
HAL Id: hal-02140452
https://hal.science/hal-02140452v1

Submitted on 27 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Evaluation of the reliability of building energy
performance models for parameter estimation

Julien Berger, Denys Dutykh

To cite this version:
Julien Berger, Denys Dutykh. Evaluation of the reliability of building energy performance mod-
els for parameter estimation. Journal of Computational technologies, 2019, 24 (3), pp.4-32.
�10.25743/ICT.2019.24.3.002�. �hal-02140452�

https://hal.science/hal-02140452v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Evaluation of the reliability of building energy performance

models for parameter estimation

Julien Bergera∗, Denys Dutykhb

May 27, 2019

a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LOCIE, 73000 Chambéry, France
b Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry, France

∗corresponding author, e-mail address : julien.berger@univ-smb.fr

Abstract

The fidelity of a model relies both on its accuracy to predict the physical phenomena
and its capability to estimate unknown parameters using observations. This article focuses
on this second aspect by analyzing the reliability of two mathematical models proposed in
the literature for the simulation of heat losses through building walls. The first one, named
DF, is the classical heat diffusion equation combined with the Du Fort–Frankel numer-
ical scheme. The second is the so-called RC lumped approach, based on a simple ordinary
differential equation to compute the temperature within the wall. The reliability is evaluated
following a two stages method. First, samples of observations are generated using a pseudo-
spectral numerical model for the heat diffusion equation with known input parameters. The
results are then modified by adding a noise to simulate experimental measurements. Then,
for each sample of observation, the parameter estimation problem is solved using one of the
two mathematical models. The reliability is assessed based on the accuracy of the approach
to recover the unknown parameter. Three case studies are considered for the estimation
of (i) the heat capacity, (ii) the thermal conductivity or (iii) the heat transfer coefficient
at the interface between the wall and the ambient air. For all cases, the DF mathematical
model has a very satisfactory reliability to estimate the unknown parameters without any
bias. However, the RC model lacks of fidelity and reliability. The error on the estimated
parameter can reach 40% for the heat capacity, 80% for the thermal conductivity and 450%
for the heat transfer coefficient.

Key words: Mathematical Model reliability; parameter estimation problem; building
thermal performance; Heat transfer; Du Fort–Frankel numerical model; Thermal Circuit
Model;

1 Introduction

Within the environmental context, several works have been carried out to propose tools to
assess the building energy performance. Among all physical phenomena involved, these tools
are based on models to assess the heat losses through building walls.

As illustrated in Figure 1, several steps can be identified in the construction of a model
for the prediction of heat losses through walls. First, the model is based on a qualitative
representation of the real physical world. One can easily observe that in winter time, the heat flux
is directed from the inside to the outside part of the wall. Then, this knowledge is translated into
the so-called mathematical model1. The mathematical model includes the governing equations
of the physical phenomena. The third step aims at building a numerical model2 to obtain
a solution of the governing equations. This model can employ numerical3 or analytical, i.e.
approximate or exact, methods with defined discretisation of the continuous variables. Last,

1The word “mathematical” is used because the mathematical language is used to write the model.
2The word “numerical” is adopted in the sense of computational.
3Here, the word “numerical” stands for the type of method used to compute the solution.
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once the model is built, the numerical model can be developed using computational technologies
so that predictions and analysis of the physical phenomena can be carried out. An alternative
application is to estimate uncertain parameters entering in the definition of the model using
experimental observations. Figure 1 also illustrates the approximations introduced modeling
procedure. Namely, some physical approximations are added when defining the mathematical
model. Then, some numerical approximations appear when building the computational tool to
solve the problem.

Undeniably, the main issue is to build efficient models. The word efficiency can designate
several aspects. One important is to validate the numerical model by comparison to reference
solutions. This work intends to check the numerical approximations introduced when obtaining
the solution of the governing equations. A second aspect is to evaluate the fidelity or reliability
of the model by comparison with experimental observations. To be more precise, the objective
is to assess the physical approximations when translating the qualitative representation into
the mathematical model. So the reliability of a model is its capacity to predict the physical
phenomena. It is also the model’s ability to estimate unknown parameters using experimental
observations. Other criteria of efficiency can be based on computational costs, ease to implement,
etc.

Nowadays, in building physics, two main mathematical models are employed in the literature
to predict the heat transfer through building walls. The first one is the most known mathematical
model, based on the heat diffusion equation proposed in the early work of J. Fourier in
1822 in Théorie analytique de la chaleur [1]. During the second world war, when no powerful
computers were available, an analogical model was proposed to solve the heat diffusion equation
as illustrated in Figure 2. This ingenuous approach enabled fast computations to predict the
heat transfer through walls caused by fire. Interested readers are invited to consult [2–4]. Then,
with the hardware evolution, numerical models have been proposed. Today, they are based on
numerical approaches such as finite-differences or finite-volumes as surveyed in [5]. The second
mathematical model is the so-called RC approach. A lumped model for the heat diffusion
equation is proposed based on ordinary differential equation [6–8].

Despite the simplicity of these models, several works can be referenced in the literature
using these two mathematical models to estimate uncertain parameters in building walls as for
instance [9, 10] for the RC model or [11] for the heat transfer one. However, to our knowledge,
no works have been proposed to evaluate the reliability of the two mathematical models. A
complementary work [12] investigates the fidelity of the two approaches to predict the physical
phenomena with comparison to experimental observations. As a second step, this work intends
to appraise their reliability to estimate unknown parameter from experimental observations
through the resolution of parameter estimation problem [13, 14]. The article is organized as
follows. First section presents the two direct mathematical models. Then, the procedure to
evaluate the reliability for the estimation of unknown parameters is described. Particularly,
samples of experimental observations are first generated using a pseudo-spectral numerical model
for the heat equation. Then, for each generated sample, the parameter estimation problem
is solved using two mathematical models. The metrics for evaluating the reliability are also
proposed in Section 3. In Section 4, three case studies are considered for the estimation of
(i) the heat capacity, (ii) the thermal conductivity and (iii) the heat transfer coefficient at the
interface between the material and the ambient air. In last Section 5, some general remarks are
synthesized.

2 Direct Mathematical models

In this section, two models used to represent the physical phenomena of heat transfer in the
wall are described. Each model includes the mathematical model translating the physical phe-
nomena using a mathematical formalism. The numerical model denotes the numerical method
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Figure 1. Procedure of building models to represent the heat losses through building walls.

(a) (b)

Figure 2. Illustration of the analogy between the physical problem of heat transfer through a
wall with the electrical model (a) and picture of the analogical model developed (b). Both
illustrations are taken from [4] with the authorization of the Journal of Research of NIST.
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used to compute the solution of the mathematical model on a given space-time mesh. In the con-
text of parameter estimation problem, the mathematical model is also called the direct model.
First, the heat diffusion model using the Du Fort–Frankel numerical scheme is presented.
This approach is denoted by DF in the whole manuscript. Then, the lumped RC model is
described.

2.1 Heat diffusion with Du Fort–Frankel numerical model

2.1.1 Heat diffusion in building material

The field of interest is the temperature T
[

K
]

evolving in a building wall material illustrated
in Figure 3. The space domain is defined by x ∈

[

0 , L
]

, where L
[

m
]

is the length of the wall.
The time domain is defined by t ∈

[

0 , t f

]

. Thus, the function T is defined by:

T :
[

0 , L
]

×
[

0 , t f

]

−→ R> 0 ,
(

x , t
)

7−→ T ( x , t ) .

The temperature verifies the diffusion equation:

c ·
∂T

∂t
= k ·

∂ 2T

∂x 2
, (1)

where k
[

W / (m · K)
]

is the thermal conductivity and c
[

J / (kg · K)
]

is the volumetric heat
capacity.

At the boundaries, in the ambient air, time dependent temperatures T ∞ , L (− ) and T ∞ , R (− )
force the heat diffusion into the wall:

T ∞ , L , R :
[

0 , t f

]

−→ R> 0 ,

t 7−→ T ∞ , L , R

(

t
)

.

Robin-type boundary conditions are assumed at the interface between ambient air and the wall,:

k ·
∂T

∂n
= h L ·

(

T − T ∞ , L

)

, x = 0 , t > 0 , (2a)

k ·
∂T

∂n
= h R ·

(

T − T ∞ , R

)

, x = L , t > 0 , (2b)

where h
[

W / (m 2 · K)
]

is the surface heat transfer coefficient. The derivative is defined as
∂y

∂n

def
:=

∂y

∂x
· n with n = ± 1 , depending on the considered boundary

{

0 , L
}

.

A uniform temperature is assumed in the material as initial condition:

T = T 0 , t = 0 .

with T 0 (− ) a constant function defined by:

T 0 :
[

0 , L
]

−→ R> 0 ,

x 7−→ T 0 .
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Figure 3. Illustration of the physical domain.

2.1.2 The Du Fort–Frankel numerical model

Dimensionless formulation

As discussed and thoroughly motivated in [15–17], it is of capital importance to obtain a
dimensionless problem before elaborating a numerical model. For this, dimensionless fields are
defined:

u
def
:=

T

T ref

, u ∞ , L
def
:=

T ∞ , L

T ref

, u ∞ , R
def
:=

T ∞ , R

T ref

, u 0
def
:=

T 0

T ref

,

where T ref is user–defined reference temperature. The space and time coordinates are also
transformed into dimensionless variables:

t ⋆ def
:=

t

t ref

, x ⋆ def
:=

x

L
.

The thermophysical properties and the heat transfer coefficients are re-scaled using reference
values:

k ⋆ def
:=

k

k ref

, c ⋆ def
:=

c

c ref

, h ⋆
L

def
:=

h L

h ref

, h ⋆
R

def
:=

h R

h ref

,

Last, dimensionless numbers are defined as the Fourier and Biot ones:

Fo
def
:=

t ref · k ref

c ref · L 2
, Bi

def
:=

h ref · L

k ref

.

The former quantifies the magnitude of diffusion inside the material while the second evalu-
ates the importance of heat penetration from the ambient air to the solid part. With these
transformations, the dimensionless problem is written as:

c ⋆ ·
∂u

∂t ⋆
= Fo · k ⋆ ·

∂ 2u

∂x ⋆ 2
(3)

with the Robin-type boundary condition:

k ⋆ ·
∂u

∂n
= Bi · h ⋆

L ·
(

u − u ∞ , L

)

, x ⋆ = 0 , t ⋆ > 0 (4)

k ⋆ ·
∂u

∂n
= −Bi · h ⋆

R ·
(

u − u ∞ , R

)

, x ⋆ = 1 , t ⋆
> 0 . (5)

The initial condition is expressed as:

u
(

x ⋆ , 0
)

= u 0 .

To have a well-posed problem, initial and boundary conditions must be compatible. The di-
mensionless formulation is written in a way to highlight the parameter k ⋆ , c ⋆ and h ⋆ that
will be estimated by solving the identification problem. In this work, the numerical values
of the reference parameters are t ref = 3600 s , T ref = 273.15 K , k ref = 1 W / (m · K) ,
c ref = 1.5 MJ / (m 3 · K) and h ref = 5 W / (m 2 · K) .
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Figure 4. Illustration of the Du Fort–Frankel space-time stencil.

Numerical model

A uniform discretisation is considered for space and time intervals. The discretisation param-
eters are denoted using ∆t ⋆ for the time and ∆x ⋆ for the space. The discrete values of the func-

tion u ( x ⋆ , t ⋆ ) are denoted by u n
j

def
:= u ( x j , t n ) with j = 1 , . . . , N x and n = 1 , . . . , N t .

It is important to note that the numerical model is built for the dimensionless problem using
the MatlabTMenvironment.

The so–called Du Fort–Frankel scheme is used. It is an explicit numerical scheme with
an increased stability domain. Interested readers are invited to consult [18] for the original
work, [19, 20] for the results on the stability analysis and [20, 21] for further details and its
applications for heat and moisture transfer in building porous materials. Since a complete
description is provided in [21], only the main steps are recalled here. The idea of the approach

is to replace the term u n
j ←−

1

2
·
(

u n+1
j + u n−1

j

)

in the forward in time central scheme to

obtain the following fully discrete dynamical system:

u n+1
j =

1

1 + λ
·

(

λ · u n
j+1 + λ · u n

j−1 +
(

1 − λ
)

· u n−1
j

)

, (6)

with the coefficient:

λ
def
:= 2 · Fo ·

k ⋆

c ⋆
·

∆t ⋆

(

∆x ⋆
) 2

.

It is important to remind that the boundary conditions are discretized using second order ap-
proach for the space derivatives to maintain the properties of stability [19]. So, the boundary
conditions (4) are discretized according to:

k ⋆

2 ·∆x ⋆
·
(

−u n
3 + 4 · u n

2 − 3 · u n
1

)

= Bi L · h
⋆
L ·
(

u n
1 − u ∞ , L

)

,

k ⋆

2 ·∆x ⋆
·
(

u n
N x
− 4 · u n

N x−1 + 3 · u n
N x−2

)

= −Bi R · h
⋆
R ·
(

u n
N x
− u ∞ , R

)

.

The stencil of the Du Fort–Frankel scheme is illustrated in Figure 4.

2.2 The lumped RC model

The second model is the RC one. Interested readers are invited to consult [6, 22] for more
details on this approach and [10, 23, 24] for examples of recent applications in building physics.
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Figure 5. Illustration of the three temperature defined in the lumped RC model.

2.2.1 Formulation

In the lumped RC approach, three temperature points are defined in the material as illustrated
in Figure 5. Two temperatures are defined at the boundaries of the material:

T 1 :
[

0 , t f

]

−→ R> 0 ,

t 7−→ T ( 0 , t )

and

T 3 :
[

0 , t f

]

−→ R> 0 ,

t 7−→ T ( 1 , t ) .

The temperature T 2 is defined inside the cell C is ℓ
def
:=

L

2
. According to the mean value theorem,

this temperature is not necessarily in the middle of the wall. The formulation of the model is:

ℓ · c ·
dT 2

dt
= k ·

(

∂T

∂x

∣

∣

∣

∣

x = 3·L
4

−
∂T

∂x

∣

∣

∣

∣

x = L
4

)

.

Using Fourier’s law to express the flux at the boundary of the cell, one obtains:

ℓ 2 · c ·
dT 2

dt
= k ·

(

T 3 − 2 · T 2 + T 1

)

. (7)

It can be remarked that by integration, the partial differential heat diffusion equation is trans-
formed into a simple ordinary equation in the RC lumped approach. Using a first order in space
central discretisation for the boundary conditions given by equation (2), we obtain:

k

ℓ
·
(

T 2 − T 1

)

= h L ·
(

T 1 − T ∞ , L

)

, (8a)

k

ℓ
·
(

T 3 − T 2

)

= −h R ·
(

T 3 − T ∞ , R

)

. (8b)

In the literature, this model is also referenced as R2C approach due to the straightforward
electric analogy.

2.2.2 Numerical Model

The algorithm of the lumped RC model is developped in the MatlabTM environment. As per-
formed in many works of literature [6–8], the numerical model is not written in a dimensionless
form. The physical dimensional variables are used. As for the previous numerical model, the
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discrete values of T ( t ) are denoted using T n
j

def
:= T j ( t n ) , j ∈

{

1 , 2 , 3
}

. The time discreti-
sation parameter is designated by ∆t . The ordinary differential Equation (7) is approximated
using an explicit Euler time scheme:

T n+1
2 = T n

2 +
k

c · ℓ 2
·∆t ·

(

T n
3 − 2 · T n

2 + T n
1

)

.

This choice of time discretisation scheme imposes a stability condition and the choice of the
time step ∆t :

∆t 6
1

2
·

ℓ 2 · c

k
.

To compute the temperatures T 1 and T 3 at the boundaries, the following equations are used:

(

h L +
k

ℓ

)

· T n+1
1 −

k

ℓ
· T n+1

2 = h L · T ∞ , L ,

(

h R +
k

ℓ

)

· T n+1
3 −

k

ℓ
· T n+1

2 = h R · T ∞ , R .

In the end, the numerical model is written in a matrix form to compute the vector

T n+1 def
:=

[

T n+1
1 , T n+1

2 , T n+1
3

] T
,

using:

A ·T n+1 = B ·T n + Q , (9)

where

A
def
:=















h L +
k

e
−

k

e
0

0 1 0

0 −
k

e
h R +

k

e















, B
def
:=













0 0 0

k ·∆t

c · e 2
1− 2 ·

k ·∆t

c · e 2

k ·∆t

c · e 2

0 0 0













, Q
def
:=











h L · T
n+1
∞ , L

0

h R · T
n+1
∞ , R











.

It can be noticed that the lumped RC model only requires the solution of three equations, while
the complete model based on the heat diffusion equation needs N x calculations.

3 Evaluating the reliability for the estimation of unknown pa-

rameter

The procedure to evaluate the reliability of the mathematical model for the estimation of
unknown parameters is illustrated in Figure 6. It is divided into two steps. The first one aims
at generating experimental observations using a numerical model different from the DF or the
RC ones. A total of N s samples of observations are generated in silico. Then, for each sample,
the parameter estimation problem is solved using the direct model based on the DF or the
RC approaches. The suitable metrics to evaluate the reliability of each direct model for the
estimation of unknown parameters are detailed in Section 3.3.

Before detailing the two steps, some preliminary definitions are provided. First, the singleton
set Ω p of the unique unknown parameter p is defined by:

Ω p =
{

p
}

, p ∈ R .

The distinction is done between the real parameter p r used to generate the experimental ob-
servations. The identification problem aims to determine an estimate of parameter p ◦ . If the

8



Figure 6. Illustration of the procedure to evaluate the reliability of the mathematical model for
the estimation of unknown parameters.

model is reliable, it is expected that the difference between the real and estimated parameter to
be as small as possible. An initial guess on the unknown parameter is required in the parameter
estimation procedure, denoted p apr using the subscript apr for the a priori estimation.

To prove the theoretical identifiability of the unknown parameter p the Structurally Globally
Identifiable (SGI) property [25] is recalled. A parameter p defined in the model u is SGI if the
following condition is satisfied:

∀
(

p , p ′
)

∈ Ω p × Ω p , u
(

p
)

≡ u
(

p ′
)

=⇒ p ≡ p ′ .

In other words, the mapping of u is injective with respect to the parameter p .
We also define the ordered set of observation times:

Ω t =
(

t ⋆
1 , . . . , t ⋆

k

)

⊂
[

0 , t ⋆
f

]K
, k = 1 , . . . , K .

From a practical point of view, the set Ω t corresponds to the time grid where the experimental
measurements are acquired. The point of coordinate x ⋆

obs ∈
[

0 , 1
]

corresponds to the place
where the sensor is located in the material to acquire the observation. The singleton set of
sensor position is denoted by:

Ω x =
{

x ⋆
obs

}

⊂
[

0 , 1
]

, x ⋆
obs ∈

[

0 , 1
]

.

In this work, only one sensor is settled so Ω x ⊂ R .

3.1 Step 1: generation of experimental observations

The observations are generated with a numerical model based on pseudo–spectral approach
using the MatlabTM open source toolbox Chebfun [26]. The model employs the function pde23t

of Chebfun to compute a numerical reference solution u ref of the partial derivative equation (3)
based on the Chebyshev polynomials representation in space. The reference solution is com-
puted using the real value of the parameter p r . It is directly obtained for the sensor location
x obs and the observation time set Ω t . Then, to obtain the K observations u obs , a noise is added
to simulate the experimental uncertainties due to the sensor design and location:

u obs : Ω x × Ω t × Ω p −→ Ω obs ,
(

x ⋆
obs , t ⋆

k , p r

)

7−→ u ref

(

x ⋆
obs , t ⋆

k

)

+ η
(

ω
)

,

where η ∼ N
(

0 , σ obs

)

is a noise following a Gauß normal distribution with zero mean and
standard deviation σ obs . The co-domain of u obs verifies Ω obs ⊂ R

K .
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3.2 Step 2: solving the parameter estimation

The parameter estimation problem is solved using the (numerically generated) experimental
observations and the solution of the direct model u dir . The latter is defined by:

u dir : Ω x × Ω t × Ω p −→ Ω dir ,
(

x ⋆
obs , t ⋆

k , p
)

7−→ u dir

(

x ⋆
obs , t ⋆

k , p
)

.

It is computed using the DF model (described in Section 2.1) or the RC one (described in
Section 2.2). The domain and the co-domain of u dir verifies dom u obs ≡ dom u dir and Ω dir ⊂

R
K , respectively. The identification problem aims at computing the estimated parameter p ◦

verifying:

p ◦

def
:= arg min

Ω p

J , (10)

where J is the so-called cost function defined by the least square estimator:

J : Ω dir × Ω obs −→ R> 0 , (11)
(

u dir , u obs

)

7−→
∣

∣

∣

∣

∣

∣u dir − u obs

∣

∣

∣

∣

∣

∣

2
,

where
∣

∣

∣

∣

∣

∣ •
∣

∣

∣

∣

∣

∣

2
is the least square estimator L 2 defined by:

∣

∣

∣

∣

∣

∣ •
∣

∣

∣

∣

∣

∣

2
: y 7−→

1

t f

·

∫

Ω t

(

y
(

t
)

)2

dt .

The dependency of the cost function J on the unknown parameter p can be understood by the
diagram of mapping illustrated in Figure 7. The minimization of the cost function (10) is realized
using the Gauß algorithm [27–29]. Specifically, the necessary condition for the minimum of J
is:

∂J

∂p
= 0 ,

which is equivalent to

1

t f

·

∫

Ω t

2 ·
∂u dir

∂p
·
(

u dir ( p ) − u obs

)

dt = 0 . (12)

Assuming we have a candidate for the unknown parameter p m , the Taylor expansion gives:

u dir ( p ) = u dir ( p m ) +
∂u

∂p

∣

∣

∣

∣

p = p m

·
(

p − p m

)

+ O

(

(

p − p m

) 2
)

.

So, Equation (12) after truncation becomes:

∫

Ω t

2 ·
∂u dir

∂p
·

(

u dir ( p m ) +
∂u dir

∂p

∣

∣

∣

∣

p = p m

·
(

p − p m

)

− u obs

)

dt = 0 . (13)

Equation (13) provides the Gauß linearization to compute a candidate p better than p m to min-
imize the cost function J . To indicate the iterative procedure, the notation is slightly changed
and parameter p ← p m+1 . Thus, the candidate p m+1 is computed by forcing equation (13) to
vanish:

p m+1 = p m +
u obs − u dir

∂u dir

∂p

∣

∣

∣

∣

p = p m

.

10



Figure 7. Diagram of mapping involving the cost function J .

The computation of the candidate p m+1 requires the knowledge of the sensitivity function
∂u dir

∂p
.

For this, for each direct model (DF or RC ones), the sensitivity equation is obtained by differen-
tiating the main equation with respect to the unknown parameter p . All sensitivity equations for
the two direct models and some comments on their resolution are provided in Appendix A. The
iterative procedure is implemented starting from the initial guess p apr . Two stopping criteria γ 1

and γ 2 are defined on the magnitude of changes of the cost function and unknown parameter:

γ 1

(

p m , p m+1

)

def
:=

∣

∣

∣

∣

∣

∣ p m+1 − p m

∣

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣ p m

∣

∣

∣

∣

∣

∣

2

,

γ 2

(

p m , p m+1

)

def
:=

∣

∣

∣

∣

∣

∣u dir ( p m+1 ) − u obs

∣

∣

∣

∣

∣

∣

2
−
∣

∣

∣

∣

∣

∣u dir ( p m ) − u obs

∣

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣u dir ( p m ) − u obs

∣

∣

∣

∣

∣

∣

2

.

The algorithm stop when the following conditions are reached:
(

γ 1 6 η 1

)

&
(

γ 2 6 η 2

)

.

where η 1 and η 2 are small positive values set in this work to η 1 = η 2 = 10 −6 .

3.3 Metrics for the evaluation of the reliability

Several metrics are defined for the evaluation of the reliability of the two models to estimate
one unknown parameter among

{

c , k , h L

}

. Since the estimation of the unknown parameter
is realized for N s samples of observations, it is possible to compute classical statistical metrics.
The expectation E

[

−
]

and the standard deviation σ
[

−
]

of the random variable y are defined
by:

E
(

y
) def

:=
1

N s

N s
∑

s = 1

y s , σ 2
(

y
) def

:= E

(

(

y − E
(

y
)

) 2
)

.

These metrics can be applied to the ratio
p ◦

p r

between the estimated and real parameters and to

the number of iterations N m or the computational (CPU) time t CPU required for the algorithm
to estimate the parameter. The latter is measured using MatlabTM environment on a computer
equipped with Intel i7− 6820HQ CPU, 2.70GHz and 32 GB of RAM.

4 Case studies

The reliability of the mathematical model is evaluated to estimate one unknown parameter
among

{

c , k , h L

}

, two others being fixed. Five types of usual building materials are considered
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Figure 8. Time variation of the boundary conditions.

Table 1. Real properties of the material considered for the case studies.

Identification Volumetric heat capacity Thermal conductivity Material

N ◦ c
[

MJ / (kg · K)
]

k
[

W / (m · K)
]

type

1 5 · 10 −2 5 · 10 −2
insulation

2 5 · 10 −1 5 · 10 −1
wood

3 1.5 1 brick

4 2.0 1.5 concrete

5 2.5 2.5 stone

as summarized in Table 1. The thickness of the material is L = 22 cm . The initial condition
is T 0 = 20 ◦C . At both boundary conditions, the ambient temperatures follow the sinusoidal
variations:

T ∞ , L

(

t
)

= T 0 + 10 · sin

(

2 · π

20 · 3600
· t

)

+ 10 · sin

(

2 · π

2 · 3600
· t

)

,

T ∞ , R

(

t
)

= T 0 + 20 · tanh

(

1

4 · 3600
· t

)

− 10 · sin

(

2 · π

4 · 3600
· t

)

,

which are illustrated in Figure 8. The heat transfer coefficient at the right boundary equals to
h R = 5 W / (m 2 · K) .

For each case, N s = 10 4 samples of observations are generated with a noise of standard
deviation σ obs = 0.2 ◦C , corresponding to usual uncertainty of temperature measurement.
The point of observation is the middle of the wall x obs = 11 cm . The time grid of each sample
of observations is set as t k = k · 360 s , k ∈

{

0 , . . . , 200
}

⊂ N 0 . Thus, each sample includes
K = 201 observations obtained with a time step of 360 s .

The discretisation parameter are set to ∆t = 3.6 s and ∆x = 2.2 mm for the Du Fort–
Frankel model. For the RC lumped model, the time discretisation parameter is also ∆t =
3.6 s .

4.1 Estimation of the volumetric heat capacity

The purpose is to estimate the thermal capacity c for the five types of materials. Before gen-
erating the experimental observations and performing the estimation, it is necessary to prove

12



the identifiability of the parameter c for both models using the SGI property. First, the demon-
stration is realized for the DF model.

Proposition 1. The parameter c is identifiable in Equation (1).

Proof. We assume an observable T
(

− , −
)

verifies the model:

c ·
∂T

∂t
= k ·

∂ 2T

∂x 2
. (14)

Another observable, denoted with a superscript ′ , obtained with another parameter c ′ holds:

c ′ ·
∂T ′

∂t
= k ·

∂ 2T ′

∂x 2
. (15)

If T ≡ T ′ then
∂T

∂t
≡

∂T ′

∂t
and

∂ 2T

∂x 2
≡

∂ 2T ′

∂x 2
. Thus, from equations (14) and (15), we obtain:

(

c − c ′

)

·
∂T

∂t
= 0

so c ≡ c ′ and parameter c is SGI. �

Now, the identifiability is proven for the RC model.

Proposition 2. The parameter c is identifiable in Equation (7).

Proof. We assume an observable T
(

−
)

obtained from the RC model:

e 2 · c
dT 2

dt
= k ·

(

T 3 − 2 · T 2 + T 1

)

. (16)

Another observable, denoted with a superscript ′ , obtained with another parameter c ′ :

e 2 · c ′
dT ′

2

dt
= k ·

(

T ′

3 − 2 · T ′

2 + T ′

1

)

. (17)

If T ≡ T ′ then
dT

dt
≡

dT ′

dt
. Thus, from Equations (16) and (17), one obtains:

(

c − c ′

)

·
dT 2

dt
= 0

so c ≡ c ′ and parameter c is SGI in the RC model. �

The experimental observations are generated using the real heat capacity c r given in Table 1.
The thermal conductivity is a known parameter given for each material in the same Table. The
heat transfer coefficient at the left boundary conditions is set to h L = 15 W / (m 2 · K) . For
the solution of the parameter estimation problem, the initial guess of c is fixed in the algorithm
as c apr = 0.1 · c r .

The expectation of the estimated parameter c ◦ using both mathematical models DF and RC
is compared with the real parameter c r in Figure 9. More detailed results are provided in Table 2.
The DF model allows to estimate accurately the unknown parameter c. For the five materials,
the expectation of the ratio between the estimated and real parameter approximately equal to
1 . For the RC model, the estimation lacks of accuracy for all materials. There is slight decrease
of the expectation of the estimated parameter with the increase of volumetric heat capacity c r .
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Figure 9. Comparison of the expectation of the estimated parameter c ◦ with the real parameter
c r .

For the material N ◦ 5 , the RC lumped model estimates a parameter with almost 50% of the
relative error. As reported in Table 2, for both models the standard deviation of the estimated
parameter is small. The number of iterations required for the estimation of the parameter are
illustrated in Figure 10(a) with more detailed results in Table 2. Mainly, the DF model requires
fewer iterations to estimate the parameter than the RC one. The number of iterations is eight
times more in average for the RC model, while it seems to decrease for the DF model together
with the heat capacity. Figure 10(b) gives the computational time needed by the algorithm to
converge to the estimated parameter. The DF model has a higher computational cost, around
2.5 s for one estimation. Even if the algorithm based on the DF approach needs fewer iterations,
these computational effort differences are due to the construction of each numerical model.
Indeed, at each time iteration, N x = 100 equations are computed for DF approach while only
3 for the RC model. It should be recalled that the same time discretisation parameters were
used for both models.

An insight of the results for the materials 1 and 3 is illustrated in Figures 11(a) and 11(b).
The time evolution of the temperature expectation computed with the estimated parameter for
both models is compared to the experimental observations. The RC model lacks of accuracy to
represent the physical phenomena. On the other hand, there is a satisfactory agreement between
the predictions of the DF model and the experimental observations. Figures 12(a) and 12(b)
show the convergence of the algorithm relatively to the number of iterations for both models.
It can be remarked that the DF model convergence is faster than for the RC one. These results
may be due to lack of accuracy in the computation of the sensitivity equations by the RC model.

4.2 Estimation of the thermal conductivity

The issue is now to estimate the thermal conductivity k for the five material. Let us prove
the identifiability of the parameter in each model. The demonstration is similar to the one for
the previous case study.

Proposition 3. For the DF model, the parameter k is identifiable in equation (1).

Proof. We assume an observable T
(

− , −
)

verifies the model:

c ·
∂T

∂t
= k ·

∂ 2T

∂x 2
. (18)
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Figure 10. Variation of the expectation of the number of iteration N m (a) and the
computational time t cpu (b) for the algorithm to estimate the unknown parameter c for the five
types of materials.
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Figure 11. Time evolution of the temperature at x = x obs = 11 cm for material 1 (a) and
material 3 (b) computed with the numerical model for c = c ◦ .

Table 2. Results for the estimation of the unknown volumetric heat capacity c .

Ratio
c ◦

c r

Number of iterations N m Computational time t CPU

[

s
]

Material DF model RC model DF model RC model DF model RC model

Identification E σ E σ E σ E σ E σ E σ

1 1.0 0.004 0.89 0.004 7.9 0.32 8 0.03 2.8 0.15 0.7 0.05

2 1.0 0.005 0.71 0.003 7.0 0.22 7.3 0.56 2.5 0.13 0.7 0.05

3 1.0 0.005 0.63 0.003 6.2 0.38 8 0 2.3 0.26 0.7 0.05

4 1.0 0.005 0.6 0.003 6.0 0.26 8 0.06 2.3 0.16 0.7 0.05

5 1.0 0.006 0.57 0.003 6.0 0.22 8 0.2 2.4 0.16 0.7 0.05
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Figure 12. Variation of the expectation of the convergence criteria γ 1 (a) and γ 2 (b) for the
estimation of the unknown parameter c for the material 3.

Another observable, denoted with a superscript ′ , obtained with another parameter k ′ is de-
tained:

c ·
∂T ′

∂t
= k ′ ·

∂ 2T ′

∂x 2
. (19)

If T ≡ T ′ then
∂T

∂t
≡

∂T ′

∂t
and

∂ 2T

∂x 2
≡

∂ 2T ′

∂x 2
. Thus, from equations (18) and (19), we obtain:

(

k − k ′

)

·
∂ 2T

∂x 2
= 0 .

Thus, k ≡ k ′ and parameter k is SGI. �

Secondly, the identifiability is proven for the RC model.

Proposition 4. The parameter k is identifiable in equation (7).

Proof. We assume an observable T obtained for the RC model:

e 2 · c
dT 2

dt
= k ·

(

T 3 − 2 · T 2 + T 1

)

. (20)

Another observable, denoted with a superscript ′ , obtained with another parameter k ′ holds:

e 2 · c
dT ′

2

dt
= k ′ ·

(

T ′

3 − 2 · T ′

2 + T ′

1

)

. (21)

If T ≡ T ′ then
dT

dt
≡

dT ′

dt
. Thus, from equations (20) and (21), one obtain:

(

k − k ′

)

·

(

T 3 − 2 · T 2 + T 1

)

= 0 .

Since

(

T 3 − 2 · T 2 + T 1

)

6= 0 , one can deduce that k ≡ k ′ and that parameter k is SGI in

the RC model. �
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Table 3. Results for the estimation of the unknown thermal conductivity k .

Ratio
k ◦

k r

Number of iterations N m Computational time t CPU

[

s
]

Material DF model RC model DF model RC model DF model RC model

Identification E σ E σ E σ E σ E σ E σ

1 1.0 0.005 0.89 0.004 7.9 0.24 8.8 0.36 2.8 0.18 0.7 0.05

2 1.0 0.007 0.68 0.004 7.9 0.22 8.0 0 2.8 0.10 0.7 0.05

3 1.0 0.011 0.46 0.005 7.9 0.21 10.0 0.04 2.8 0.10 0.9 0.1

4 1.0 0.015 0.36 0.005 8.0 0.18 10.7 0.45 2.8 0.10 0.9 0.05

5 1.0 0.02 0.26 0.005 8.0 0.16 12 0.17 2.8 0.10 0.9 0.05

Before generating the experimental observations, an important remark can be formulated.
From an mathematical point of view, it can be noted that only the ratio k

c
is identifiable in

each model. One could question the necessity of evaluating the reliability of the models for
the estimation of k since the results might be similar to the ones obtained for the parameter
c . Nevertheless, from a practical point of view, once estimated, these parameters are used in
computational tools for evaluating the building energy requirements in the context of thermal
regulations. Thus, it is of major importance to see evaluate the accuracy of each model to
recover each parameters.

With this results, the experimental observations can be generated using the real thermal
conductivity k r given in Table 1. For each material, N s experimental observations are produced.
The heat capacity is a given parameter from Table 1 for each case. The heat transfer coefficient
at the left boundary is also fixed to h L = 15 W / (m 2 · K) . In the algorithm to estimate the
unknown parameter, the initial guess is prescribed as k apr = 0.1 · k r .

Figure 13 compares the expectation over the N s samples of observation of the estimated
parameter with respect to the real parameter. As in the previous case, the estimation using

the DF approach is accurate and the order of the ratio is the unity O

(

k ◦

k r

)

≃ 1 . A slight

increase of the standard deviation with the thermal conductivity can be noted in Table 3. For
the RC model, the estimation is not satisfactory. The maximum error goes upt to 80% and is
observed for large thermal conductivity k r = 2.5 W / (m 2 · K) . In addition, the estimation
error is decreasing faster than for the previous case with a slope around ≃ − 0.18 . The number
of iterations to estimate the parameter is stable around 8 for the algorithm using the DF model.
For the RC approach, the algorithm needs more iterations. The number of iterations tends to
increase with the thermal conductivity. Figure 14(b) gives the mean of the computational time
required by the algorithm to estimate the unknown parameter k . More details are provided in
Table 3. As expected, the approach using DF is longer. As the number of iterations to converge
increases with k r for the RC approach, the ratio of CPU times between both models decreases.

A comparison between the prediction of the models, computed with the estimated parameter
k ◦ , and the experimental observations is shown in Figures 15(a) and 15(b) for materials 2 and
5 , respectively. The predictions obtained with the RC model are not reliable. The difference
between the observations and the RC numerical predictions can reach 2 ◦C . Figures 16(a) and
16(b) present the variation of the convergence criteria with the number of iterations for material
5 . It is consistent with results presented in Figure 14(a). The algorithm based on RC model
requires more iterations to converge. It can be remarked that for 8 iterations, in the algorithm
using the DF model, both criteria γ 1 and γ 2 are satisfied. It indicates that both magnitudes of
changes in the cost function and in the unknown parameter are low. For the algorithm with the
RC model, only criteria γ 2 on the magnitude of the cost function is satisfied for 12 iterations.
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Figure 14. Variation of the expectation of the number of iteration N m (a) and the
computational time t cpu (b) for the algorithm to estimate the unknown parameter k for the five
types of material.
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Figure 15. Time evolution of the temperature at x = x obs = 11 cm for material 2 (a) and
material 5 (b) computed with the numerical model for k = k ◦ .
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Figure 16. Variation of the expectation of the convergence criteria γ 1 (a) and γ 2 (b) for the
estimation of the unknown parameter k for the material 5.
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4.3 Estimation of the heat transfer coefficient

The last case study concerns the estimation of the heat transfer coefficient h L . The identi-
fiability of this parameter is first proven for the DF model.

Proposition 5. The parameter h L is identifiable in Equation (2a).

Proof. We assume an observable T
(

− , −
)

obtained for the model:

k ·
∂T

∂n
= h L ·

(

T − T ∞ , L

)

. (22)

Another observable, denoted with a superscript ′ , obtained with another parameter k ′ is de-
tained:

k ·
∂T ′

∂n
= h ′

L ·
(

T ′ − T ∞ , L

)

. (23)

If T ≡ T ′ then
∂T

∂n
≡

∂T ′

∂n
. Thus, from Equations (22) and (23), we obtain:

(

h L − h ′

L

)

· T = 0 .

Thus, h L ≡ h ′

L and parameter h L is SGI. �

Secondly, the identifiability is proven for the RC model.

Proposition 6. The parameter h L is identifiable in Equation (8).

Proof. We assume an observable T
(

− , −
)

obtained from the RC model:

k

e
·
(

T 2 − T 1

)

= h L ·
(

T 1 − T ∞ , L

)

. (24)

Another observable, denoted with a superscript ′ , obtained with another parameter k ′ holds:

k

e
·
(

T ′

2 − T ′

1

)

= h ′

L ·
(

T ′

1 − T ∞ , L

)

. (25)

If T ≡ T ′ then from Equations (24) and (25), one obtain:

(

h L − h ′

L

)

· T 1

and h L ≡ h ′

L and parameter h L is SGI in the RC model. �

The properties are the one from material 3 identified in Table 1. The N s samples of observa-
tions are generated for four cases identified in Table 4. The chosen real values for h L corresponds
to classical one encountered in the literature for building physics applications. The initial guess
used in the algorithm to estimate the unknown parameter is h L , apr = 0.1 · h L , r .

The expectation of the estimated parameter is shown in Figure 17 for the four cases. Again,

the estimation performed with the DF model is accurate. The expectation of the ratio
h L , ◦

h L , r

scales with 1 for all values of h L , r . When using the RC model, the estimation lacks of reliability.
Particularly, for small values of heat transfer coefficient h L , r = 0.5 W / (m 2 · K) , the estimated
parameter is more than five time higher than the real one. For higher values of heat transfer
coefficient h L , r = 0.5 W / (m 2 · K) , the error on the estimation reaches ≃ 30% . Figures 18(a)
and 18(b) show the variation of the number of iterations and the CPU time for the algorithms to
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Table 4. Results for the estimation of the unknown thermal conductivity h L .

Case Real value Ratio
h L , ◦

h L , r

Number of iterations N m Computational time t CPU

[

s
]

h L , r

[

W / (m 2 · K)
]

DF model RC model DF model RC model DF model RC model

1 0.5 1.0 0.07 5.5 0.06 4 0.06 6 0 1.1 0.08 0.7 0.05

2 5 1.0 0.01 1.05 0.01 5 0.07 6 0 1.1 0.08 0.6 0.05

3 10 1.0 0.01 0.82 0.01 5.9 0.32 6 0 1.3 0.08 0.6 0.05

4 15 1.0 0.01 0.74 0.06 6 0.13 6.5 0.5 1.3 0.05 0.7 0.05
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Figure 17. Comparison of the expectation of the estimated parameter h L , ◦ with the real
parameter h L , r .

estimate the unknown parameter. The number of iterations remains stable for the RC approach
while it increases for the DF one. As expected, the DF model has a higher computational cost,
increasing the time required to solve the parameter estimation problem. Detailed results are
also provided in Table 4. Compared to previous case study, the computational cost is divided
by two for the algorithm using the DF model. Indeed, the algorithm requires fewer iterations
to converge.

The comparison between the numerical predictions and the experimental observations is
provided in Figures 19(a) and 19(b). Important discrepancies are noted for the predictions
using the RC model with the estimated heat transfer coefficient h L , ◦ . For the case 1 , the error
can reach ≃ 4 ◦C . For lower values of heat transfer coefficient h L , r = 0.5 W / (m 2 · K) , the
boundary conditions at x = 0 tends to be adiabatic. The RC model is completely unreliable
to predict the physical phenomena for such cases. For larger heat transfer coefficient values, the
discrepancies are lower but the predictions of the model are still not satisfactory. The speed
of convergence of the algorithm is illustrated in Figures 20(a) and 20(b). As for the previous
cases, only the criteria γ 2 on the magnitude of the changes in the cost function is reached for the
algorithm using the RC approach. It is another indication of the poor accuracy of the method.

5 Conclusion

In building physics, it is of capital importance to build reliable models to simulate the physical
phenomena of heat losses through the walls. The fidelity of a model can be evaluated by
comparing the numerical predictions with experimental observations. The reliability can also be
assessed by the robustness of the model to estimate accurate unknown parameters using given
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Figure 18. Variation of the expectation of the number of iteration N m (a) and the
computational time t cpu (b) for the algorithm to estimate the unknown parameter h L for the
four cases.
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Figure 19. Time evolution of the temperature at x = x obs = 11 cm for cases 1 (a) and 3 (b)
computed with the numerical model for h L = h L , ◦ .
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Figure 20. Variation of the expectation of the convergence criteria γ 1 (a) and γ 2 (b) for the
estimation of the unknown parameter h L for the case 3.

observations. This article deals with this second aspect of reliability.
Two main mathematical models are proposed in the literature for heat losses through build-

ing wall. The first one, denoted by DF, is based on the heat diffusion equation combined with
the Du Fort–Frankel scheme to build the numerical model. The second one is the so-called
lumped RC model which approximates the diffusion processes by an ordinary differential equa-
tion. Within this approach, only three temperatures are evaluated in the wall. Section 2 presents
the two mathematical models used to obtain the solution of the direct problem when estimating
the parameter. Then, in Section 3, the methodology to evaluate the reliability is detailed. First,
samples of observations are generated using a pseudo-spectral numerical method for the heat
diffusion equation and a known parameter. A noise is then added to the numerical results to
generate experimental observations in silico. The second step consists in solving the parame-
ter estimation problem for each sample of observations using both mathematical model. The
main criterion to evaluate the reliability is the accuracy of recovering the unknown parameter.
Secondary criteria focus on computational time and number of iterations to solve the inverse
problem.

In Section 4, three case studies are considered for the estimation of (i) the heat capacity,
(ii) the thermal conductivity or (iii) the heat transfer coefficient at the interface between the
wall and the ambient air. For each case, a total of 10 4 samples of observations are generated.
The parameter estimation problem is then solved with each mathematical model. The results
highlight a very satisfactory robustness of the DF approach to estimate the unknown parameter.
For each case, the parameter is recovered with 100% accuracy. On the other hand, the reliability
of the RC model is not satisfactory. For the estimation of the heat capacity or the thermal
conductivity, the error can reach 40% or 80% , respectively. For the estimation of the heat
transfer coefficient at the interface between the ambient air and the material, the relative error
goes up to 450% for small magnitude of the coefficient. The accuracy of the estimation is
unacceptable for the RC approach revealing a lack of reliability in the mathematical model. For
all cases, the algorithm using the DF approach has a higher computational time even if it requires
less iterations to converge. The computational cost of the DF model is a reasonable price to pay
to have a reliable model to estimate parameters. Beyond these results, it should be recalled the
importance of having confidence in the estimated thermal conductivity k , heat capacity c or
surface heat transfer coefficient. Once estimated, these parameters are used in computational
tools to perform direct simulations and evaluate building energy efficiency, particularly in the
context of thermal regulations. Thus, if the parameters values are not reliable, the predictions
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of building energy requirements might be inaccurate.
As a conclusion, the choice of the mathematical model to simulate the heat losses through a

building wall has to be done carefully to be able to rely later on this model predictions. Further
studies will investigate the reliability of more complex mathematical models involving coupled
heat and mass transfers. Indeed, the latent effects impact strongly the prediction of the building
energy efficiency as it was demonstrated in [5].

Nomenclature

Latin letters

Bi Biot number
[

∅
]

c specific heat capacity
[

W / (kg · K)
]

e length
[

m
]

Fo Fourier number
[

∅
]

h surface heat transfer coefficient
[

W / (m 2
· K)

]

k thermal conductivity
[

W / (m · K)
]

N number
[

∅
]

L length
[

m
]

t time coordinate
[

s
]

T temperature
[

K
]

u dimensionless temperature
[

∅
]

x space coordinate
[

m
]

Subscript or super script

∞ ambient air

◦ estimated parameter

⋆ dimensionless variable

apr a priori value parameter

obs experimental observation

r real parameter

ref reference value
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A Sensitivity equations

The sensitivity equations for each direct model are detailed in this section. From these equa-
tions, numerical models are built to compute the sensitivity functions using the same approach
as for the direct model . More specifically, for the DF model, the numerical scheme for the
sensitivity equations is built by differentiating the fully discrete equation (6) to the unknown
parameter. Thus, the direct extension of the Du Fort–Frankel scheme for the sensitivity
equations is obtained. For the lumped RC model, the numerical scheme is constructed by dif-
ferentiating each term of the matrix formulation in equation (9) with respect to to the unknown
parameter. So the computation of the sensitivity function is also based on explicit Euler time
scheme.

26



A.1 Estimation of the volumetric heat capacity

A.1.1 The DF model

We define the sensitivity function of the dimensionless temperature relatively to the dimen-
sionless heat capacity by:

Θ :
[

0 , 1
]

×
[

0 , t ⋆
f

]

−→ R ,

(

x ⋆ , t ⋆
)

7−→
∂u

∂c ⋆

(

x ⋆ , t ⋆
)

.

It is computed by solving the following differential equation by differentiating Eq. (3) relatively
to c ⋆ :

c ⋆ ·
∂Θ

∂t ⋆
= Fo · k ⋆ ·

∂ 2Θ

∂x ⋆ 2
−

∂u

∂t ⋆
,

with the following boundary conditions:

k ⋆ ·
∂Θ

∂x ⋆
= Bi · h ⋆

L ·Θ , x ⋆ = 0 ,

k ⋆ ·
∂Θ

∂x ⋆
= −Bi · h ⋆

R ·Θ , x ⋆ = 1 ,

and the initial condition:

Θ = 0 .

The solution of this problem gives the sensitivity of the dimensionless field u with respect to the
heat capacity for the DF model.

A.1.2 The RC model

We define the sensitivity function of the temperature relatively to the volumetric heat capac-
ity:

X j :
[

0 , t f

]

−→ R , j ∈
{

1 , 2 , 3
}

,

t 7−→
∂T j

∂c

(

t
)

.

Three equations are obtained by differentiating Eqs. (7) and (8) with respect to c :

e 2 · c ·
dX 2

dt
= k ·

(

X 3 − 2 ·X 2 + X 1

)

− e 2 ·
dT 2

dt
,

k

e
·
(

X 2 − X 1

)

= h L ·X 1 ,

k

e
·
(

X 3 − X 2

)

= −h R ·X 3 .

The initial condition is:

X j = 0 , j ∈
{

1 , 2 , 3
}

.

The solution gives the sensitivity of the temperature with respect to the heat capacity for the
RC model.
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A.2 Estimation of the thermal conductivity

A.2.1 The DF model

We define the sensitivity function of the dimensionless temperature relatively to the dimen-
sionless thermal conductivity by:

Θ :
[

0 , 1
]

×
[

0 , t ⋆
f

]

−→ R ,

(

x ⋆ , t ⋆
)

7−→
∂u

∂k ⋆

(

x ⋆ , t ⋆
)

.

It is computed by solving the following differential equation by differentiating Eq. (3) relatively
to k ⋆ :

c ⋆ ·
∂Θ

∂t ⋆
= Fo · k ⋆ ·

∂ 2Θ

∂x ⋆ 2
+ Fo ·

∂ 2u

∂x ⋆ 2
,

with the following boundary conditions:

k ⋆ ·
∂Θ

∂x ⋆
= Bi · h ⋆

L ·Θ −
∂u

∂x ⋆
, x ⋆ = 0 ,

k ⋆ ·
∂Θ

∂x ⋆
= −Bi · h ⋆

R ·Θ −
∂u

∂x ⋆
, x ⋆ = 1 ,

and the initial condition:

Θ = 0 .

This problem enables to compute the sensitivity of the field u with respect to the parameter k ⋆

for the DF model.

A.2.2 The RC model

We define the sensitivity function of the temperature relatively to the thermal conductivity:

X j :
[

0 , t f

]

−→ R , j ∈
{

1 , 2 , 3
}

,

t 7−→
∂T j

∂k

(

t
)

.

Three equations are obtained by differentiating Eqs. (7) and (8) relatively to k :

e 2 · c ·
dX 2

dt
= k ·

(

X 3 − 2 ·X 2 + X 1

)

+

(

T 3 − 2 · T 2 + T 1

)

,

k

e
·
(

X 2 − X 1

)

= h L ·X 1 −
1

e
·
(

T 2 − T 1

)

,

k

e
·
(

X 3 − X 2

)

= −h R ·X 3 −
1

e
·
(

T 3 − T 2

)

.

The initial condition is:

X j = 0 , j ∈
{

1 , 2 , 3
}

.

The solution of this problem gives the sensitivity of temperature with respect to the thermal
conductivity in the RC model.
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A.3 Estimation of the left heat transfer coefficient

A.3.1 The DF model

We define the sensitivity function of the dimensionless temperature relatively to the dimen-
sionless heat transfer coefficient by:

Θ :
[

0 , 1
]

×
[

0 , t ⋆
f

]

−→ R ,

(

x ⋆ , t ⋆
)

7−→
∂u

∂h ⋆
L

(

x ⋆ , t ⋆
)

.

It is computed by solving the following differential equation by differentiating Eq. (3) relatively
to h ⋆

L :

c ⋆ ·
∂Θ

∂t ⋆
= Fo · k ⋆ ·

∂ 2Θ

∂x ⋆ 2
,

with the following boundary conditions:

k ⋆ ·
∂Θ

∂x ⋆
= Bi · h ⋆

L ·Θ + Bi · u , x ⋆ = 0

k ⋆ ·
∂Θ

∂x ⋆
= −Bi · h ⋆

R ·Θ , x ⋆ = 1

and the initial condition:

Θ = 0 .

It permits to compute the sensitivity of the field u with respect to the parameter h ⋆
L for the DF

model.

A.3.2 The RC model

We define the sensitivity function of the temperature relatively to the heat transfer coefficient:

X j :
[

0 , t f

]

−→ R , j ∈
{

1 , 2 , 3
}

,

t 7−→
∂T j

∂h L

(

t
)

.

Three equations are obtained by differentiating Eqs. (7) and (8) relatively to h L :

e 2 · c
dX 2

dt
= k ·

(

X 3 − 2 ·X 2 + X 1

)

,

k

e
·
(

X 2 − X 1

)

= h L ·X 1 + T 1 − T ∞ , L ,

k

e
·
(

X 3 − X 2

)

= −h R ·X 3 .

The initial condition is:

X j = 0 j ∈
{

1 , 2 , 3
}

.

With this model, we compute the sensitivity of temperature with respect to parameter h L in
the RC model.
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