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Abstract. We present the effects of using a single-pixel camera approach to extract optical properties with
the single-snapshot spatial frequency-domain imaging method. We acquired images of a human hand for spatial
frequencies ranging from 0.1 to 0.4 mm−1 with increasing compression ratios using adaptive basis scan wavelet
prediction strategy. In summary, our findings indicate that the extracted optical properties remained usable up
to 99% of compression rate at a spatial frequency of 0.2 mm−1 with errors of 5% in reduced scattering and 10%
in absorption. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.7.071612]
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1 Introduction
Over the last decade, extensive progress has been made in dif-
fuse optics toward developing quantitative, wide field, rapid,
and inexpensive methods to visualize the physiological proper-
ties of living tissues. Among the numerous approaches proposed
in this direction, the most recent ones rely on the spatial modu-
lation of the light and processing in the frequency domain.1–3

Spatial frequency-domain imaging (SFDI) techniques allow
the measurement of tissues absorption and reduced scattering
optical properties over an entire image at once, which are
used to retrieve physiological tissues parameters.4–10 However,
major limitations of such imaging system include the necessity
to project several patterns of light and to illuminate sequentially
at several wavelengths to extract physiological parameters,
impeding the use of such technology for real-time imaging.

To increase the speed of acquisition, some approaches have
proposed to reduce the number of projected patterns.11–14

Methods, such as single-snapshot imaging of optical properties
(SSOP), make use of a single pattern of light,11,12 and the com-
bination of this method with temporal encoding of the wave-
lengths has been proposed to achieve rapid multispectral
acquisitions.15,16 However, these approaches still make use of
standard camera-based technology such as complementary
metal–oxide–semiconductor (CMOS) or charge-coupled device
(CCD) sensors that are generally expensive, monochromatic,
limited in dynamic range, and importantly are limiting for multi-
and hyperspectral imaging configurations.

In front of these limitations, compressive optics is a prom-
ising alternative to conventional imaging for diffuse optics. In
particular, single-pixel cameras (SPCs) exhibit increased sensi-
tivity and higher dynamic range due to efficient electronic
designed for high-end photodiode or single-photon detector,17

as well as low-cost multispectral imaging capabilities.18–21

In this paper, we explore numerically, using real SSOP data,
the possibilities and limitations offered by compressive optics
for real-time implementation using SSOP associated to an SPC
(Fig. 1). In particular, we compressed existing SSOP data using

compressive optics algorithms to evaluate the accuracy in
extracting optical properties and the theoretical acquisition
time required as a function of the compression rate of the
SPC acquisition.

2 Materials and Methods

2.1 Single-Snapshot Imaging of Optical Properties

The standard SFDI method requires to acquire several images
of the scene sequentially at two different spatial frequencies
(e.g., fx ¼ 0 and 0.2 mm−1) and three different phases
(0 deg, 120 deg, and 240 deg) to obtain the modulation ampli-
tude of each spatial frequency.3 In comparison, the SSOP
method requires the acquisition of a single image and relies
on filtering in the Fourier domain to extract the amplitude
modulation at two spatial frequencies: fx ¼ 0 mm−1 and the
projected spatial frequency (e.g., fx ¼ 0.2 mm−1). From these
measurements, diffuse reflectances at these spatial frequencies
are obtained by calibration using a phantom with known optical
properties.3 The measured diffuse reflectances allow to extract
the absorption as well as the reduced scattering properties from a
precomputed look-up table.24,25

2.2 Compressed Sensing

An SPC is an experimental setup that can measure the dot prod-
uct of a scene and some user-defined pattern. See Ref. 26 for a
review of this approach. The key idea is to acquire by hardware a
compressed version of the scene by measuring

EQ-TARGET;temp:intralink-;e001;326;186m ¼ hTp; (1)

where h ∈ ℝN2

represents the image of the scene, p ∈ ℝN2

rep-
resents the pattern that is loaded on the spatial light modulator,
and N2 denotes the number of pixels of the spatial light
modulator.

The image h can be recovered by postprocessing a
collection of measurements fmig, 1 ≤ i ≤ I, obtained for differ-
ent patterns fpig, where I represents the number of patterns.
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P ¼ ½p1; · · · ; pI �T be the measured patterns. Assuming that the
measurement vector is a compressed version of the scene, we
estimate the scene by the least-squares method:

EQ-TARGET;temp:intralink-;e002;63;503h ¼ PTðPPTÞ−1m; (2)

for which fast implementations are available.27 In this paper, we
choose the patterns as Daubechie wavelets with four vanishing
moments, which is a common choice in image compression.27

The wavelet patterns to acquire are determined iteratively during
acquisition according to the adaptive basis scan wavelet predic-
tion strategy described in Ref. 28.

The number of pattern I is an acquisition parameter. Large
numbers of patterns lead to high image quality but long acquis-
itions. We define the acquisition compression ratio (in %) as:

EQ-TARGET;temp:intralink-;e003;326;752cr ¼
�
1 −

I
N2

�
× 100: (3)

2.3 Data Processing and Results Analysis

To evaluate the performances of an SSOP-SPC system, we
acquired a set of hand images at multiple spatial frequencies
(fx ¼ 0, 0.1, 0.2, 0.3, and 0.4 mm−1) at a wavelength of
665 nm and three evenly distributed phases (SFDI acquisi-
tion).29 This range of spatial frequencies was chosen for inves-
tigating the trade-off between compression ratio and image
quality, in the context of SSOP-SPC.30 Then, we compressed
a single-phase image from the set of images acquired with
SFDI to simulate the acquisition of a single SSOP image by
an SPC, with increasing compression ratios of 0%, 50%,
90%, 98%, 99%, and 99.5% using the adaptive basic scan
described above with N ¼ 1024. The resulting images are
shown in Fig. 2. Each of the simulated SSOP-SPC images
was then processed using the SSOP method to extract the
absorption and reduced scattering maps.

The SSOP-SPC approach was evaluated by comparing the
absorption and reduced scattering maps recovered from the
original SFDI images and from the SSOP-SPC images. This
comparison was done by measuring the mean percentage error
in absorption and reduced scattering over a 400 × 350 pixels
region of interest (see Fig. 3) given by the following equation:

EQ-TARGET;temp:intralink-;e004;326;456Error % ¼ 1

N ×M

XN−1

n¼0

XM−1

m¼0

����100 × ðμSFDIn;m − μSSOPn;m Þ
μSSOPn;m

����; (4)

where N ¼ M ¼ 1024 are the image pixel size and μ represents
either μa or μs 0. We also computed the theoretical SPC acquis-
ition time according to:

Fig. 1 Schematics of a possible implementation of an SSOP imaging
system associated to an SPC (SSOP-SPC).18,21–23 A custom single
pattern projector consisting of a printed pattern on transparent sub-
strate and an objective lens could be used on the projection side.
On the detection side, a single DMD board (Vialux V7000-VIS)
along with coupling optics (achromatic doublet lenses or objective
lenses Vialux STAR-07) to image the scene on the DMD and collect
the signal onto a single-pixel detector (DET100A, Thorlabs).

Fig. 2 SPC images acquired with an adaptive basic scan prediction strategy. Different compression
ratios are displayed in different columns, and different spatial frequencies f x are displayed in different
rows.
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Fig. 3 Absorption map retrieved at four spatial frequencies with SFDI (first column), and SSOP for com-
pressed images. Different compression ratios are displayed in different columns, and different spatial
frequencies f x are displayed in different rows. The region of interest used for analysis is indicated in
white on the top left image.

Fig. 4 Reduced scattering map retrieved at four spatial frequencies with SFDI (first column), and SSOP
for compressed images. Different compression ratios are displayed in different columns, and different
spatial frequencies f x are displayed in different rows.
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EQ-TARGET;temp:intralink-;e0025;63;752Time ðinmsÞ ¼ N ×M
fDMD

×
�
1 −

cr

100

�
; (5)

where fDMD (in kHz) represents the digital micromirror device
refresh rate, set to 20 kHz.

3 Results
The results of the absorption and reduced scattering coefficient
recovered by the SFDI method and by the SSOP-SPC method at
the different compression rates are shown in Figs. 3 and 4,
respectively. These figures make it possible to visually assess
the qualitative degradation of the images extracted based on dif-
ferent compression rates and the change in reduced scattering
due to the more superficial measurement when the spatial fre-
quency is increasing.

Results quantifying the mean and standard deviation percentage
error in absorption and reduced scattering are presented in Tables 1
and 2, respectively. These tables show the average percent error
based on the compression rate at each spatial frequency projected.
Bold values are the results similar to the SFDI reference measure-
ment. Overall, good results (i.e., without major difference in errors
compared to the 0% compression rate results) can be obtained with
99.5% compression rate at 0.1 mm−1, 99% compression rate at
0.2 mm−1, and 90% compression rate at 0.3 mm−1. The method
is not usable without significant inaccuracies for 0.4 mm−1.

These tables also shows that best overall performances indi-
cated by the lowest mean percentage error are obtained with a
spatial frequency of 0.3 mm−1. Overall, the bold values show
almost constant mean percentage error for one given spatial fre-
quency that could be used to perform SSOP imaging with an SPC.

Results of minimum theoretical acquisition time are reported
in Table 3 using a 20-kHz DMD with a single photodetector

Table 1 Mean and standard deviation percentage error in absorption.

Compression rate

0% 50% 90% 98% 99% 99.5%

Spatial
frequency

0.1 mm−1 16.2� 12.9 16.2� 12.9 16.2� 12.9 16.2� 12.8 16.1� 12.8 15.8� 12.7

0.2 mm−1 9.6� 7.5 9.6� 7.6 9.6� 7.6 9.7� 7.6 10.1� 8.1 34.1� 28.7

0.3 mm−1 7.3� 5.8 7.4� 6.1 7.8� 7.5 10.8� 11.6 16.8� 14.9 58.7� 30.6

0.4 mm−1 8.0� 6.4 9.6� 10.2 12.2� 13.5 36.9� 29.2 54.3� 32.7 70.3� 31.4

Note: Bold values are the results similar to the SFDI reference measurement.

Table 2 Mean and standard deviation percentage error in reduced scattering.

Compression rate

0% 50% 90% 98% 99% 99.5%

Spatial
frequency

0.1 mm−1 5.8� 4.3 5.8� 4.3 5.8� 4.3 5.7� 4.3 5.7� 4.3 6.0� 4.6

0.2 mm−1 3.9� 3.2 4.0� 3.7 4.0� 3.7 4.1� 3.7 4.9� 5.3 33.1� 30.3

0.3 mm−1 4.2� 3.4 4.3� 4.0 4.8� 6.6 9.2� 11.5 16.7� 15.5 58.1� 31.2

0.4 mm−1 6.0� 4.8 8.2� 10.4 10.9� 14.3 38.4� 30.1 55.9� 33.1 71.7� 31.3

Note: Bold values are the results similar to the SFDI reference measurement.

Table 3 Minimum theoretical acquisition time in second.

Compression rate

0% 50% 90% 98% 99% 99.5%

Spatial
frequency

0.1 mm−1 52.43 26.21 5.24 1.05 0.52 0.26

0.2 mm−1 52.43 26.21 5.24 1.05 0.52 0.26

0.3 mm−1 52.43 26.21 5.24 1.05 0.52 0.26

0.4 mm−1 52.43 26.21 5.24 1.05 0.52 0.26

Note: Bold values are the results similar to the SFDI reference measurement.
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synchronized with the DMD refresh rate (i.e., acquisition time of
50 μs). Logically, acquisition time decreases with compression
rate and is not dependent on the spatial frequency of patterns pro-
jected on the scene. In summary, best overall performance in both
acquisition time and accuracy, shown in bold fonts, are obtained
at 99% compression rate with 0.2 mm−1 and a resulting acquis-
ition time 520 ms.

4 Discussion
In this study, we evaluated the potential of using an SPC in an
SSOP system. To this end, images were acquired on an exper-
imental SFDI system at different spatial frequencies and com-
pressed at different compression rates according to the adaptive
basis scan wavelet prediction strategy. These images were then
processed using the SSOP processing method to extract their
optical properties. Finally, these results were compared to the
SFDI processing results on the original images.

In summary, this study shows that at spatial frequencies of
0.1 and 0.2 mm−1 optical properties can be extracted accurately
with a 99% compression rate resulting in a 520-ms theoretical
acquisition time. When adding the constraint for a good quality
image, SSOP-SPC imaging can be performed optimally at
0.2 mm−1 with a compression rate of 99%. At higher spatial
frequencies, while better precision in extracting optical proper-
ties and improved image quality can be obtained at low com-
pression rates, degradations at higher compression rates
significantly impacts the precision of the extracted optical prop-
erties, limiting its potential for fast imaging.

This study highlights the trade-off that exists between the
choice of the spatial frequency used for acquisition and the
capacity for the SSOP-SPC method to perform in real time.
As evidenced through the results, the choice of the spatial fre-
quency has naturally a direct consequence on the image quality
when using SSOP. Decreasing spatial frequency in SSOP-SPC
allows faster acquisition but results in image degradation.30

This study reveals that more technological progress is nec-
essary for using SSOP with an SPC in real time. Using the cur-
rent technology (20-kHz DMD), 520-ms acquisition time is
obtained at 99% compression rate when a scientific CMOS cam-
era can reach up to 200 frames per second (i.e., 5-ms acquisition
time), nearly a 100-fold difference. In addition, at a spatial fre-
quency of 0.3 mm−1, where best precision is obtained, it would
take 5.24 s of acquisition time at 90% of compression rate. It is
clear that faster spatial light modulator technology is required to
be able to use the SSOP-SPC method in real time.

Despite this limitation, it is important to remember a few
points. First, an SPC is potentially more sensitive than the conven-
tional CMOS or CCD cameras in the near-infrared, a wavelength
band that is regularly used in diffuse optics. It will, therefore, not
be necessary to increase the exposure time as much as with a con-
ventional camera. Second, the main interest in using a single-pixel
architecture is the potential for multi- or hyperspectral measure-
ments. Current SFDI hyperspectral measurements typically require
tunable filters, filter wheel, and sequential acquisition on a single
camera or a hyperspectral camera.10,31–34 None of these technolo-
gies is either cost-effective or allows real-time measurement. A sin-
gle-pixel architecture can easily scale to several wavelengths by
replacing the photosensor in SPC with line array of photosensors.

5 Conclusion
In this paper, we explore the possibilities and limitations offered
by compressive optics for real-time implementation using SSOP

associated to an SPC. In particular, we evaluate the accuracy in
extracting optical properties and the theoretical acquisition time
required as a function of the compression rate of the SPC acquis-
ition. The results show that usable optical properties with errors
<10% in absorption and 5% in reduced scattering can be
extracted at a spatial frequency of 0.2 mm−1 with a compression
rate of 99% resulting in a 520-ms acquisition time. This work
contributes to the exploration of the benefits of SPC in the devel-
opment of diffuse optical imaging.
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