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ON THE DENSITY OR MEASURE OF SETS AND THEIR

SUMSETS IN THE INTEGERS OR THE CIRCLE

PIERRE-YVES BIENVENU AND FRANÇOIS HENNECART

Abstract. Let d(A) be the asymptotic density (if it exists) of a sequence of
integers A. For any real numbers 0 ≤ α ≤ β ≤ 1, we solve the question of

the existence of a sequence A of positive integers such that d(A) = α and

d(A + A) = β. More generally we study the set of k-tuples (d(iA))1≤i≤k for
A ⊂ N. This leads us to introduce subsets defined by diophantine constraints

inside a random set of integers known as the set of “pseudo sth powers”. We
consider similar problems for subsets of the circle R/Z, that is, we partially

determine the set of k-tuples (µ(iA))1≤i≤k for A ⊂ R/Z.

1. Introduction

We respectively denote by N, Z, Q and R the set of all natural integers, the set
of all integers, the set of all rational numbers and the set of all real numbers. Let
T = R/Z be the torus (or the circle). For any finite set A, we denote its cardinality
by |A|. For x ∈ R, we denote by bxc its integral part and by {x} = x − bxc its
fractional part. For A ⊂ N and t > 1, we let A(t) = |A ∩ [1, t]|. We define if it
exists the so-called asymptotic density of A by

d
(
A
)

= lim
t→∞

A(t)

t
.

Otherwise we define the lower and the upper asymptotic densities d(A) and d(A)
using lim inf and lim sup instead of limits. More generally, if A ⊂ B ⊂ N, we define
if it exists the density of A inside B as

dB(A) = lim
t→∞

A(t)

B(t)
.

The density of A inside N is therefore simply the density, and if B has a positive
density, we have dB(A) = d

(
A
)
/d
(
B
)
.

For a subset A of a semigroup G, let A + A = {a + b : a, b ∈ A}. For k ≥ 1,
we denote by kA its k-fold sumset. From Kneser’s Theorem [9], we know that for
any subset A ⊂ N, the inequality d

(
2A
)
< 2d

(
A
)

may only hold when d
(
2A
)

is a
rational number. Similarly, for any subset A of the circle T equipped with its Haar
probability measure µ, a theorem of Raikov [14] implies that µ(2A) ≥ min(1, 2µ(A))
where

µ(A) = sup
F⊂A

F closed

µ(F ).

In this paper, we firstly determine the possible values (α, β) of pairs (d
(
A
)
,d
(
2A
)
)

and (µ(A), µ(2A)). We first completely settle the case β ≥ min(2α, 1).
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Theorem 1.1. Let (α, β) ∈ [0, 1]2. Suppose β ≥ min(2α, 1). Then the following
statements both hold.

a) There exists A ⊂ N such that d
(
A
)

and d
(
2A
)

exist and equal α and β
respectively.

b) There exists a measurable subset A ⊂ T such that 2A is measurable and
µ(A) = α and µ(2A) = β. Further, for α > 0, we may take A to be open
(in fact a finite union of open intervals).

The case β = 2α is obvious for the second item (with an interval A), and is a
special case of a theorem by Faisant et al [5] for the first item, whereas allowing
different summands, Volkmann [16] proved that, given positive real numbers α1, α2

and γ such that α1 +α2 ≤ γ < 1, there exist1 A1, A2 such that d
(
Ai
)

= αi, i = 1, 2,

and d
(
A1 +A2

)
= γ; he actually proved the corresponding result for subsets of the

circle too. A similar result was obtained by Nathanson [13], including a version for
Schnirelmann’s density.

More generally, we investigate the set Dk of possible values of the tuple

(d
(
A
)
,d
(
2A
)
, . . . ,d

(
kA
)
)

when A ranges over the set of sequences for which all of these densities exist. For
any real number θ > 1, let

(1) Tk,θ =
{
n ≥ 1 : 0 ≤ {θn} < 1

k + 1

}
.

Note that d
(
Tk,θ

)
= 1/(k + 1) if θ is irrational by Weyl’s criterion which we state

in a moment (Theorem 1.3), while Tk,θ = N if θ is an integer. In any case one has

jTk,θ = {n ≥ 1 : 0 ≤ {θn} < j
k+1} for j ≤ k+1, in particular. (k+1)Tk,θ = N. We

now state the following key result which will be proved in Section 2 when k = 1.
The general case k ≥ 2 will be tackled in Section 4.

Proposition 1.2. Let β ∈ [0, 1] and k ≥ 1 be an integer. There exists a set
A ⊂ Tk,θ such that iA has density 0 for any i < k, whereas kA has density β inside
kTk,θ and (k + 1)A has density 1 inside N.

In particular, we have d
(
kA
)

= βk/(k + 1) if θ is irrational while d
(
kA
)

= β
if θ is an integer. Thus any (k + 1)-tuple of the form (0, . . . , 0, β, 1) where β ≤ 1
belongs to Dk+1.

In parallel, we consider the similar problem in the circle T equipped with its Haar
measure µ. Thus let Ek be the set of all the possible values of (µ(A), . . . , µ(kA))
for A ⊂ T for which these measures exist. We may sometimes need to work with
the subset Eok ⊂ Ek of all the possible values of (µ(A), . . . , µ(kA)) when A ⊂ T is
open and Riemann-measurable and similarly Eck, where we consider closed sets A.

There is a close connection between Ek and Dk because of Weyl’s criterion for
equidistribution, of which we now state a direct consequence. For A ⊂ T and
λ ∈ R \Q, let

Bλ,A =
{
n ∈ N : {λn} ∈ A

}
.

Theorem 1.3. For any irrational number λ and any Riemann-measurable function
f : [0, 1]→ R, we have

lim
x→+∞

1

x

∑
n≤x

f({λn}) =

∫
f.

1In Volkmann’s construction, the sets of integers are sets of relative integers and not necessarily
positive integers though.
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In particular, for any Riemann-measurable subset A ⊂ T, we have d
(
Bλ,A

)
= µ(A).

The latter equality may be extended to open sets A.

The extension to open sets is [16, Lemma 4]. Further, Theorem 1.3 and a simple
compactness argument shows that for any ε > 0 and irrational λ, there exists a
constant C = C(λ, ε) such that for any interval I of length at least ε the set Bλ,I
contains at least an integer less than C. Finally, the operation A 7→ Bλ,A behaves
well with respect to set addition.

Lemma 1.4. Let k ≥ 2 and Ai ⊂ T be open for i = 1, . . . , k and λ be irrational.

Then d
(∑k

i=1Bλ,Ai
)

= µ(
∑k
i=1Ai).

Proof. Let A ⊂ T be open, and for any ε > 0 let Aε be the set of all a ∈ A
whose distance to the boundary of A is at least ε. Thus A =

⋃
ε>0A

ε and µ(A) =

limε→0+ µ(Aε). Further,
∑k
i=1Ai =

⋃
ε>0

∑k
i=1A

ε
i . We observe that

(2) Bλ,
∑k
i=1 A

ε
i
⊂

k∑
i=1

Bλ,Ai ⊂ Bλ,∑k
i=1 Ai

.

The rightmost inclusion is easy; for the leftmost one, let x ∈ Bλ,∑k
i=1 A

ε
i
, thus x =∑k

i=1 ai where ai ∈ Aεi . Consequently, ]ai−ε/k, ai+ε/k[⊂ Ai for i ∈ {1, . . . , k−1}.
If n is large enough (larger than kC(λ, 2ε/k)), there exists n1, . . . , nk−1 ≤ n/k such
that {niλ} ∈ ]ai − ε/k, ai + ε/k[ . Let nk = n − n1 − · · · − nk−1 > 0. Then
{nkλ} = {nλ} − {n1λ} − · · · − {nk−1λ} mod 1, which implies {nkλ} mod 1 ∈
]ak − ε, ak + ε[⊂ Ak, in other words nk ∈ Bλ,Ak . Thus n ∈

∑k
i=1Bλ,Ai .

Taking densities and applying Theorem 1.3 in equation (2), we find that

µ
( k∑
i=1

Aεi

)
= d(Bλ,

∑k
i=1 Ai

) ≤ d
( k∑
i=1

Bλ,Ai

)
≤ d

( k∑
i=1

Bλ,Ai

)
≤ d(Bλ,

∑k
i=1 Ai

) = µ
( k∑
i=1

Ai

)
.

Letting ε→ 0+, we conclude. �

Consequently, Eok ⊂ Dk; in particular, the second item of Theorem 1.1 implies
the first one when α > 0, but we will provide another proof for it. Further, Raikov’s
theorem together with Theorem 1.1 means that E2 = Eo2 = Ec2 = {(α, β) ∈ [0, 1]2 :
β ≥ min(1, 2α)}.

To complete our description of D2, we need to understand which pairs (α, β)
satisfying β < 2α belong to it, which we do in the next theorem. For an integer
n, let v2(n) be its dyadic valuation; we extend it to rational numbers by letting
v2(p/q) = v2(p)− v2(q).

Theorem 1.5. Let β ∈ Q∩ ]0, 1[ such that v2(β) ≤ 0 and let α ∈ ]0, 1[ satisfy
β < 2α. We denote g0 = min

{
g ≥ 1 : gβ is an odd integer

}
. Then there exists a

sequence A ⊂ N such that d
(
A
)

= α and d
(
2A
)

= β if and only if

β

2
< α ≤ β

2
+

1

2g0
.

We briefly discuss iterated sumsets. It is not clear what constraints a tuple
(αi)1≤i≤k must satisfy for a set A ⊂ T satisfying µ(iA) = αi to exist; we certainly
need αi ≥ min(1, αj + αi−j) for any j < i due to Raikov’s theorem but it may not
be sufficient. In particular, we will deduce the following constraint from a theorem
of Gyarmati, Konyagin and Ruzsa [7].
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Theorem 1.6. There exists a constant c > 0 such that the following holds. Let
A ⊂ T be closed, and suppose that µ(2A) < c. Then µ(3A) ≥ 3

2µ(2A).

In view of Lev’s result [11, Theorem 3] asserting that for any finite set of integers
A one has

k(|(k + 1)A| − 1) ≥ (k + 1)(|kA| − 1),

one may more generally imagine that µ((k + 1)A) ≥ k+1
k µ(kA) under certain re-

strictions on µ(kA). Note that another result from [7] implies that the constant
c may not be taken to be 1. Gyarmati et al. conjecture that its optimal value is
1/2. On the other hand, due to the Plünnecke-Ruzsa inequalities, we know that
if d
(
2A
)
≤ Kd

(
A
)
, we must have d

(
3A
)
� K3d

(
A
)
. Similarly, in the circle, if

µ(2A) < 3µ(A) and µ(A) is small enough, Moskvin et al. [12] showed that A must
satisfy strict structural conditions that imply µ(3A) ≤ 3(µ(2A)− µ(A)).

We solve partially the problem with k = 3.

Theorem 1.7. Let (α, β, γ) ∈ ]0, 1]3, and suppose that β < min(1, 3α) and γ ∈
[min(1, 3β/2),min(1, 2β − α)] or that β = 3α and γ ∈ [3β/2, 2β]. Then (α, β, γ) ∈
E3.

For general k, our understanding of Ek and Dk is yet poorer. Note that in
general, our sets A ⊂ N satisfy d

(
(k + 1)A

)
≥ k+1

k d
(
kA
)
, which, in view of the

aforementioned result of Lev, may be inevitable. In the following statement we
compile all the results that we can prove in this general context.

Theorem 1.8. Let α = (α1, . . . , αk+1) ∈ [0, 1]k+1, where k ≥ 1.

a) If α1 = · · · = αk−1 = 0 and αk+1 ≥ k+1
k αk, or αk+1 ≥ αk and αk+1 is the

inverse of an integer, then α ∈ Dk+1.
b) If α1 = · · · = αk = 0, then α ∈ Ek+1.
c) If αi = iα for each i and some α ≤ 1/(k + 1), then α ∈ E0k+1 ⊂ Dk+1.

The last item is obvious by taking an interval of length α, and was also proved
somewhat differently for Dk in [5].

In the next section, we prove the complete description of D2 and E2 given in
Theorems 1.1 and 1.5.

2. Sumsets in the integers

2.1. A preliminary reduction. We first show that Theorem 1.8 a) follows from
the special case αk+1 = 1 stated in Proposition 1.2. Let α ∈ [0, 1]k+1 satisfy the
hypothesis of Theorem 1.8 a), and let β′ = αk and γ′ = αk+1. We distinguish
several cases.

a) We first assume that γ′ is an irrational number. Let A be the set given in

Proposition 1.2 with parameters θ = 1
γ′ and β = β′

γ′ and A′ be defined by

A′ = {bθac : a ∈ A}.

Since A ⊂ Tk,θ we have for any a1, . . . , ak+1 ∈ A

bθa1c+ bθa2c+ · · ·+ bθak+1c = bθ(a1 + a2 + · · ·+ ak+1)c.

Since θ > 1, we get d
(
jA′
)

= θ−1d
(
jA
)
, j = 1, 2, . . . , k + 1.

This yields Theorem 1.8 a) when γ′ is an irrational number.

b) If γ′ is the inverse of a positive integer q, we use again Proposition 1.2 with

parameters θ = 1
γ′ and β = β′

γ′ to generate a set A. We define the set

(3) A(q) = {qa : a ∈ A}
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which satisfies

d
(
(k − 1)A(q)

)
= 0 < d

(
kA(q)

)
=
β

q
< d

(
(k + 1)A(q)

)
=

1

q
.

c) We finally assume that γ′ = s
q is a rational number with 2 ≤ s < q. Upon

multiplying numerator and denominator by appropriate numbers, we may
assume that s = (k + 1)r for some integer r satisfying 3 ≤ r < q

k+1 . Let

U = {0, 1, . . . , r − 2, r}. Then |jU | = jr for any j. Letting A′ = U + A(q)

where A(q) is defined by (3), we thus obtain

d
(
(k − 1)A′

)
= |(k − 1)U | × d

(
(k − 1)A(q)

)
= 0,

d
(
kA′
)

= |kU | × d
(
kA(q)

)
=
krβ

q
=

k

k + 1
βγ′,

d
(
(k + 1)A′

)
= |(k + 1)U | × d

(
(k + 1)A(q)

)
=

(k + 1)r

q
= γ′.

This concludes the proof of Theorem 1.8 a), assuming Proposition 1.2. We will
now prove the latter, focussing first on the case k = 1 (so concerning twofold
sumsets, that is Theorem 1.1), since it is much more simple than, while retaining
some important features of, the general case, which we handle later.

2.2. Twofold sumsets. Before embarking on the proof of Proposition 1.2 in the
case k = 1, we need a quantitative version of Weyl’s criterion (Theorem 1.3), due
to Erdős and Turán [4, Theorem III].

Theorem 2.1. For any sequence sj of elements of the torus T and any interval A,
we have for any integers n and m the bound∣∣∣∣ 1n |{1 ≤ j ≤ n : sj ∈ A}| − µ(A)

∣∣∣∣� 1

m
+

1

n

m∑
k=1

1

k

∣∣∣∣∣∣
n∑
j=1

e2iπsjk

∣∣∣∣∣∣ ,
where the implied constant is absolute.

Applying this with sj = {θj} for some irrational number θ and using the standard
exponential sum bound ∣∣∣∣∣∣

m∑
j=1

e2iπjθ

∣∣∣∣∣∣ ≤ 1

2 ‖θ‖
,

where ‖θ‖ = mink∈Z |θ − k|, we obtain∣∣∣∣ 1nBθ,A(n)− µ(A)

∣∣∣∣� 1

m
+

1

n

m∑
k=1

1

k ‖θk‖
,

where

(4) Bθ,A(n) =
{

1 ≤ j ≤ n : {θj} ∈ A
}
.

The series
∑m
k=1

1
k‖θk‖ diverges as m tends to infinity, but selecting m = m(n) as

a sufficiently slowly increasing function of n, one may achieve

1

n

m(n)∑
k=1

1

k ‖θk‖
� 1

m(n)
→ 0

as n tends to infinity, and thus there exists a non increasing function η : N → R+

(depending on θ only) which tends to zero such that

(5)

∣∣∣∣ 1nBθ,A(n)− µ(A)

∣∣∣∣ ≤ η(n).
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Note that the bound (5) is uniform in A; in particular, it is still valuable if A is
replaced by a sequence An of intervals of sufficiently slowly decaying measure (e.g.
µ(An) ≥ 2η(n)). Also we note that using the sequence sj = {θ(j +X)}, we may
obtain the more general bound

(6)

∣∣∣∣ 1n(Bθ,A(n+X)−Bθ,A(X)
)
− µ(A)

∣∣∣∣ ≤ η(n)

for any integers X and n.

We now start the proof of Proposition 1.2 in the case k = 1. We will adopt a
probabilistic construction. The setting corresponds to that given in [8, Chapter III,
Theorem 13]. We shall use the notation P(A) for the probability measure of an
event A and E(Z) for the expectation of a random variable Z.

Let θ be an irrational number, η be a non increasing function tending to 0 such
that (5) holds.

Our aim is to study the number of representations of n under the form n = k1+k2
with k1 < n/2 < k2 and k1, k2 ∈ T1,θ where T1,θ is defined by (1). When {θn} < 1/2
we shall deduce from (5) the lower bound Bθ,I(n/2) > n

2 ({θn} − η(n/2)) with
I = ]0, {θn}[ . We thus need to assume that {θn} is sufficiently larger than η(n/2).
Similarly when {θn} > 1/2 we need to assume {θn} is sufficiently smaller than
1− η(n/2). So we are led to restrict our attention to those integers n that belong
to

Xθ =
{
n ∈ N : 2η(n/2) < {θn} < 1− 2η(n/2)

}
.

By (5) and the ensuing remarks we have

(7) d
(
Xθ

)
= 1.

We now define our desired random sequence A. Let (ξk)k≥1 be a sequence of
mutually independent Boolean random variables such that

P(ξk = 1) = βk, k ≥ 1,

where βk is the constant sequence equal to β if β > 0 and the decaying sequence
k−1/5 if β = 0. Let A be the random sequence consisting of the integers k ∈ T1,θ
such that ξk = 1. Then the expectation of its counting function A(x) =

∑
0<k≤x ξk

satisfies

E(A(x)) =
∑
k≤x

{θk}<1/2

βk =

{
O(x4/5) if β = 0,

βT1,θ(x) if β > 0.

By the strong law of large numbers for the mean of mutually independent random

variables (cf. [8, chapter III, Theorem 11]) we infer that almost surely A(x)
T1,θ(x)

∼ β

as x → ∞ if β > 0, and A(x) � x4/5 if β = 0. It follows that in both cases the
density of A inside T1,θ satisfies dT1,θ

(A) = β almost surely, as required.

Now we prove that 2A ⊃ Xθ \ F , where F is almost surely a finite set. This
would imply that d

(
2A
)

= 1. Let n ∈ Xθ. We define

Kn = {0 < k < n/2 : k ∈ T1,θ ∩ (n− T1,θ)},
and

R(n) =
∑
k∈Kn

ξkξn−k.

Then by the independence of the ξk’s

(8) P(R(n) = 0) =
∏
k∈Kn

P(ξkξn−k = 0) ≤ (1− β2
n)|Kn| ≤ exp(− |Kn|β2

n).

Now we need a lower bound for |Kn|. By definition k < n/2 belongs to Kn if and
only if {θk} < 1/2 and {θ(n− k)} < 1/2.
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Let I = ]2η(n/2), 1/2[ . Since n ∈ Xθ, we have {θn} ∈ I ∪ (1 − I). Suppose
for instance {θn} ∈ I, the case {θn} ∈ 1 − I is similar. Then for any k such that
{θk} < {θn} < 1/2, we have {θ(n− k)} = {θn} − {θk} < 1/2. Thus k ∈ Kn. This
means that

Kn ⊃
{

0 < k < n/2 : {θk} < {θn}
}
,

whence |Kn| ≥ n
2 ({θn} − η(n/2)) ≥ n

2 η(n/2) by (5). If {θn} ∈ 1 − I = [1/2, 1 −
2η(n)[ instead, it suffices to replace the condition {θk} < {θn} by 1

2 − {θk} <
1− {θn} to obtain the same result.

One can choose η(n) to be arbitrarily slowly decaying, say η(n) ≥ n−1/2. This
way |Kn| � n1/2, so that β2

n |Kn| � n1/10 and from (8) we get∑
n∈Xθ

P(R(n) = 0) <∞.

We conclude by the Borel-Cantelli lemma (cf. [15, Lemma 1.2]) that almost surely,
all but finitely many integers in Xθ are sums of 2 terms from the random sequence
A. The result follows from (7). This finishes the proof of Proposition 1.2 in the
case where k = 1, and thus of Theorem 1.1.

We now determine which pairs (α, β) ∈ R2 with 0 < α ≤ β < 2α belong to D2,
that is, we prove Theorem 1.5.

Let A ⊂ N such that β = d
(
2A
)
< 2d

(
A
)

= 2α. By Kneser’s theorem [9] there
exists a (minimal) positive integer g such that x+ g ∈ 2A for all but finitely many
x ∈ 2A, and

d
(
2A
)
≥ 2d

(
A
)
− 1

g
.

Let G = Z/gZ be the group of the residue classes modulo g and

A =
{
x ∈ G : x ∩A 6= ∅

}
,

B =
{
x ∈ A : |x ∩A| =∞

}
,

C =
{
x ∈ A : 0 < |x ∩A| <∞

}
= A \B.

Let

Ã =
⋃
x∈B

(x ∩ N) ∪
{
x ∈ {0, 1, . . . , g − 1} : x ∈ C

}
.

Then

d
(
A
)
≤ d

(
Ã
)

=
|B|
g
, d

(
2A
)

=
|A+B|

g
.

If |A + B| < |A| + |B| − 1 then by Kneser’s theorem (cf. [9]; see equivalently [15,
Theorem 5.5]) A+B would have a non trivial period in G{

x ∈ G : x+A+B = A+B
}
6= {0},

in contradiction with the minimality of g. We thus have |A + B| ≥ |A| + |B| − 1.
On the other hand our hypothesis d

(
2A
)
< 2d

(
A
)

implies |A|+ |B|−1 < 2|B|. We

deduce B = A and finally |2A| = 2|A| − 1.

Let r = |A|. Then β = 2r−1
g with 1 ≤ r ≤ g+1

2 . We get

β

2
< α ≤ r

g
=
β

2
+

1

2g
.

We proved the following.
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Proposition 2.2. Let A such that d
(
2A
)
< 2d

(
A
)
. Then there exist two positive

integers g and r ≤ g+1
2 such that

d
(
2A
)

=
2r − 1

g
and

d
(
2A
)

2
< d

(
A
)
≤

d
(
2A
)

2
+

1

2g
.

Conversely, let β ∈ ]0, 1[∩Q have non positive dyadic valuation, and g be the
smallest positive integer for which gβ is odd, thus β = 2r−1

g for some integer r ≥ 1.

Let α satisfy
β

2
< α ≤ β

2
+

1

2g
=
r

g
.

Then let V = {0, . . . , r − 1}, so that |2V | = 2r − 1 ≤ g. Let β0 = αg/r, thus
β0 ∈ ]0, 1]. We apply Proposition 1.2 with k = 1 to get a set A0 such that d

(
A0

)
=

β0 and d
(
2A0

)
= 1. The associated rescaled set A

(g)
0 = {ga : a ∈ A0} satisfies

d
(
A

(g)
0

)
= β0/g = α/r and d

(
2A

(g)
0

)
= 1/g. Finally let A be the set

A = V +A
(g)
0 .

Then A clearly admits the required density α. Finally we have 2A = 2V + 2A
(g)
0

giving d
(
2A
)

= 2r−1
g = β as desired.

This completes the proof of Theorem 1.5. �

Example 2.3. Assume that there exists a set A such that α = d
(
A
)

= 4/9 and

β = d
(
2A
)

= 5/9. Applying Proposition 2.2 we get g ≤ 3 and r ∈ {1, 2}, whence
β = 1, 1/2 or 1/3, a contradiction.

Example 2.4. Fixing α = 1/5 and β = 3/10 in Theorem 1.5 yields g0 = 10.
Further the bounds β < 2α ≤ β + 1/g0 are satisfied hence there exists a set A
such that d

(
A
)

= 1/5 and d
(
2A
)

= 3/10. The only admissible choice for g, r in
Proposition 2.2 is g = 10 and r = 2.

3. Measures of sumsets in the circle

3.1. Twofold sumsets. To start with, we show that in order to achieve a large
ratio µ(2A)/µ(A), a large number of connected components will be necessary.

Lemma 3.1. Let A be a disjoint union of k intervals. Then µ(2A) ≤ (k+ 1)µ(A).

If the intervals are open, the equality case happens when all the
(
k+1
2

)
intervals of

the sum are pairwise disjoint.

Proof. Let A =
⋃k
j=1 Ij . So 2A =

⋃
i≤j(Ii + Ij). Let µ(Ii) = mi, so µ(Ii + Ij) =

mi + mj and µ(2A) ≤
∑
i≤j(mi + mj) = (k + 1)

∑k
i=1mi. The equality case is

clear. �

We now attempt to prove the first item of Theorem 1.1 in the case α > 0. Let
(α, β) ∈ ]0, 1]2 satisfy β ≥ min(2α, 1). If β = min(2α, 1), the interval A = ]0, α[
satisfies µ(A) = α, µ(2A) = β. So we now suppose 0 < α < 1/2 and β > 2α.

First, note that for any k, if A = [0, `]∪{2`}∪· · ·∪{(k−1)`}, then 2A = [0, k`] so
we can achieve a duplication ratio µ(2A)/µ(A) = k. The idea is then to somewhat
“thicken” the singletons, in order to reduce the duplication ratio of the set.

Let k = bβ/αc, thus k ≤ β/α < k + 1 and k ≥ 2.
Then let A = ]0, x[∪

(
{2x, . . . , kx}+ ]− ε, 0[

)
, for some x ≤ α and ε ≤ x/2 to be

determined later. Note that

2A = ]0, (k + 1)x[∪
(
{(k + 2)x, . . . , 2kx}+ ]− 2ε, 0[

)
.
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Thus µ(A) = x+ (k − 1)ε and µ(2A) = (k + 1)x+ 2(k − 1)ε. The doubling ratio is
therefore

f(ε/x) =
(k + 1)x+ 2(k − 1)ε

x+ (k − 1)ε
= (k + 1)

1 + 2k−1k+1
ε
x

1 + (k − 1) εx
.

We have f(0) = k + 1 and while f(1/2) = 4k/(k + 1) ≤ k. Therefore by continuity
of f , there is a value of the ratio y = ε/x for which the doubling ratio is the desired
β/α.

Then there remains to pick x such that α = x + (k − 1)ε = x(1 + (k − 1)y),
namely x = α

1+(k−1)y , and then the corresponding ε.

In the case α = 0, a radically different construction will be necessary. Let
C ⊂ [0, 1] be the classical ternary Cantor set. It is well known that C + C = [0, 2]
(cf. [1, Corollary 2.3]). Scaling C by a factor β/2 and projecting it to the circle,
we obtain the set A = {βc/2 : c ∈ C} of measure 0 such that 2A = [0, β], thus
µ(2A) = β.

3.2. Threefold sumsets. First we prove Theorem 1.6. We will derive it from the
following theorem of Gyarmati, Konyagin and Ruzsa [7].

Proposition 3.2. There exists an absolute constant c > 0 such that the following
holds. Let p ≥ 29 be a prime. Let A ⊂ Z/pZ and let (n, s) = (|2A| , |3A|). If
n < cp, then s ≥ 3n−1

2 .

We derive the analogous result for measures in the circle T by a standard method.
We first prove Theorem 1.6 for simple sets, that is, the union of finitely many closed
intervals. Let A ⊂ T be a simple set. Let c be the constant given by Proposition 3.2
and suppose that µ(2A) < c. Let p ≥ 29 be a prime, that we will let tend to infinity
ultimately. Let

Ap =
{
j ∈ Z/pZ : j/p ∈ A

}
.

One may check that |Ap| = pµ(A) +O(1) as p tends to infinity. Further note that
(kA)p = kAp for any k ∈ N. Since 2A and 3A are simple, one has |(kA)p| =
pµ(kA) +O(1) for k = 2, 3; thus we have |(2A)p| < cp for p sufficiently large, so we
can apply Proposition 3.2 and conclude in the case of simple sets.

Now if A is closed (that is, compact), writing Iδ = ]−δ, δ[ , we have A =
⋂
δ>0(A+

Iδ), in fact kA =
⋂
δ>0(kA+ Ikδ) for any integer k ≥ 1. So for any fixed ε > 0, we

can chose δ such that µ(kA+Ikδ) ≤ µ(kA)+ε. Further, by compacity, there exists a
simple set A′ (the union of finitely many translates of Iδ) such that A ⊂ A′ ⊂ A+Iδ.
We have

µ(3A) ≥ µ(3A′)− ε ≥ 3

2
µ(2A)− ε.

Letting ε tend to zero, we conclude the proof of Theorem 1.6. �

We prove Theorem 1.7. If α ≥ 1/3, the triplets (α, β, γ) that belong to Ek are
the ones for which β ≥ min(1, 2α) and γ = 1.

We now consider triplets where α < 1/3; we prove the following proposition,
which implies Theorem 1.7.

Proposition 3.3. The set of triplets (µ(A), µ(2A), µ(3A)) for sets A ⊂ [0, 1/3] ⊂ T
having at most two connected components is{

(α, β, γ) ∈ [0, 1]3 : β ∈ [2α, 3α], γ ∈ [3β/2, 2β − α[ or β = 3α, γ ∈ [3β/2, 2β]
}
.

Proof. We may take A of the form ]0, x[∪ ]y, z[ for some 0 ≤ x ≤ y ≤ z ≤ 1/3. So
2A = ]0, 2x[∪ ]y, x+z[∪ ]2y, 2z[ and 3A = ]0, 3x[∪ ]y, 2x+z[∪ ]2y, 2z+x[∪ ]3y, 3z[ .
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We are seeking for which triplets (α, β, γ) the system α= x+ z − y
β= 3α−max(0, 2x− y)−max(0, x+ z − 2y)
γ = 6α−max(0, 3x− y)−max(0, 2x+ z − 2y)−max(2z + x− 3y, 0)

admits solutions. We now discuss the existence of solutions according to the number
of connected components of 2A and 3A, that is, for each max above, whether it
is positive or not. In the following discussion, the necessary conditions we provide
may always easily be seen to be sufficient, although we do not always explicitly
state it.

1) If 2A is an interval, then so is 3A so γ = 3α = 3β/2.
2) If 2A has two connected components, so there is exactly one overlap between

the intervals of 2A, we distinguish.
a) If 2x > y and x + z < 2y, so 2A = ]0, x + z[∪ ]2y, 2z[ , we have β =

x − 2y + 3z. We have necessarily 3x > y and 2x + z > 2y, so 3A =
]0, 2z + x[∪ ]3y, 3z[ where the last two intervals may overlap or not.

i) If they do, so 2z+x > 3y, we have γ = 3z. So β = x−2y+γ and
α = x−y+γ/3. Get α−β = y−2γ/3 so y = α−β+2γ/3 while
x = 2α − β + γ/3. We check that the inequalities are satisfied:
2x−y = 3α−β > 0 so β < 3α, 2y−x−z = −β+2γ/3 > 0 implies
γ > 3β/2. Further, we need 2z+x−3y = −α+2β−γ > 0 which
amounts to 3β/2 < γ < 2β − α < 5α. Conversely, whenever
these conditions are satisfied, the system has solutions.

ii) Ohterwise we have 2z + x < 3y, hence γ = 3(z − y) + 2z + x.
Thus a solution exists if and only if γ = 2β − α.

b) Now if 2x < y and x + z > 2y, so 2A = ]0, 2x[∪ ]y, 2z[ , we have
β = 2x− y+ 2z. We have necessarily 2x+ z > 2y and 2z+ x > 3y, so
3A = ]0, 3x[∪ ]y, 3z[ , where the two intervals may or not overlap.

i) If they do, so 2x < y < 3x, we have γ = 3z. Further we find
y = β − 2α, and x = β − α − γ/3. So y − 2x = −β + 2γ/3 > 0
implies yet again γ > 3β/2. Further y − 3x = −2β + α+ γ < 0
implies γ < 2β − α. Also x + z − 2y = 3α − β > 0 amounts to
β < 3α.

ii) Otherwise, so y > 3x, we find γ = 3z − y + 3x = 3α + 2y and
again γ = 2β − α.

3) If 2A has three connected components (no overlap), then β = 3α. We have
2x < y and x+z < 2y. We distinguish according to the presence of overlaps
or not in 3A.

a) If there is no overlap, we have γ = 6α. It is realisable, just take x,
then y > 3x, then y < z < min((3y − x)/2, 1/3), then all constraints
are realised. We can achieve that for any value of α ≤ 1/6.

b) If 3A is connected, γ = 3z. Now the conditions 2x < y and x+ z < 2y
imply z < 3(y−x), which is equivalent to 2z > 3(x+z−y), and finally
γ > 3β/2.

c) If there is exactly one overlap, that is, if 3A has three connected com-
ponents, we distinguish.

i) Suppose 3x > y. So 2x + z < 2y and 2z + x < 3y. Then
γ = 6α− 3x+ y. This imposes γ ∈ ]5α, 6α[ = ]5β/3, 2β[ .

ii) Now suppose 2x + z > 2y. So y > 3x and 2z + x < 3y. Then
γ = 6α− 2x− z + 2y = 5α− x+ y > 5α.

iii) If only the last gap is overcome, γ = 6α − 2z − x + 3y = 5α −
z + 2y > 5α.

d) If 3A has two connected components, we distinguish.
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i) If all but the last gap are overcome, γ = 6α−3x+y−2x−z+2y =
5α− 4x+ 2y > 5α.

ii) If all but the middle gap are overcome, γ = 6α− 3x+ y − 2z −
x+ 3y = 5α− 3x− z + 3y > 5α.

iii) If all but the first gap are overcome, γ = 6α−2x− z+ 2y−2z−
x+ 3y > 5α. �

Regarding sets with k connected components when k ≥ 3, the determination of
the possible triplets (α, β, γ) becomes untractable by this method. Nevertheless, we
can easily see that the structure of the set of the possible triplets remains similar,
that is, a connected union of finitely many (in fact Ok(1) many) polytopes, where
a polytope is the intersection of finitely many half-spaces.

3.3. Further iterated sumsets. We now prove Theorem 1.8 b). Let β ∈ (0, 1]
and k ≥ 1 an be integer. We argue as in the proof of Theorem 1.1 b) in the
particular case α = 0. Let Ck+2 be the Cantor set of initial segment [0, 1] ⊂ R
and ratio of dissection 1/(k + 2). It is known [1, Corollary 2.3] that µ(kCk+2) has
measure 0 whereas (k+ 1)Ck+2 = [0, k+ 1]. The suitable re= of Ck+2 by the factor
β/(k + 1) provides the desired construction.

Note that this does not imply Theorem 1.8 a) in the particular case αk = 0 since
the openness condition of Lemma 1.4 may not be removed. Indeed, if A ⊂ T has
measure zero, one may see that Bλ,A is empty for almost all λ ∈ R \ Q, since the
map λ 7→ nλ on the circle is measure-preserving for any integer n. So we need the
specific argument based on Proposition 1.2 we gave in Section 2 when k = 1. The
general case k ≥ 2 will follow from Proposition 4.6.

4. Iterated sumsets in the integers

We now prove Proposition 1.2 for k ≥ 2. The (probabilistic) argument we will
use subsumes, but is significantly more complicated than, the one used in Section 2,
which is why we preferred to present it separately. First of all we collect a number
of useful but technical results.

4.1. Preliminary lemmas. First we need to somewhat generalise the bound (6)
obtained via the Erdős-Turán theorem.

Proposition 4.1. Let k,D,M,X be integers. Let f =
∑k
i=1 Pi1Ii where (Ii)i≤k

is a family of pairwise disjoint intervals in [0, 1[ and Pi a polynomial of degree less
than D whose coefficients are all at most M . Then∣∣∣∣∣∣ 1

N

∑
X<n≤N+X

f({θn})−
∫
f

∣∣∣∣∣∣ = O(MDk
√
η(N)).

A function f satisfying the above hypothesis will naturally be referred to as
piecewise polynomial.

Proof. It suffices to prove it for monomials and for k = 1, the general case following
by linear combinations (incurring an extra factor Mk). Thus let a < b be in [0, 1[ ,
and let d ≤ D and f be defined by f(x) = xd1(a,b). Using the bound (6), we note
that

ad((b− a)−O(η(N)) ≤ 1

N

∑
X<n≤N+X

{θn}d1(a,b)({θn}) ≤ bd((b− a) +O(η(N))

Further, observe that

ad(b− a) ≤
∫ b

a

xddx ≤ bd(b− a).
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Hence

(ad − bd)(b− a)−O(η(N)) ≤ 1

N

∑
X<n≤N+X

{θn}d1(a,b)({θn})−
∫ b

a

xddx

≤ (bd − ad)(b− a) +O(η(N)).

Given that bd − ad ≤ d(b− a), we find that∣∣∣∣∣∣
∑

X<n≤N+X

{θn}d1(a,b)({θn})−
∫ b

a

xddx

∣∣∣∣∣∣ ≤ d(b− a)2 +O(η(N)).

Then splitting the interval [a, b] into O(
√
η(N)

−1
) consecutive intervals of size

b
√
η(N)c, we obtain, for each of these intervals, an error term of size O(dη(N)),

and so in total, an error term of size O(D
√
η(N)). �

A certain type of sums will appear in the sequel, for which we now give an
asymptotic.

Lemma 4.2. Let 0 < α < 1, 0 ≤ β <∞ and

(9) JN (α, β) :=
∑

0<x<N

1

xα(N − x)β
.

Then

JN (α, β) =


B(1− α, 1− β)N1−α−β +O(N−min(α,β)) if β < 1,

N−α logN +O(N−α) if β = 1,

ζ(β)N−α +O(N−α−1+1/β) if β > 1,

where B(·, ·) denotes the Euler beta function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

and ζ(·) is the Riemann zeta function.

This can be proved by considering Riemann sums; we omit the standard de-
tails. The beta function satisfies the following functional equation involving Euler’s
gamma function:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

By induction, we may achieve the following simple lemma.

Lemma 4.3. Let (α1, . . . , αs) ∈]0, 1[s. Then∑
1≤u1,...,us≤n∑

i ui=n

∏
i

u−αii = O(ns−1−
∑
i αi).

Further, let ε : N → R+ tend to 0. Then there exists a sequence ε′ depending only
on ε that tends to zero such that∑

1≤u1,...,us≤n∑
i ui=n

ε(u1)
∏
i

u−αii = ε′(n)ns−1−
∑
i αi .

Proof. We prove the second part for s = 2, the rest following by a simple induction.
Let Kδ be such that for all k ≥ Kδ, we have ε(k) ≤ δ. Further let M be an upper
bound for ε. Then∑

k<n

ε(k)k−α1(n− k)−α2 ≤M
∑
k<Kδ

k−α1(n− k)−α2 + δ
∑
k<n

k−α1(n− k)−α2
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The right-hand side is O(K1−α1−α2

δ +δn1−α1−α2) by Lemma 4.2. We have Kδ →∞
(unless ε(k) = 0 eventually) as δ → 0, but choosing δ as a sufficiently slowly
decaying function of n, we can make the error term as small as o(n1−α1−α2) as
desired. �

For any real number 0 ≤ x ≤ 1 and any integer 1 ≤ j ≤ k − 1, let

aj(x) = max

(
0, x− j

k + 1

)
, bj(x) = min

(
x,

j

k + 1

)
and Ij(x) be the open interval

Ij(x) = ]aj(x), b1(x)[ .

Let f1 = 1[0,1[ and

fj+1(x) =

∫ b1(x)

aj(x)

fj(x− y)dy =

∫ bj(x)

a1(x)

fj(y)dy, 1 ≤ j ≤ k − 1.

Then for any 1 ≤ j ≤ k − 1

i) aj and bj are piecewise affine. Further aj(x) + bj(x) = x.

ii) µ(Ij(x)) = b1(x)−aj(x) = max
(

0,min
(
x, 1

k+1 ,
j+1
k+1 − x

))
. As a result, fj

is supported on ]0, j
k+1 [ .

iii) fj is a non negative, nonzero piecewise polynomial function. In fact fj has

only finitely many zeros on ]0, j
k+1 [ .

We will need the following estimate.

Lemma 4.4. Let (α, β) ∈ ]0, 1[ 2. Let θ > 1 be irrational and x ∈ ]0, 1[ . Then for
any j, we have∑

0<u<N
{θu}∈Ij(x)

fj(x− {θu})
1

uα
1

(N − u)β
= JN (α, β)(fj+1(x) +O(η′(N))),

where η′ is a function N→ R+ which tends to zero and depends only on θ.

Proof. We decompose the interval of summation [1, N [ into subintervals of some
length m = f(N) tending to infinity rather slowly, m = o(N) at any rate, even
m � No(1) but not too slowly either; we fix m = bη(N)−1/2c for definiteness. We
write

[1, N [ =
⋃

0≤k<bNm c

]km, (k + 1)m] ∪
]⌊
N

m

⌋
m,N

[
where the last interval has at most m elements.

Let K = bNmc. Let a = −α and b = −β. We note that∑
n∈ ]bNm cm,N [

na(N − n)b ≤ m(Km)a.

Denoting by S the sum to estimate, this implies that

S =
∑

0≤k<K

∑
n∈ ]km,(k+1)m]
{θn}∈Ij(x)

fj(x− {θn})na(N − n)b +O(Na+o(1)).

Also we note that when n ∈ ]km, (k + 1)m], the expression na(N − n)b may be
regarded as approximately constant, more precisely

na(N − n)b = ma+bka(K − k)b(1 +O(1/k))(1 +O(1/(K − k))).
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We may restrict the sum over k to reasonably large k, like between
√
K andK−

√
K;

indeed, we have∑
0<u≤m

√
K

ua(N − u)b ≤ (N −N1/2+o(1))bNa/2+1/2+o(1) = N b+a/2+1/2+o(1)

which is negligible to Na+b+1. We may argue analogously to discard the sum over
k ≥ K −

√
K. This way (1 +O(1/k))(1 +O(1/(K − k)) = 1 +O(1/

√
K) for any k

considered. Thus S, up to an error O(Na+b+1/
√
K)), equals

(10) ma+b(1 +O(1/
√
K))

∑
√
K≤k<K−

√
K

ka(K − k)b
∑

n∈ ]km,(k+1)m]
{θn}∈Ij(x)

fj(x− {θn}).

We now apply Proposition 4.1 to the inner sum. By definition of fj+1, we obtain∑
n∈ ]km,(k+1)m]
{θn}∈Ij(x)

fj(x− {θn}) = m(fj+1(x) +O(η(
√
m))).

Injecting that in (10), we find that

S = ma+b+1(1+O(1/
√
K))(fj+1(x)+O(η(

√
m)))

∑
√
K≤k<K−

√
K

ka(K−k)b+O(N c)

for some c < a+ b+ 1. Now we have from (9)

ma+b+1
∑

√
K≤k<K−

√
K

ka(K − k)b = JN (−a,−b) +O(N c)

by the same arguments as above. Finally, upon gathering all error terms together
(whereby the term in O(η(

√
m)) provides the largest one), we obtain the desired

conclusion. �

We are now ready to show the following key estimate.

Lemma 4.5. There exists a positive function η′′ depending only on θ and k, and
which tends to 0 at infinity, such that for any integer n we have

(11) Sk(n) :=
∑

0<u1<···<uk<n
∀i, ui∈Tk,θ
n=u1+···+uk

(u1 · · ·uk)−1+1/k = λkfk({θn}) +O (η′′(n)) ,

where λk =
Γ( 1

k )k

k!
.

Proof. Let

Ek(n) :=
∑

0<u1,··· ,uk<n
∃i 6=j:ui=uj
n=u1+···+uk

(u1 · · ·uk)−1+1/k

and

S′k(n) :=
∑

0<u1,...,uk<n
∀i, ui∈Tk,θ
n=u1+···+uk

(u1 · · ·uk)−1+1/k,

so that S′k(n) = O(Ek(n)) + k!Sk(n). We observe that Ek(n) = O(n−1/k). Fur-
ther, reformulating the diophantine constraints using the intervals Ij , we have the
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decomposition

(12) S′k(n) =
∑
u1<n

{θu1}∈Ik−1({θn})

u
−1+1/k
1

∑
u2<n−u1

{θu2}∈Ik−2({θ(n−u1)})

u
−1+1/k
2 · · ·

· · ·
∑

uk−1<n−u1−···−uk−2

{θuk−1}∈I1({θ(n−u1−···−uk−2)})

(
uk−1(n− u1 − · · · − uk−1)

)−1+1/k
.

To simplify the notation, let us denote nj = n− u1 − · · · − uk−j , thus nk = n and
nj = nj+1 − uk−j . We shall prove by induction on j ≤ k that

(13) S′k(n) = Cj
∑

0<u1<n
{θu1}∈Ik−1({θn})

u
−1+1/k
1

∑
0<u2<n1

{θu2}∈Ik−2({θn1})

u
−1+1/k
2 · · ·

· · ·
∑

0<uk−j<nj+1

{θuk−j}∈Ij({θnj+1})

u
−1+1/k
k−j (nj+1 − uk−j)−1+j/kfj({θnj}) + εj(n)

where Cj =
∏j−1
i=1 B

(
1
k ,

i
k

)
and εj tends to 0. When j = k, there is no more

summation at all and (13) boils down to Ckfk({θn}) + εk(n), which is the desired
result since

Ck =

k−1∏
j=1

B
(1

k
,
j

k

)
=

k−1∏
j=1

Γ( 1
k )Γ( jk )

Γ( j+1
k )

= Γ

(
1

k

)k
.

Equation (12) is the j = 1 case. We now suppose that (13) holds for some
j ≤ k − 1. Let Aj(n) be the main-term of the right-hand side of (13). Using
Lemma 4.4 on the innermost sum, and reparametrising by writing nj+1 = v1 and
ui = vi+1 in the error term, we find

Aj(n) = Aj+1(n) +O
( ∑
v1,...,vk−j≤n∑

vi=n

η′(v1)v
−1+ j+1

k
1

k−j∏
i=2

v
−1+1/k
i

)
.

By Lemma 4.3 and since η′ tends to 0, the expression between brakets in the above
equation is certainly o(1). This concludes the induction step and therefore the proof
of the lemma. �

4.2. The construction. We argue as in Section 2 by the probabilistic method (see
[8, Chapter III]). Let c > 0 and ξm, m ≥ 1, be a sequence of independent Boolean
random variables such that

P(ξm = 1) =
c

m1−1/k .

Let S be the random increasing sequence of the m’s such that ξm = 1. This is
essentially a sequence of pseudo k-th powers. These objects have been well studied
since their introduction by Erdős and Renyi [3]. In particular Goguel [6] computed
the (almost sure) density of kS and Deshouillers and Iosifescu [2] found that the
density of (k + 1)S is almost surely 1. Now we let A = S ∩ Tk,θ, where Tk,θ was
defined by equation (1). From now on we will suppose θ is irrational; if θ is an
integer, Tk,θ = N so A = S and the previous references apply. The treatment of
this simpler case may still be read out from our proofs by discarding all the (then
vacuous) diophantine conditions. The next proposition implies Proposition 1.2.

Proposition 4.6. Almost surely we have

a) d
(
jA
)

= 0, for any j = 1, . . . , k − 1,

b) d
(
(k + 1)A

)
= 1,
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c) d
(
kA
)

= k
k+1 − Fk(c) where Fk(c) is a continuous function and increasing

from 0 to k/(k + 1) when c is decreasing from ∞ to 0.

Proof. a) By the appropriate version of the strong law of large numbers (cf. [8,
chapter III, Theorem 11]) we infer that with probability 1, A(x) ∼ x1/k when
x→∞, thus for any 1 ≤ j ≤ k − 1

(jA)(x)� xj/k, as x tends to infinity.

It follows that d
(
jA
)

= 0 almost surely.

b) Let n be a positive integer and observe that 0 < {θn} < 1. We denote I(t, k)
the open interval

I(t, k) =

]
max

(
0,
t

k
− 1

k(k + 1)

)
,min

(
t

k
,

1

k + 1

)[
.

and
Rk+1(n) =

∑
0<u1<···<uk<uk+1<n

n=u1+···+uk+1

{θui}∈I({θn},k), (1≤i≤k)

ξu1 · · · ξukξuk+1
.

Then Rk+1(n) > 0 implies that n ∈ (k + 1)A. Moreover{
Rk+1(n) = 0

}
=

⋂
0<u1<···<uk<uk+1<n

n=u1+···+uk+1

{θui}∈I({θn},k), (1≤i≤k)

{
ξu1 · · · ξukξuk+1

= 0
}
.

We denote by U(n) the set of the ordered (k + 1)-uples u such that n =
∑k+1
i=1 ui

and {θui} ∈ I({θn}, k), i = 1, . . . , k.
The events A(u) =

{
ξu1

. . . ξukξuk+1
= 1
}

, u ∈ U(n), are not necessarily pairwise
independent: for distinct (k + 1)-tuples u, v, the events A(u) and A(v) are not
independent if and only if u ∼ v, where the notation ∼ means ui = vj for some i, j.
Let

µn =
∑

u∈U(n)

P(A(u)), ∆n =
∑

u6=v∈U(n)
u∼v

P(A(u) ∩ A(v)).

By Janson’s inequality [15, Theorem 1.28]

(14) P(Rk+1(n) = 0) ≤ exp

(
− µ2

n

2(µn + ∆n)

)
.

We firstly have

µn = ck+1
∑

0<u1<···<uk<n
{θui}∈I({θn},k)

(u1 · · ·uk(n− u1 − · · · − uk))−1+1/k.

The summand in the inner-sum is at least
(

n
k+1

)−k+1/k
, hence

µn ≥ ck+1Bθ,I(n)k −
(
k
2

)
Bθ,I(n)k−1

k!

(
n

k + 1

)−k+1/k

≥ ck+1

(
Bθ,I(n)k −

(
k

2

)
Bθ,I(n)k−1

)
n−k+1/k

where I = I({θn}, k) and Bθ,I(n) is defined by (4). By equation (5),

Bθ,I(n)

n
≥ min

(
{θn}
k

,
1

k(k + 1)
,

1− {θn}
k

)
− η(n).

Hence if 2kη(n) < {θn} < 1− 2kη(n), we have

(15) µn ≥ (1− o(1))ck+1n1/kη(n)k.
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Now we examine ∆n. By a discussion according to the number s ≤ k − 1 of posi-
tions where two distinct (k+ 1)-tuples in U(n) agree, and ignoring the diophantine
conditions, we get

(16) ∆n ≤
k−1∑
s=1

cs+2(k+1−s)∆n(s, k + 1− s),

where

∆n(s, r) :=
∑

0<u1,...us<n∑s
i=1 ui<n

(u1 · · ·us)−1+1/k

 ∑
0<v1,...vr<n

n=u1+···+us+v1+···+vr

(v1 · · · vr)−1+1/k


2

.

Applying Lemma 4.3, we see that the inner sum is � (n − u1 − · · · − us)−1+r/k.
For every fixed tuple (u1, . . . , us−1) in the sum above, we now apply Lemma 4.2 to
the sum ∑

us<n−
∑s−1
i=1 ui

u−1+1/k
s (n− u1 − · · · − us)−1+r/k.

If 1− r/k ≥ 1/2, we obtain

∆n(s, r)� log n
∑

0<u1,...us<n
n=u1+···+us

(u1 · · ·us)−1+1/k � log n

n1−s/k

where we used Lemma 4.3 for the second inequality. If 1 − r/k < 1/2 then by
Lemmas 4.2 and 4.3 again

∆n(s, r)�
∑

0<u1,...us<n
u1+···+us<n

(u1 . . . us)
−1+1/k(n− u1 − u2 − · · · − us)−1+(2r/k−1)

�


n−1+(2r/k−1)+s/k � 1 if s ≤ 2(k − r),∑
0<u1,...ut<n
u1+···+ut<n

(u1 · · ·ut)−1+1/k � nt/k if t := s− 2(k − r) > 0.

Notice that if s+ r = k + 1 with s > 0, then s− 2(k− r) > 0 implies t = 2− s = 1
and s = 1. We can now inject our upper bounds for ∆n(s, r) in equation (16), in
which the main contribution is given by s = 1, from the above discussion. We get

∆n �k c
2k+1n1/k +Ok,c(1).

By (14) and (15) with the Borel-Cantelli lemma, we infer that almost surely, all
but finitely many integers n such that 2kη(n) < {θn} < 1 − 2kη(n) are sums of
k + 1 members of A and that d

(
(k + 1)A

)
= 1 since their complementary set in N,

namely {
n ∈ N : 0 ≤ {θn} ≤ 2kη(n)

}
∪
{
n ∈ N : 1− 2kη(n) ≤ {θn} < 1

}
has density 0.

c) Let n such that 0 < {θn} < k/(k + 1). We consider

(17) Rk(n) := k!
∑

0<u1<···<uk<n
ui∈Tk,θ

n=u1+···+uk

ξu1
· · · ξuk

that is the random variable counting the representations of n as a sum of k distinct
members of A. The key result is Lemma 4.5.

As in the study of Rk+1(n) in the previous paragraph we need to show that the
probabilistic dependence between the events {ξu1

· · · ξuk = 1} is not too large. We
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shall use Landreau’s work on sums of k pseudo k-th powers (cf. [10, Lemma 1 (i)
and Lemma 5 (iii)]):

P(Rk(n) = 0) = exp

{
−

∑
0<u1<···<uk<n

ui∈Tk,θ
n=u1+···+uk

E(ξu1 · · · ξuk)

}
+Ok

( 1

n1/k

)

= e−c
kSk(n) +Ok

( 1

n1/k

)
.

Since η′′(t)→ 0 when t→∞, we deduce from Lemma 4.5 that

(18) P(Rk(n) = 0) = e−c
kλkfk({θn}) + o(1).

When k/(k + 1) ≤ {θn} < 1 we clearly have Rk(n) = 0, hence P(Rk(n) = 0) = 1.

Let ζn, n ≥ 1, be the sequence of Boolean random variables defined by

P(ζn = 1) = P(Rk(n) = 0),

and

XN =
1

N

N∑
n=1

ζn.

By (18) we have

N∑
n=1

P(Rk(n) = 0) =

N∑
n=1

e−c
kλkfk({θn}) + o(N).

Hence the expectation of Xn satisfies

E(XN ) =
1

N

N∑
n=1

P(Rk(n) = 0) =

N∑
n=1

e−c
kλkfk({θn}) + o(1).

We get by Theorem 1.3 and the fact that fk is supported on ]0, k/(k + 1)[ the
asymptotic

(19) E(XN ) ∼ 1

k + 1
+

∫ k/(k+1)

0

e−c
kλkfk(t)dt.

We denote by Fk(c) the above integral.

We follow the arguments used in the proof of [8, chapter III, Theorem 4′ (iii)] or
alternatively [10, Section 4] to estimate the variance V(XN ). We may ignore the
diophantine conditions in (17), the only resulting effect being to increase the related
variance. We finally get V(XN ) = O(N−1/k) and consequently by [8, chapter III,
lemma 34] that

with probability 1, lim
N→∞

XN =
1

k + 1
+ Fk(c).

Hence almost surely d
(
kA
)

= k
k+1 − Fk(c). Observing that fk is a non negative

piecewise polynomial function that has finitely many zeros on ]0, k/(k+1)[ , we see
that Fk(c) is a decreasing continuous function satisfying limc→0+ Fk(c) = k/(k+ 1)
and limc→∞ Fk(c) = 0; this ends the proof of Proposition 4.6. �
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