sequence order of explanatory variables 253 

(Fox & Weisberg, 2019). Where we found significant interactions between factors, we ran 254 

Dunn's post-hoc multiple comparison tests to establish which modalities significantly differed 255 

from each other (Dunn, 1961). 256 

 257 

Ethical Note 258 

We used 372 individuals in this study: 186 females for contests, and 186 males for 259 

female insemination. No animal ethics approval was required for this study. Nevertheless, we 260 

handled all individuals with care and we kept handling time to an absolute minimum. Acrylic 261 

paint used for marking does not cause injury to wasps. Subjects submitted to dissection were 262 

chilled in a freezer prior to decapitation. 263 

 264 

RESULTS 265 

 266 

Effect of genotype combination 267 
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We first verified that the genotype combination of the contestants did not affect the 268 

probability of contests being aggressive (GLM with binomial distribution of residuals: G9 = 269 

12.72, P = 0.18), the probability of contest being resolved (GLM with binomial distribution of 270 

residuals: G9 = 9.91, P = 0.36), or the number of attacks during contest (GLM with quasi-271 

Poisson distribution of residuals: F9,66 = 1.90, P = 0.07). However, this could reflect a lack of 272 

statistical power due to small sample sizes. 273 

 274 

Escalation and resolution of conflicts 275 

The probability of contests being aggressive was significantly influenced by the 276 

interaction between genetic relatedness and familiarity of females (GLM with binomial 277 

distribution of residuals: estimates ± S.E. = -17.29 ± 1312.5, G1 = 5.54, P = 0.02, Fig. 2a). 278 

Contest escalation was indeed less likely when contestants were familiar and related than when 279 

they were familiar and unrelated (post-hoc Dunn’s multiple comparison test: P = 0.02, Fig. 2a), 280 

but no difference was observed between unfamiliar-related and unfamiliar-unrelated females 281 

(post-hoc Dunn’s multiple comparison test: P = 0.27; Fig. 2a). Moreover, no difference was 282 

observed between familiar-related and unfamiliar-related females (post-hoc Dunn’s multiple 283 

comparison test: P = 0.05; Fig. 2a), and between unfamiliar-related and unfamiliar-unrelated 284 

females (post-hoc Dunn’s multiple comparison test: P = 0.10; Fig. 2a). The probability of 285 

contest being aggressive did not significantly vary with the absolute difference in female egg 286 

load (GLM with binomial distribution of residuals: estimates ± S.E. = -0.115 ± 0.184, G1 = 0.38, 287 

P = 0.54). All other interactions were also non-significant. 288 

The probability of a contest being clearly resolved varied significantly with familiarity 289 

(GLM with binomial distribution of residuals: estimates ± S.E. = 2.216 ± 0.802, G1 = 11.32, P 290 

< 0.001). Contests between familiar females had a greater chance of showing a clear winner 291 

than contests between unfamiliar females (Fig. 2b). However, we found no effect of genetic 292 
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relatedness (GLM with binomial distribution of residuals: estimates ± S.E. = -0.332 ± 0.507, 293 

G1 = 0.430, P = 0.51), the absolute difference in female egg load (GLM with binomial 294 

distribution of residuals: estimates ± S.E. = -0.201 ± 0.158, G1 = 1.634, P = 0.2), or any 2-way 295 

interactions between variables. 296 

 297 

Number of attacks during conflicts 298 

The combined total number of attacks displayed by the two wasps during a contest was 299 

influenced by the absolute difference in female egg load, with contests being more aggressive 300 

when this difference was larger (GLM with quasi-Poisson distribution of residuals: estimates ± 301 

S.E. = 0.229 ± 0.041, F1,72 = 28.01, P < 0.001; Fig. 3). This total number of attacks did not vary 302 

with female genetic relatedness (GLM with quasi-Poisson distribution of residuals: estimates ± 303 

S.E. = -0.059 ± 0.148, F1,72 = 0.1593, P = 0.69), familiarity (GLM with quasi-Poisson 304 

distribution of residuals: estimates ± S.E. = -0.323 ± 0.170, F1,72 = 3.795, P = 0.06) or any 2-305 

way interactions between these variables. 306 

 307 

DISCUSSION 308 

The main goals of our study were: 1) to investigate whether E. vuilleti females adjust 309 

their aggressive behaviour during contests for host access according to the genetic relatedness 310 

with their competitor, and if so, 2) to explore on which components (phenotypic matching 311 

and/or familiarity) kin recognition is based. We observed that both genetic relatedness and 312 

familiarity influence the probability of conflict being aggressive: contest escalation was the 313 

least likely when contestants were both familiar and related. Moreover, familiarity affected 314 

conflict resolution, contests being more likely to be resolved when females were familiar. We 315 

thus highlighted kin discrimination in E. vuilleti, a solitary parasitoid with low dispersion ability 316 
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(Cortesero et al., 1997). This evidence is all the more important that, in species with limited 317 

dispersion, the high risk of competition between kin may weaken the evolution of kin 318 

discrimination (West et al., 2001, 2002) and behaviours favouring relatives may not be selected 319 

for, as observed in fig wasps (West et al., 2001). 320 

Our results first indicate that E. vuilleti individuals were able to recognize both 321 

genetically related females and familiar females, and then decide whether to engage in an 322 

aggressive contest or not. Recognition of relatives in E. vuilleti agrees with what was found in 323 

the polyembryonic wasp genus Copidosoma, in which attack rates by the larval soldier caste 324 

was inversely correlated with competitor relatedness (Giron et al., 2004). Moreover, in the 325 

gregarious parasitoid wasp, G. legneri, contests between adult females over hosts were less 326 

aggressive when competitors were more closely related and when females had developed on 327 

the same host (i.e., familiar, Lizé et al., 2012). However, several other studies of parasitoid 328 

hymenopterans have reported that kin recognition did not affect fights between males (West et 329 

al., 2001; Innocent et al., 2011), mate choice (Bourdais & Hance, 2009; Ruf et al., 2010), or sex 330 

allocation behaviour (Reece et al., 2004). Recognition of genetically encoded phenotypic cues 331 

can operate through two mechanisms: (1) allelic recognition (greenbeard effect), i.e., 332 

recognition of an allele that underlies the expression of a phenotypic trait (Gardner & West, 333 

2010) and (2) phenotypic matching, which is based on overall phenotypic similarity between 334 

related individuals (Gadagkar, 1985; Mateo, 2004). The first mechanism leads to the 335 

recognition of similarity at the locus responsible for expression of the phenotypic trait (Gardner 336 

& West, 2010), while the second mechanism leads to relatedness recognition at the genome 337 

scale if there is a strong correlation between both genetic and phenotypic similarity (Mateo, 338 

2004; Gardner & West, 2010). Because allelic recognition may involve cooperation between 339 

unrelated individuals expressing the trait encoded by a given allele, fixation in a population is 340 

expected to be rare owing to invasion by cheaters (Gardner & West, 2010). As such, phenotypic 341 
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matching is more plausible in the current case. Phenotype matching, in which the genotype of 342 

individuals is expressed through their phenotype, contrasts to familiarity in which phenotypic 343 

cues may derive from genotypes and/or environment (Lizé et al., 2012). Even if phenotypic 344 

matching is generally referred to as a different mechanism from familiarity, phenotypic 345 

matching may thus be seen as an extension of familiarity (Mateo, 2004). Here, because the 346 

probability of a conflict being aggressive was influenced by the interaction between genetic 347 

relatedness and familiarity among females, this suggests that phenotypic matching mechanism 348 

may be an extension of familiarity in E. vuilleti females. In accordance with the study of Lizé 349 

et al. (2012) in G. legneri, our experiments highlighted that these two components of kin 350 

recognition affect contests for hosts in a parasitoid wasp. More strikingly, we showed for the 351 

first time that both components can interact to affect intraspecific competition for resources in 352 

a solitary insect species. 353 

While we also expected the total number of aggressive behaviours displayed during 354 

contests to be influenced by both kin recognition components, only the difference in 355 

competitors' egg load had a significant effect: fights were less aggressive when the opponents 356 

had a similar number of mature eggs. This unexpected result seems in contradiction with theory 357 

models predicting that symmetry between individuals leads to more escalated contests of longer 358 

duration (Parker, 1974; Maynard Smith & Parker, 1976). Here, one explanation is that the total 359 

number of attacks during a contest may have been driven by the behaviour of the contestant 360 

with the highest egg load. As egg load is known to influence competitors’ subjective value of 361 

the resource (Enquist & Leimar, 1987; Stokkebo & Hardy, 2000), the more gravid females (i.e. 362 

with more mature eggs in their ovaries) are expected to be more motivated to fight for winning 363 

access to the host. Opponent females can match their aggressiveness, resulting in an increase in 364 

the total number of aggressive behaviours during conflicts. Additional analyses seem to support 365 

this hypothesis: the total number of attacks displayed by the two wasps during contests 366 
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significantly increased with the egg load of the most gravid contestant (GLM with quasi-367 

Poisson distribution of residuals: estimates ± S.E. = 0.11 ± 0.04, F1,74 = 6.20, P < 0.02) and the 368 

number of attacks displayed by both females are positively correlated (GLM with quasi-Poisson 369 

distribution of residuals: estimates ± S.E. = 0.04 ± 0.01, F1,74 = 36.27, P < 0.001). Furthermore, 370 

our results add to the evidence that egg load is the major factor driving variation in aggressive 371 

behaviours during contests for hosts in E. vuilleti (Mohamad et al., 2010, 2012). The underlying 372 

mechanism is still unknown, but the involvement of hormones has been suggested (Stokkebo 373 

& Hardy, 2000; Goubault & Decuignière, 2012). In particular, juvenile hormone is known to 374 

be involved in egg maturation in many insect species (reviewed by Nijhout, 1994) and 375 

associated with aggressiveness in different hymenopteran species such as paper wasps (Tibbetts 376 

& Huang, 2010) and honeybees (Pearce et al., 2001). Ecdysteroids also play a major role in the 377 

regulation of oogenesis in E. vuilleti females (Bodin et al., 2009), and may affect female 378 

aggressive behaviours. Nevertheless, additional work is required to investigate to what extent 379 

hormones may affect female aggressiveness during contest over host. 380 

In contrast with Lizé et al. (2012) who found no effect of familiarity or genetic 381 

relatedness on the probability of contests being resolved in G. legneri, we showed that conflicts 382 

between familiar females were more likely to result in a clear winner and loser. In parasitoid 383 

hymenopterans, offspring survival, hence females’ direct fitness, depends directly on their 384 

ability to acquire, parasitize and defend hosts (Petersen & Hardy, 1996). However, exploiting 385 

a host, and in particular drilling through the seed to access it, has been shown to be highly 386 

energetically costly in this species (Boisseau et al., 2017). Quitting a host, to the benefit of 387 

another female, is thus a waste of potential fitness return, but may save energy. Nevertheless, 388 

if both contestants are relatives, the increase in inclusive fitness may counterbalance the cost of 389 

surrendering the host to a conspecific female, as predicted by kin selection theory (Hamilton, 390 

1964). Behavioural mechanisms that allow higher probabilities of contest resolution between 391 
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familiar females in E. vuilleti would therefore be adaptive, as long as emerging from hosts that 392 

developed in the same seed is a good predictor of genetic relatedness in this species. In E. 393 

vuilleti, mothers often monopolize a cowpea seed infested by several juvenile C. maculatus 394 

(Mohamad et al., 2012), and wasps that emerge from the same seed are therefore highly likely 395 

to be sisters.  396 

  Altogether, we observed that E. vuilleti females variably rely on genetic relatedness and 397 

familiarity cues depending on the contest stage: they first rely on both types of cues when 398 

deciding whether to escalate the conflict or not. Then, during escalated contests, aggressiveness 399 

varied only with SRV asymmetry between contestants. Finally, contest resolution was based on 400 

familiarity cues only. If this may be surprising at first glance, the type of information used by 401 

animals for decision-making is classically known to change over contests (see Arnott & 402 

Elwood, 2009 for a review of ‘assessment’ models). For example, Elias et al. (2008) showed 403 

that males of the jumping spider, Phidippus clarus, use multimodal signals during aggressive 404 

interactions: the duration of pre-contact phases was based on differences in vibration behaviour 405 

between males, while motivation to escalate towards contact phases was mainly based on body 406 

size. Moreover, in the mangrove rivulus fish, Kryptolebias marmoratus, males use different 407 

assessment strategies during conflicts. Fish usually adopt ‘mutual assessment’ to decide 408 

whether to escalate the contest, and then change to a ‘self-assessment’ to whether persist the 409 

escalation (Hsu et al., 2008). Overall, our results demonstrated that wasps are able to use 410 

different cues at each phase of the conflict to make their behavioural decisions. 411 

The mechanisms underlying the identification of genetic relatedness and familiarity 412 

remain to be explored in E. vuilleti. However, E. vuilleti females are known to adjust their 413 

behaviour based on the detection of conspecific cuticular hydrocarbons (CHC; Darrouzet et al., 414 

2010). Because the wasps, in our study, discriminated competitors of the same genotype and 415 

those from the same seed, they may have detected genetically encoded or environmentally 416 
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influenced differences in the CHC profile of their opponent. Studies in parasitoid hymenoptera 417 

suggest that CHC may be characteristic of related individuals (Höller et al., 1991; Howard, 418 

2001). Several studies have also measured biochemical convergence between the surface lipids 419 

of host plants and cuticular compounds of insect herbivores and their predators or parasitoids 420 

(reviewed in Blomquist & Bagnères, 2010). Kühbandner et al. (2012) found, in the pteromalid 421 

wasp Lariophagus distinguendus, that shifting host during only one generation led to 422 

distinguishable CHC profiles among females. Moreover, since familiar E. vuilleti females came 423 

from the same seed on which the hosts fed, it is possible that females developing on hosts that 424 

exploit the same resource might express a similar biochemical profile that allows for 425 

recognition of familiar individuals (Ode et al., 1995; Singer, 1998). For example, von Beeren 426 

et al. (2011) showed that ant parasites Malayatelura ponerophila acquire cuticular 427 

hydrocarbons directly from their host Leptogenys distinguenda. However, E. vuilleti females 428 

may have simply acquired seed-specific compounds by friction when emerging out of the seed. 429 

Physical contacts can also generate variation in the chemical cuticular hydrocarbon profile: 430 

when stroking their abdomens on the nest surface of their host, both parasite species 431 

Sulcopolistes sulcifer and Polistes semenowi acquire host hydrocarbons from the comb 432 

(Turillazzi et al., 1990; Zacchi, 1995). Moreover, in social wasps, a hydrocarbon layer similar 433 

to that of resident wasps covers nest paper, so that physical contact between parasite cuticle and 434 

nest hydrocarbons may favour the transfer of odours between parasites and comb (Lorenzi et 435 

al., 1996; Singer, 1998). We call future studies to test these hypotheses and identify the cues 436 

involved in the different components of kin recognition. 437 

 438 

Conclusion 439 

By investigating the effects of both genetic relatedness and common developmental 440 

environment on contest behaviour and resolution in E. vuilleti, we were able to demonstrate 441 
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that two kin recognition components (phenotypic matching and familiarity) mediate the 442 

occurrence of escalated conflicts and contest resolution in a parasitoid wasp. We showed for 443 

the first time that both components can interact to affect intraspecific competition in a solitary 444 

insect species. Additionally, in species with limited dispersion like E. vuilleti (Cortesero et al., 445 

1997), high competition risk for resources between kin may weaken the evolution of reducing 446 

aggressive behaviours toward related conspecifics (West et al., 2001, 2002). Our study therefore 447 

shows that kin discrimination during intraspecific competition can also evolve in a species with 448 

limited dispersion. 449 

 450 
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Figure captions 685 

Figure 1. Experimental design that allowed us to investigate the role of genetic relatedness and 686 

familiarity on female aggressiveness and conflict resolution over host access. Parasitoid females from 687 

different genotypes (‘A’, ‘B’, ‘C’ and ‘D’) mated and then parasitized infested cowpea seeds for 7 days, 688 

in order to obtain adult wasps that have emerged from the same seed or not, and that were genetically 689 

related or not. After 3 days of preparation, we observed contests between females that were (1) familiar-690 

related, (2) familiar-unrelated, (3) unfamiliar-related and (4) unfamiliar-unrelated, fighting for accessing 691 

to a host.  692 

 693 

Figure 2. (a) Probability (±S.E.M.) of a contest being aggressive when familiar contestants were 694 

genetically related (light bars, N = 19) or unrelated (dark bars, N = 9), or when unfamiliar contestants 695 

were genetically related (light bars, N = 25) or unrelated (dark bars, N = 39). Different letters indicate 696 

significant differences based on post-hoc Dunn’s multiple comparison test. (b) Probability (±S.E.) of 697 

a contest being resolved when contestants were familiar (light bars, N = 28) or unfamiliar (dark bars, N 698 

= 64). ***: P < 0.001. 699 

 700 

Figure 3. Combined total of number of aggressive behaviours observed during contest according to the 701 

absolute difference in initial egg load between females of a same dyad. ***: P < 0.001. Statistical 702 

analyses accounted for differences in contest duration, and showed that effect of the absolute difference 703 

in female egg load was still significant when removing the contest during which we observed 100 attacks 704 

(GLM with quasi-Poisson distribution of residuals: estimates ± S.E. = 0.175 ± 0.049, F1,71 = 4.87, P < 705 

0.01). 706 

  707 
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