
HAL Id: hal-02140487
https://hal.science/hal-02140487

Submitted on 28 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Problem of Computing the Probability of
Regular Sets of Trees

Henryk Michalewski, Matteo Mio

To cite this version:
Henryk Michalewski, Matteo Mio. On the Problem of Computing the Probability of Regu-
lar Sets of Trees. Proc. of FSTTCS 2015, Dec 2015, Bangalore, India. pp.489 - 502,
�10.4230/LIPIcs.FSTTCS.2015.489�. �hal-02140487�

https://hal.science/hal-02140487
https://hal.archives-ouvertes.fr

On the Problem of Computing the Probability of
Regular Sets of Trees∗

Henryk Michalewski1 and Matteo Mio2

1 University of Warsaw, Poland
2 CNRS/ENS-Lyon, France

Abstract
We consider the problem of computing the probability of regular languages of infinite trees
with respect to the natural coin-flipping measure. We propose an algorithm which computes
the probability of languages recognizable by game automata. In particular this algorithm is
applicable to all deterministic automata. We then use the algorithm to prove through examples
three properties of measure: (1) there exist regular sets having irrational probability, (2) there
exist comeager regular sets having probability 0 and (3) the probability of game languages Wi,k,
from automata theory, is 0 if k is odd and is 1 otherwise.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases regular languages of trees, probability, meta-parity games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.489

1 Introduction

Regular languages of trees are sets of infinite binary trees, labeled by letters from a finite
alphabet Σ, definable by a formula of Monadic Second Order (MSO) logic interpreted over
the full binary tree [25] or, equivalently, specified by an alternating tree automaton [19].

In this paper we consider the following problem. Suppose a Σ-labeled tree t is generated
by labeling each vertex by a randomly and uniformly chosen letter a∈Σ. For a given regular
language L, what is the probability that t belongs to L? By probability we mean the standard
coin–flipping probability measure µ (see Section 2 for definitions) on the space of Σ-labeled
trees. Hence a precise formulation of our problem is as follows.

Probability Problem: Does there exist an algorithm which for a given regular language of
trees L computes the probability µ(L)?

A qualitative variant of the problem only asks for a decision procedure for the question
“is µ(L) = 1?”. The problem is well posed since it was recently shown in [12, Theorem 1]
that regular sets of trees are measurable with respect to any Borel measure and thus, in
particular, with respect to the coin-flipping measure. An extended version of this paper is
availiable at [15].

∗ The first author is supported by Polish National Science Centre grant no. 2014-13/B/ST6/03595. The
second author is supported by the grant “Projet Émergent PMSO” of the École Normale Supérieure de
Lyon.

© Henryk Michalewski and Matteo Mio;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 489–502

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.489
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

490 On the Problem of Computing the Probability of Regular Sets of Trees

1.1 Main Results
We give a positive solution to the Probability Problem for a subclass of regular languages.

I Theorem 1. Let L be a regular set of infinite trees recognizable by a game automaton.
Then the probability of L is computable and is an algebraic number.

Game automata (see [10, 11, 21]) are special types of alternating parity tree automata.
The class of languages recognizable by game automata includes, beside all deterministic
languages, other important examples of regular sets. The most notable examples are the game
languages Wi,k which play a fundamental role in the study of tree languages with topological
methods [3, 12]. Game automata definable languages are, at the present moment, the largest
known subclass of regular languages for which the long-standing Mostowski–Rabin index
problem1 is known to be decidable (see [10, 11]). Theorem 1 confirms the good algorithmic
properties of game automata. At the same time, however, we suspect that generalizing the
result of Theorem 1 to arbitrary regular languages might be hard. Some ideas for further
research in this direction are discussed in Section 6.

From Theorem 1 we derive the following propositions (for proofs see Section 5).

I Proposition 2. There exists a regular language of trees L definable by a deterministic
automaton such that L has an irrational probability.

I Proposition 3. There exists a regular language of trees L definable by a deterministic
automaton such that L is comeager and L has probability 0.

These two propositions should be contrasted with known properties of regular languages
of infinite words. First, a result of Staiger in [22] states that a regular language L of infinite
words has coin-flipping measure 0 if and only if it is of Baire first category (or meager). 3
shows that this correspondence fails in the context of infinite trees. Second, the coin-flipping
measure of a regular language of infinite words is always rational (see, e.g., Theorem 2 of
[7]). Hence, the probabilistic properties of regular languages of trees seem to be significantly
more refined than in the case of languages of ω-words.

Lastly, we calculate the probability of all game languages Wi,k (see [3, 12] and Subsection
5.4), a result that might eventually be useful given the importance of game languages in the
topological study of regular sets of trees.

I Proposition 4. For 0≤ i<k, the game language Wi,k has probability 0 if k is odd and 1 if
k is even.

1.2 The Algorithm
In Section 4 we propose Algorithm 2 which computes the probability of regular languages
recognized by game automata. Algorithm 2 is based on a reduction to Markov Branching
plays (MBP’s): to each game automaton A we associate a MBPM. The value ofM can
be computed and corresponds to the probability of the language recognized by A. This
reduction to MBP’s is described in Sections 3 and 4.

The notion of MBP, as a special kind of two-player stochastic meta-parity game has
been introduced by the second author in [16, 17] in order to interpret a probabilistic version

1 The Mostowski–Rabin Problem: for a given regular language L, compute the minimal number of
priorities required to define L using an alternating parity tree automaton.

H. Michalewski and M. Mio 491

of the modal µ-calculus. For a given MBP M having n states, the vector val ∈ [0, 1]n of
values ofM can be expressed as the solution of a system S of (nested) least and greatest
fixed-point equations over the space [0, 1]n. From S one can then construct a first order
formula φS(val) in the language of real-closed fields having the property that val is the
unique tuple of real numbers satisfying φS . The tuple val can be computed by Tarski’s
quantifier elimination algorithm [24] and consists of algebraic numbers. See Algorithm 1 in
Section 3 for a description of the procedure for computing the value of MBP’s.

One can find interesting the connections between the machinery of MBP’s (and thus, as
mentioned, the probabilistic µ-calculus), the class of languages definable by game automata,
the algorithmic problem of computing the probability of regular languages of trees and the
usage of Tarski’s quantifier elimination procedure.

1.3 Related Work
In [23] L. Staiger presented an algorithm for computing the Hausdorff measure of regular
sets of ω-words. The method, based on the decomposition of the input language into simpler
components, can be adapted to compute the coin–flipping measure of regular sets of ω-words.
Our research on the coin-flipping measure of regular languages of trees can be seen as a
continuation of Staiger’s work.

Natural variants of the qualitative version of the Probability Problem, obtained by
replacing “has probability 1” by other notions of largeness, are known to have positive
solutions: in [20] D. Niwiński described an algorithm which takes as input a regular language
of trees L (presented as a Rabin tree automaton) and decides if L is uncountable and,
similarly, an algorithm for establishing if a regular language of trees L is comeager can be
extracted from the result of [14].

Addendum. After the submission of this article we have been informed that the Probability
Problem has already been implicitly considered in [8], although differently phrased as the
verification problem for a class of stochastic branching processes. Following our terminology,
in [8] the authors provide an algorithm for computing the probability of regular languages
definable by deterministic tree automata. Hence our results can be seen as extending the
work of [8] from deterministic to game-automata definable languages.

2 Background in Topology and Automata Theory

2.1 Topology and measure
In this section we present elementary topological and measure–theoretical notions required
in this work. We refer to [13] as a standard reference on the subject.

The set of natural numbers is denoted by ω. A topological space X is Polish if it
is separable and completely metrizable. An important example of a Polish space is the
Cantor space {0, 1}ω of infinite sequences of bits endowed with the product topology. In
this paper we are interested in the probability Lebesgue measure µ on the product space
ΣI for I, a countable set of indices. The measure µ is uniquely defined by the assignment
µ({t ∈ ΣI | t(i1) = a1, . . . , t(ik) = ak}) = (1

|Σ|)
k for i1, . . . , ik ∈ I, a1, . . . , ak ∈ Σ (ij 6= ij′

whenever j 6= j′, see [13, Chapter 17] for additional details). In particular, for the alphabet
Σ = {0, 1} and I = ω this is known as the coin–flipping probability measure on the Cantor
space.

The countable set V ={L,R}∗ of finite words over the alphabet {L,R} is called the full
binary tree and each v∈{L,R}∗ is referred to as a vertex. The product space ΣV is denoted

FSTTCS 2015

492 On the Problem of Computing the Probability of Regular Sets of Trees

by TΣ and an element t ∈ TΣ is called a Σ-labeled tree, or just a Σ-tree. Intuitively, the
stochastic processes associated with the coin–flipping measure µ on TΣ generates an infinite
Σ-tree by labeling each vertex with a randomly (uniformly) chosen label in Σ.

Given a topological space X, a set A⊆ X is nowhere dense if the interior of its closure is
the empty set, that is int(cl(A))=∅. A set A⊆X is of (Baire) first category (or meager)
if A can be expressed as a countable union of nowhere dense sets. The complement of a
meager set is called comeager.

2.2 Alternating Parity Tree Automata and Game Automata
We include a brief exposition of alternating automata which follows the presentation in [19,
Appendix C]. In this paper we are mostly interested in a subclass of alternating parity tree
automata called game automata, which is introduced later in the Section.

I Definition 5 (Alternating Parity Tree Automaton). Given a finite set X, we denote with
DL(X) the set of expressions e generated by the grammar e ::= x∈X | e ∧ e | e ∨ e. An
alternating parity tree automaton over a finite alphabet Σ is a tuple A=〈Σ, Q, q0, δ, π) where
Q is a finite set of states, q0 ∈Q is the initial state, δ : Q × Σ → DL({L,R} × Q) is the
alternating transition function, and π :Q→ ω is the parity condition.

An alternating parity tree automaton A over the alphabet Σ defines, or “accepts”, a set
of Σ-trees. The acceptance of a tree t∈TΣ is defined via a two-player (∃ and ∀) game of
infinite duration denoted by A(t). Game states of A(t) are of the form 〈 #»x , q〉 or 〈 #»x , e〉 with
#»x ∈{L,R}∗, q∈Q and e∈DL({L,R} ×Q).

The game A(t) starts at state 〈ε, q0〉. Game states of the form 〈 #»x , q〉, including the
initial state, have only one successor state, to which the game progresses automatically.
The successor state is 〈 #»x , e〉 with e= δ(q, a), where a= t(#»x) is the labeling of the vertex
#»x given by t. The dynamics of the game at states 〈 #»x , e〉 depends on the possible shapes
of e. If e = e1 ∨ e2, then Player ∃ moves either to 〈 #»x , e1〉 or 〈 #»x , e2〉. If e = e1 ∧ e2,
then Player ∀ moves either to 〈 #»x , e1〉 or 〈 #»x , e2〉. If e = (L, q) then the game progresses
automatically to the state 〈 #»x .L, q〉. Lastly, if e=(R, q) the game progresses automatically
to the state 〈 #»x .R, q〉. Thus a play in the game A(t) is a sequence Π of game–states, that
looks like: Π = (〈ε, q0〉, . . . , 〈L, q1〉, . . . , 〈LR, q2〉, . . . , 〈LRL, q3〉, . . . , 〈LRLL, q4〉, . . .), where
the dots represent part of the play in game–states of the form 〈 #»x , e〉. Let ∞(Π) be the set of
automata states q∈Q occurring infinitely often in configurations 〈 #»x , q〉 of Π. We then say
that the play Π of A(t) is winning for ∃, if max{π(q) | q∈∞(Π)} is an even number. The
play Π is winning for ∀ otherwise. The set (or “language”) of Σ-trees defined by A is the
collection {t∈TΣ | ∃ has a winning strategy in the game A(t)}.

q

qRqL

a ∈ Σ

q

qRqL

a ∈ Σ

We reserve the symbols > and ⊥ for two special sink states
having even and odd priority, respectively. The transition
function is defined, for all a∈Σ, as δ(>, a) = (L,>) ∧ (R,>)
and δ(⊥, a)=(L,⊥) ∧ (R,⊥). Clearly every tree is accepted at
the state > and rejected at ⊥. Game automata are a subfamily
of alternating parity tree automata satisfying the constraint
that, for each q ∈Q and a∈Σ, the transition δ(q, a) = e has
either the form e=(L, qL)∨ (R, qR) or e=(L, qL)∧ (R, qR) (see [10, 11] for more information
about this class of automata). Transitions of a game automaton A can be schematically
depicted as in the figure above with the left–hand and right–hand diagrams representing the
transitions (q, a)→ (L, qL)∧(R, qR) and (q, a)→ (L, qL)∨(R, qR), respectively. Deterministic
automata are a subfamily of game automata satisfying the stronger constraint that, for each

H. Michalewski and M. Mio 493

q∈Q and a∈Σ, the transition δ(q, a)=e has the form e=(L, qL) ∧ (R, qR). Note that the
sink states > and ⊥ defined above have transitions satisfying this requirement.

3 Introduction to meta-parity games

In this Section we describe a class of stochastic processes called Markov branching plays
(MBP’s) [16, 17] which, as we will observe, is closely related to game automata and will provide
a method for calculating the probability of regular languages defined by such automata. For
a quick overview, a procedure for computing the value associated with a MBP is presented
as Algorithm 1, at the end of this section. The procedure for computing the probability of
regular languages defined by game automata in presented as Algorithm 2 in the next section.

We assume familiarity with the standard concepts of Markov chain and two-player
stochastic (2 1

2 -player) parity game (see, e.g., [6]). Ordinary 2 1
2 -player parity games are

played on directed graphs whose set of states is partitioned into Player 1, Player 2 and
probabilistic states. A 2 1

2 -player parity game with neither Player 1 nor Player 2 states can
be identified with a Markov chain.

Two-player stochastic meta-parity games [16, 17] generalize 2 1
2 -player parity games by

allowing the directed graph to have two additional kinds of states called ∃–branching states
and ∀–branching states. In this paper we will only consider 2 1

2 -player meta-parity games with
neither Player 1 nor Player 2 states. Such structures, which thus constitute a generalization
of Markov chains, are called Markov branching plays (MBP’s). In what follows we provide a
quick description of MBP and refer to [16] for a detailed account.

I Definition 6 (Markov Branching Play). A Markov branching play (MBP) is a structure
M=〈(S,E), (SP , B∃, B∀), p, Par〉 where:

(S,E) is a directed graph with finite set of vertices S and transition relation E. We say
that s′ is a successor of s if (s, s′) ∈E. We assume that each vertex has at least one
successor state in the graph (S,E).
The triple (SP , B∃, B∀) is a partition of S into probabilistic, ∃-branching and ∀-branching
states.
The function p : SP → (S → [0, 1]) associates to each probabilistic state s a discrete
probability distribution p(s) : S → [0, 1] supported over the (nonempty) set of successors
of s in the graph (S,E).
Lastly, the function Par :S → ω is the parity (or priority) assignment.

Recall that a Markov chain represents the stochastic process associated with a random
infinite walk on its set of states. A MBP represents the more involved stochastic process,
described below, of generation of a random unranked and unordered tree T whose vertices
are labeled by states of the MDP.

MBP’s as Stochastic Processes: given a MBP M = 〈(S,E), (SP , B∃, B∀), p, Par〉 and an
initial vertex s0∈S, the stochastic process of construction of T is described as follows.

The construction starts from the root of T which is labeled by s0.
A leaf x in the so far constructed tree T is extended, independently from all other leaves,
depending on the type of its labeling state s, as follows:

If s∈SP then x is extended with a unique child which is labeled by a successor state
s′ of s randomly chosen in accordance with p(s).
If s∈B∃ or s∈B∀ and {s1, . . . , sn} are the successors of s inM, then x is extended
with n children y1, . . . yn and yi is labeled by si, for 1≤ i≤n.

FSTTCS 2015

494 On the Problem of Computing the Probability of Regular Sets of Trees

q1

q2

q4q1

q3

q1

q2

q4

q4

q1

q3

q1

q2

q4

q4

q1

q3

q4q1

q1 q1

q2

q1

q2

q4q1

Figure 2 The stochastic process associated with the MBP in Figure 1.

q1

q2 q3

q4

1
3

2
3

1
2

1
2

Figure 1 An example of a
MBP.

We give in Figure 1 an example of a MBP. Probabilistic
states, ∃-branching and ∀-branching states are marked as circles,
diamond and boxes, respectively. The first six initial steps
of the stochastic process associated with M at state q1 are
depicted in Figure 2. In the first step, the construction of T
starts by labeling the root by q1. Since q1 is a probabilistic
state, the tree is extended (second step) with only one child
labeled by either q2 (with probability 1

3) or q3 (prob. 2
3). The

picture shows the case when q2 is chosen. Since the new leaf
is labeled by q2, and this is a ∃-branching state, the tree is
extended by adding one new vertex for each successor of q2
inM, i.e., for both q1 and q4. The construction continues as
described above. For example, the probability that the generated infinite tree will have the
prefix as at the bottom right of Figure 2 is 1

3 ·
2
3 ·

1
2 = 2

18 .
The kind of infinite trees produced by the stochastic process just described are called

branching plays. Branching plays are characterized by the property that each vertex labeled
with a probabilistic state has only one child, and each vertex labeled with a (∃ or ∀) branching
state s has as many children as there are successors of s in the MBP.

The collection of branching plays in a MBP M starting from a state s is denoted
by BP(M, s). The set BP(M, s) naturally carries a Polish topology making BP(M, s)
homeomorphic to the Cantor space (see, e.g., Definition 4.4 in [17]). The stochastic process
associated to a MBPM, specified on the previous page, can be naturally formalized by a
probability measure µM over the space BP(M, s) of branching plays. See also Definition 4.7
in [17] for a formal definition.

Each branching play T can itself be viewed as an ordinary (infinite) two-player parity
game G(T), played on the tree structure of T , by interpreting the vertices of T labeled by
∃-branching and ∀-branching states as under the control of Player ∃ and Player ∀, respectively.
All other states (i.e., those labeled by a probabilistic state) have a unique successor in T to
which the game G(T) progresses automatically. Lastly, the parity condition associated to
each vertex corresponds to the parity assigned inM to the state labeling it. We denote with
Ws the set of branching plays starting at s and winning for Player ∃, i.e., the set defined as:
Ws =

{
T ∈ BP(M, s) | Player ∃ has a winning strategy in G(T)

}
.

H. Michalewski and M. Mio 495

I Definition 7 (Value of a MBP). The value of a MBPM at a state s, denoted by val(M, s),
is the probability of generating a branching play winning for ∃ starting the stochastic process
from the state s. Formally, val(M, s) = µM(Ws).

We remark that the above definition is valid because the set Ws is µ-measurable for every
Borel measure µ on the space BP(M, s) ([12]) and thus also for µM.

3.1 How to compute the value of a MBP
In this subsection we show how the values val(M, s) can be computed. The algorithm is
based on a result of [16, 17], formulated as Theorem 10 below, characterizing such values as
the solution of an appropriate system of (least and greatest) fixed-point equations. We first
formulate Proposition 8 exposing a fixed-point property of the value of MBP’s. Let us fix
a MBPM= 〈(S,E), (SP , B∃, B∀), p, Par〉 with S= {s1 . . . sn}. To improve readability we
just write vali for val(M, si) and we denote with val the vector val=(vali)1≤i≤n of length
n. The symbols

∑
and

∏
denote the usual operations of sum and product on reals. We also

use a “coproduct” operation defined as
∐
i∈I xi=1−

∏
i∈I 1− xi.

I Proposition 8. The equality val=f(val) holds, where f : [0, 1]n→ [0, 1]n is:

(
f

x1
...
xn

)i =



∑
{j | (si,sj)∈E}

p(si)(sj) · xj if si∈SP

∏
{j | (si,sj)∈E}

xj if si∈B∀

∐
{j | (si,sj)∈E}

xj if si∈B∃

Proof. Here we sketch the main idea of the argument, for a formal proof, see Theorem 4.22
of [17]. If si is a probabilistic state, then vali is the weighted average of the value of its
successors, since the stochastic process associated with the MBP chooses a unique successor
sj of si with probability p(si)(sj). If si is a ∀-branching state, then vali is the probability
that all independently generated subtrees are winning for Player ∃ and this is captured by
the

∏
expression. Similarly, if si is a ∃-branching state then vali is the probability that

at least one generated subtree is winning for Player ∃, as formalized by the
∐

expression.
Hence the vector val is one of the fixed-points of the function f : [0, 1]n→ [0, 1]n. J

Theorem 10 below refines Proposition 8 by identifying val as the unique vector satisfying a
system of nested (least and greatest) fixed-point equations. Its formulation closely follows the
notation adopted in the textbook [1, §4.3] for presenting a similar result valid for ordinary
parity games. To adhere to such notation, we will define a function g, a variant of the
function f presented above. Let k=max{Par(s) | s∈S} and l=min{Par(s) | s∈S} be the
maximal and minimal priorities used in the MBP, respectively, and let c=k − l + 1.

I Definition 9. The function g : ([0, 1]n)c → [0, 1]n is defined as follows:

(
g

x
l
1
...
xln

 , . . . ,

x
k
1
...
xkn

)i =



∑
{j | (si,sj)∈E}

p(si)(sj) · x
Par(sj)
j if si∈SP∏

{j | (si,sj)∈E}

x
Par(sj)
j if si∈B∀

∐
{j | (si,sj)∈E}

x
Par(sj)
j if si∈B∃

FSTTCS 2015

496 On the Problem of Computing the Probability of Regular Sets of Trees

The function g depends, like the function f , only on n variables {xPar(s1)
1 , . . . , x

Par(sn)
n }

appearing in the body of its definition. The input of g can indeed be regarded as the input
of f divided in c baskets, where each variable xi is put in the basket corresponding to the
priority of si, for 1≤ i≤n.

The set [0, 1]n, equipped with the pointwise order defined as (x1, . . . , xn)≤(y1, . . . , yn)⇔
∀i.(xi ≤ yi), is a complete lattice and the function g is monotone with respect to this order
in each of its arguments. Hence the Knaster–Tarski theorem ensures the existence of least
and greatest points. We are now ready to state the main result regarding the values of a
given MBP. We adopt standard µ-calculus notation (see, e.g., [1] and [16, 17]) to express
systems of least and greatest fixed-points equations.

I Theorem 10 ([16, Theorem 6.4.2]). The following equality holds:2val1...
valn

 = θk

x
k
1
...
xkn

 . · · · .θl

x
l
1
...
xln

 .g(

x
l
1
...
xln

 , . . . ,

x
k
1
...
xkn

)

where θi, for l ≤ i ≤ k is a least-fixed point operator (µ) if i is an odd number and a
greatest-fixed point operator if (ν) if i is even.

Proof. The proof goes by induction on the number of priorities in the MBP M and by
transfinite induction on a rank-function defined on the space of branching plays. See [16] for
a detailed proof. J

The next theorem states that the value of a MBP is computable and is always a vector of
algebraic numbers. The examples discussed in Section 5 will illustrate the applicability of
this result.

I Theorem 11. LetM be a MBP. Then for each state si ofM the value vali is computable
and is an algebraic number.

Proof. (sketch) Using known ideas (see, e.g., Lemma 9 in [9] and Proposition 4.1 in [18]) the
unique vector val=(val1, . . . , valn) satisfying the system of fixed-point expressions S given by
Theorem 10 can be computed by a reduction to the first-order theory of real closed fields. A
first order formula F (x1, . . . , xn), inductively defined from S, is constructed with the property
that (val1, . . . , valn)∈Rn is the unique vector of reals satisfying the formula F (x1, . . . , xn).
By Tarski’s quantifier elimination procedure [24], the formula F (x1, . . . , xn) can be effectively
reduced to an equivalent formula G(x1, . . . , xn) without quantifiers, that is, to a Boolean
combination of equations and inequalities between polynomials over (x1, . . . , xn). It then
follows that the (val1, . . . , valn), which can be extracted from G with standard methods, is
a vector of algebraic numbers. In Section 5 we apply the above procedure to a number of
examples. J

2 Theorem 6.4.2 of [16] actually proves a stronger result valid for arbitrary 2 1
2 -player meta-parity games

whereas, as mentioned in the beginning of this section, Markov branching plays are 2 1
2 -player meta-parity

games without Player 1 and Player 2 states. Also, Theorem 6.4.2 of [16] is stated assuming the validity
of the set-theoretic axiom MAℵ1 , but as shown in [12] such assumption is not necessary and can thus
be dropped.

H. Michalewski and M. Mio 497

q1

q1q1q2q2

a b, c

q2

q1q1q2q2

a b, c

sq1

sq1,c

sq1,b

sq1,a sq2

sq2,c

sq2,b

sq2,a

1
3

1
3

1
3

1
3

1
3

1
3

Figure 3 Transitions of the game automaton A and corresponding MBPM.

1: input : a Markov Branching PlayM .
output : algebraic numbers r1, . . . , rn ∈ R equal to (val1, . . . , valn) .

3: beg in
S ← Generate system of fixed–point equations associated toM

5: F (x1, . . . , xn)← Rewrite S to the corresponding first-order formula over FO(R, <, 0, 1,+,×)
G(x1, . . . , xn)← Apply quantifier elimination procedure to F (x1, . . . , xn)

7: return the unique vector (r1, . . . , rn) satisfying G(x1, . . . , xn)

Algorithm 1: computing the vector of values of a MBP.

4 From Game Automata to Markov Branching Plays

In this section we present a reduction of the problem of computing the probability of regular
languages definable by game automata to the problem of computing the value of a given
MBP, which is algorithmically solvable using Algorithm 1.

We now describe how to construct from a game automaton A= (Q, q0, δ, π) over the
alphabet Σ a corresponding MBPM=〈(S,E), (SP , B∃, B∀), p, Par〉. The set S of states of
M contains a probabilistic state sq, for each q∈Q, a ∃–branching state sq,a for each pair
(q, a), with q∈Q and a∈Σ, such that δ(q, a)=(L, qL) ∨ (R, qr), and a ∀–branching state sq,a
for each pair (q, a) such that δ(q, a)=(L, qL) ∧ (R, qr). The transition relation E is defined
as follows:

a probabilistic state sq has as successors the states {sq,a | a∈Σ},
a ∃-branching (resp. ∀-branching) state sq,a have two successors sq1 and sq2 where
δ(q, a)=(L, q1) ∨ (R, q2) (resp. δ(q, a)=(L, q1) ∧ (R, q2)).

Note that each state sq, for q ∈Q has exactly |Σ| successors and that each state sq,a has
exactly3 two successors. The assignment p :SP → (S → [0, 1]) is defined as assigning to each
probabilistic state (i.e., state of the form sq) a uniform distribution over its successors, that
is, p(sq)(sq,a)= 1

|Σ| . Lastly, the parity assignment Par :S→ω of the MBPM is defined as in
the parity condition π of the game automaton A by the mapping Par(sq)=Par(sq,a)=π(q).

As an illustrative example of this translation, consider the deterministic automaton
A = 〈{q1, q2}, q1, δ, π〉 over the alphabet Σ = {a, b, c}, with parity assignment π(q2) = 2,
π(q1) = 1 and transition δ defined by δ(q1, a) = δ(q2, a) = (L, q2) ∧ (R, q2) and δ(q1, l) =
δ(q2, l)=(L, q1) ∧ (R, q1), for l∈{a, b}.

3 We are implicitly assuming, for the sake of simplicity, that each transition (L, q1)∧ (R, q2) and
(L, q1)∨(R, q2) of δ in A is such that q1 6=q2, and thus that sq,a has exactly two successors. If necessary,
the game-automaton A can be made satisfy this assumption by introducing additional copies of the
states.

FSTTCS 2015

498 On the Problem of Computing the Probability of Regular Sets of Trees

The corresponding MBPM is schematically4 depicted in Figure 3 (right), by representing
probabilistic states with circles, ∀-branching states with boxes and the probabilistic assignment
p by the probabilities labeling the outgoing edges of probabilistic states. The soundness of
our reduction is stated as follows.

I Theorem 12 (Correctness of Reduction). Let L be a regular language recognized by a game
automaton A and letM be the MBP corresponding to A. Then µ(L)=V al(M, sq0), where
q0 is the initial state of A.

Proof. (sketch) Since each probabilistic state has exactly one successor for every letter
a ∈ Σ and each branching state have precisely two successors, there exists a one-to-one
correspondence between Σ-trees t∈TΣ and branching plays T ∈BP(M, sq0). Furthermore, it
follows directly from the definition of acceptance by A (see Section 2.2) and the definition
of the set Ws (see Section 3) that t is accepted by A if and only if the corresponding
branching play T is in Ws. Lastly, due to the uniform assignment p of probabilities in
M, the coin-flipping measure µ on TΣ and the probability measure µM on BP(M, sq1) are
identical. J

The result of Theorem 1 in the Introduction then follows as a corollary of Theorem 12
above and the fact that the vector of values of a MBP can be computed using Algorithm 1.
The final algorithm for computing the probability of regular languages definable by game
automata is then as follows.

1: input : a game automaton A=(Q, q0, δ, π) r e c ogn i z i ng a language L .
output : a real number corresponding to µ(L) .

3: beg in
M← Construct the MBPM corresponding to A

5: (val1, . . . , valn)← Apply Algorithm 1 to compute the vector of values of the states ofM
return the value vali where i is the index of the probabilistic state sq0 ofM

Algorithm 2: computing the probability of regular languages L recognized by game automata.

5 Examples

In this section we will apply Algorithm 2 to analyze examples which will prove Propositions
2, 3 and 4 stated in the Introduction. In some instances, in order to perform the quantifier
elimination procedure required by Algorithm 1, we use the tool qepcad [5].

We fix the alphabet Σ = {a, b, c} and, for each n ∈ ω, we define the regular language
Ln ⊆ TΣ as Ln = {t ∈ TΣ | a appears ≥ n times on every branch of t} and the language
L∞ as L∞=

⋂
n∈ω Ln, i.e., as the set of Σ-trees having, on every branch, infinitely many

occurrences of the letter a.

5.1 An introductory example
The language L1 is recognized by the deterministic automaton in Figure 4 (left) defined as
A1 = 〈{q1,>}, q1, δ1, π〉 where > is an accepting sink state (see Section 2.2 for automata–
related definitions), the priority assignment is π(q1) = 1 and the transition function δ1 is
defined on q1 as δ1(q1, a)=(L,>) ∧ (R,>) and δ1(q1, l)=(L, q1) ∧ (R, q1) for l∈{b, c}.

4 Due to the chosen succinct definition, the automaton A does not satisfy the assumption of Footnote 3.
Rather than formally introducing copies q1 and q2 in A, we have simply depicted all ∀-branching states
ofM as having two successors.

H. Michalewski and M. Mio 499

q1

q1q1

>

a b, c

sq1

sq1,a sq1,c

sq1,b

1
3

1
3

1
3

g(


x1
x2
x3
x4

) =


1
3x2 + 1

3x3 + 1
3x4

1
x1 · x1
x1 · x1


Figure 4 Automaton A1, MBPM1 and corresponding system of equations.

q2

q2q2q1q1

a b, c

sq1

M1

sq2sq2,a

sq2,c

sq2,b

1
3

1
3

1
3

g(


x1
x2
x3
x4

) =


1
3x2 + 1

3x3 + 1
3x4

1
2 ·

1
2

x1 · x1
x1 · x1


Figure 5 Automaton A2, MBPM2 and corresponding system of equations.

We will compute the probability µ(L1) using the procedure of Algorithm 2. As a first
step we construct the MBP M1 corresponding to A1, as specified in Section 4. In order
to improve readability, we have represented in Figure 4 (center) a simplified version ofM1
where the states s>, s>,a, s>,b and s>,c have been identified with the single state sq1,a.
This is convenient since, clearly, all of these states have value 1. Accordingly, the MBP
M1 has four states, all of priority 1. Following the procedure of Algorithm 2 we need to
compute the values of the states ofM1 using Algorithm 1. In accordance with Theorem 10,
the fixed-point equation characterizing the vector val=(valsq1

, valsq1 ,a
, valsq1 ,b

, valsq1 ,c
) of

values of the states ofM1 is val=µ~x.g(~x), where g is defined as in Figure 4 (right). Then
valsq1

is the least solution in [0, 1] of the equation x= 1
3 + 2

3x
2. As it is simple to verify, even

without running the solver based on Tarski’s quantifier elimination procedure, the solution is
valsq1

= 1
2 , and this is the output returned by Algorithm 2. Hence the probability of L1 is

µ(L1)= 1
2 .

5.2 Examples of regular languages having irrational probabilities

This subsection constitutes a proof of Proposition 2. The automaton A2 recognizing the
language L2 is defined as A2 =〈({q1, q2,>}, q2, δ2, π) where q2 is the initial state, the priority
function is defined as π(q1)=π(q2)=1 and the transition function δ2 is defined on q1 as the
function δ1 of the previous example, and on the state q2 as δ2(q2, a)=(L, q1) ∧ (R, q1) and
δ2(q2, l)=(L, q2) ∧ (R, q2), for l∈{b, c}. The transition δ2 is shown in Figure 5 (left).

The MBPM2 corresponding to A2 extends the MBPM1 of the previous example with
the probabilistic state sq2 and the three ∀-branching states sq2,a, sq2,b and sq2,c. The new
part of the automaton A2 is depicted in Figure 5 (center). Noting the four new states are
not reachable by the other states already present inM1, we already know that valsq1

= 1
2 .

Hence we can consider the simplified system of fixed-point equations µ~x.g(~x) for calculating
the values val=(valq2 , valq2,a, valq2,b, valq2,c) where g is defined in Figure 5 (right). Hence
the value valq2 is the least solution in [0, 1] of the equation x = 1

12 + 2
3x

2 and this is
valq2 = 1

4 (3−
√

7) which is irrational and approximately equal to 0.088.

FSTTCS 2015

500 On the Problem of Computing the Probability of Regular Sets of Trees

One can verify5 that the probability of L3 is µ(L3)= 1
4 (3−

√
1 + 3

√
7) and thus not of

the form a+b
√
c

d for integers a, b, c, d. This means that µ(L3) is not a quadratic irrational.
By a characterization proved by Euler and Lagrange this in turn means that the continued
fraction representation of µ(L3) is not eventually periodic.

5.3 Example of a comeager language of probability 0
This subsection constitutes a proof of Proposition 3. The regular language L∞ is recognized
by the (deterministic) game automaton already defined in Section 4 and depicted in Figure 3
(left), where the states q1 and q2 have priority 1 and 2, respectively. The MBP associated
with this automaton, depicted in Figure 3 (right), has eight states. The vector of values val
is equal to ν~y 2.µ~y 1.g(~y 1, ~y 2) where

val =



valsq1

valsq1,a

valsq1,b

valsq1,c

valsq2

valsq2,a

valsq2,b

valsq2,c


and g(



y1
y2
y3
y4
_
_
_
_


,



_
_
_
_
y5
y6
y7
y8


) =



1
3y2 + 1

3y2 + 1
3y4

y5 · y5
y1 · y1
y1 · y1

1
3y5 + 1

3y1 + 1
3y1

y5 · y5
y1 · y1
y1 · y1


By straightforward simplifications we obtain the system of fixed-point equations{

x1
µ= 1

3x
2
2 + 2

3x
2
1

x2
ν= 1

3x
2
2 + 2

3x
2
1

in the two variables x1 and x2 (corresponding to the variables y1, representing sq1 , and y5,
representing sq2). The execution6 of Algorithm 1 reveals that the solution of the system
of equations is (0, 0). Hence valsq2

= 0 and this shows that the probability µ(L∞) of the
language L∞ is 0.

5.4 Computing the measure of Wi,k

qj

qkqkqkqk

. . .

qiqiqiqi

∃, i ∀, i ∃, k ∀, k

Figure 6 Transition of Ai,k recognizing Wi,k.

The family of regular languages Wi,k, in-
dexed by pairs i< k of natural numbers, con-
stitutes a tool for investigating properties of
regular languages using topological methods
([2, p. 329], see also [3, 4, 12]). The stand-
ard game automaton Ai,k over the language
Σi,k={∀,∃}×{i, i+1, . . . , k−1, k} accepting
Wi,k⊆TΣi,k

is defined as Ai,k = 〈Q, qi, δ, π〉
where Q={qi, qi+1, . . . , qk}, the initial state
is qi and, for each i≤j≤k, the state qj has
priority π(qj)=j and the transition function
δ is defined on qj as in Figure 6. Our proof
of Proposition 4, stated in the Introduction, goes by analyzing the system of fixed-point

5 See Section 5 of [15].
6 Details are presented in Section 5 of [15] along with a proof that the set L∞⊆Ta,b,c is comeager.

http://duch.mimuw.edu.pl/~henrykm/vv/vv.pdf#page.11
http://duch.mimuw.edu.pl/~henrykm/vv/vv.pdf#page.11

H. Michalewski and M. Mio 501

equations associated with the game automaton Ai,k. Importantly, such a system consists of
linear equations and not, as in the general case, of higher order polynomials. This system
can be solved using standard techniques of linear algebra. A detailed proof of Proposition 4
can be found in Subsection 5.6 of [15].

6 Conclusion

In this work we presented an algorithm for computing the probability of regular languages
defined by game automata. The Probability Problem in its full generality remains open. A
possible direction for future research is to investigate approximations of regular languages by
simpler regular languages. For example, given a regular language L of trees, is it possible to
find a regular language G defined by a game automaton such that L4G = (L \G) ∪ (G \ L)
is of probability 0, i. e. L differs from G by a set of probability 0? An effective answer to
this question, that is an algorithm constructing a language G from L, combined with the
algorithm described in this paper would lead to a full solution to the Probability Problem.

References
1 A. Arnold and D. Niwiński. Rudiments of µ-calculus. Studies in Logic. North-Holland,

2001.
2 André Arnold. The µ-calculus alternation-depth hierarchy is strict on binary trees. ITA,

33(4/5):329–340, 1999.
3 André Arnold and Damian Niwiński. Continuous separation of game languages. Funda-

menta Informaticae, 81:19–28, 2008.
4 Julian C. Bradfield. The modal µ-calculus alternation hierarchy is strict. Theor. Comput.

Sci., 195(2):133–153, 1998.
5 Christopher W. Brown. QEPCAD B: A program for computing with semi-algebraic sets

using cads. SIGSAM Bull., 37(4):97–108, 2003.
6 Krishnendu Chatterjee. Stochastic ω-Regular Games. PhD thesis, University of California,

Berkeley, 2007.
7 Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Quantitative

stochastic parity games. In Proc. of SODA, pages 121–130, 2004.
8 Taolue Chen, Klaus Dräger, and Stefan Kiefer. Model checking stochastic branching pro-

cesses. In Proceedings of MFCS, volume 7468 of Lecture Notes in Computer Science, pages
271–282. Springer, 2012.

9 Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68:374–397, 2004.

10 Jacques Duparc, Alessandro Facchini, and Filip Murlak. Definable operations on weakly
recognizable sets of trees. In Proc. of FSTTCS, pages 363–374, 2011.

11 Alessandro Facchini, Filip Murlak, and Michal Skrzypczak. Rabin-Mostowski index prob-
lem: A step beyond deterministic automata. In Proc. of LICS, pages 499–508, 2013.

12 Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and Michal Skrzypczak. Measure prop-
erties of game tree languages. In Proc. MFCS, pages 303–314, 2014.

13 A. S. Kechris. Classical Descriptive Set Theory. Springer Verlag, 1994.
14 Henryk Michalewski and Matteo Mio. Baire Category Quantifier in Monadic Second Order

Logic. In Proc. of ICALP, 2015.
15 Henryk Michalewski and Matteo Mio. On the problem of computing the probability of

regular sets of trees. CoRR, abs/1510.01640, 2015.
16 Matteo Mio. Game Semantics for Probabilistic µ-Calculi. PhD thesis, School of Informatics,

University of Edinburgh, 2012.

FSTTCS 2015

http://duch.mimuw.edu.pl/~henrykm/vv/vv.pdf#page.16

502 On the Problem of Computing the Probability of Regular Sets of Trees

17 Matteo Mio. Probabilistic Modal µ-Calculus with Independent product. Logical Methods
in Computer Science, 8(4), 2012.

18 Matteo Mio and Alex Simpson. Łukasiewicz mu-calculus. In Proc. of Workshop on Fixed
Points in Computer Science, volume 126 of EPTCS, 2013.

19 David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of Rabin, McNaughton and
Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

20 Damian Niwiński. On the cardinality of sets of infinite trees recognizable by finite automata.
In Proc. MFCS, 1991.

21 Damian Niwiński and Igor Walukiewicz. A gap property of deterministic tree languages.
Theor. Comput. Sci., 1(303):215–231, 2003.

22 Ludwig Staiger. Rich omega-words and monadic second-order arithmetic. In Proc. of CSL,
pages 478–490, 1997.

23 Ludwig Staiger. The Hausdorff measure of regular omega-languages is computable. Bulletin
of the EATCS, 66:178–182, 1998.

24 Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of
California Press, 1951.

25 Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
pages 389–455. Springer, 1996.

	Introduction
	Main Results
	The Algorithm
	Related Work

	Background in Topology and Automata Theory
	Topology and measure
	Alternating Parity Tree Automata and Game Automata

	Introduction to meta-parity games
	How to compute the value of a MBP

	From Game Automata to Markov Branching Plays
	Examples
	An introductory example
	Examples of regular languages having irrational probabilities
	Example of a comeager language of probability 0
	Computing the measure of Wi,k

	Conclusion

