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Exploiting a construction of rigidity sequences for weakly mixing dynamical systems by Fayad and Thouvenot, we show that for every integers p1, . . . , pr there exists a continuous probability measure µ on the unit circle T such that inf

This results applies in particular to the Furstenberg set F = {2 k 3 k ; k ≥ 0, k ≥ 0}, and disproves a 1988 conjecture of Lyons inspired by Furstenberg's famous ×2-×3 conjecture.

We also estimate the modified Kazhdan constant of F and obtain general results on rigidity sequences which allow us to retrieve essentially all known examples of such sequences.

Introduction

Denote by T the unit circle T = {λ ∈ C ; |λ| = 1}, by M(T) the set of (finite) complex Borel measures on T and by P(T) the set of Borel probability measures on T. The Fourier coefficients of µ ∈ M(T) are defined here as μ(n) = T λ n dµ(λ).

A measure µ ∈ P(T) is said to be continuous, or atomless, if µ({λ}) = 0 for every λ ∈ T. We denote the set of continuous probability measures on T by P c (T). According to a theorem of Wiener and the Koopman-von Neumann lemma, µ is continuous if and only if μ(n) tends to zero as n tends to infinity along a sequence in N of density one. For every µ ∈ P(T), we define µ by setting µ(A) = µ(A c ) for every Borel set A ⊆ T, with A c = {λ ; λ ∈ A}. Then ν := µ * µ has the property that ν(n) = |μ(n)| 2 ≥ 0 for every n ∈ Z, and ν belongs to P c (T) as soon as µ does.

A conjecture of Russell Lyons. -Our aim in this paper is to study some nonlacunary sets of positive integers from a Fourier analysis point of view, and to construct some probability measures which have large Fourier coefficients on such sets. In particular, we disprove a 1988 conjecture of Lyons [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], called there Conjecture (C4), which reads as follows:

Lyons' Conjecture (C4): If S is a non-lacunary semigroup of integers, and if µ ∈ P c (T), there exists an infinite sequence (n k ) k≥1 of elements of S such that µ(n k ) → 0 as k → +∞. This conjecture of Lyons is inspired by Furstenberg's famous conjecture concerning simultaneously invariant probability measures for two commuting automorphisms of the unit circle T, T p : λ -→ λ p and T q : λ -→ λ q , when p and q are two multiplicatively independent integers (i.e. p and q are not both powers of the same integer). In this setting, Furstenberg's conjecture states that the only continuous probability measure on T invariant by both T p and T q is the Lebesgue measure on T. Furstenberg himself proved [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF] that if S is any non-lacunary semigroup of integers (i.e. if S is not contained in any semigroup of the form {a n ; n ≥ 0}, a ≥ 2), then the only infinite closed S-invariant subset of T is T itself. See [START_REF] Boshernitzan | Elementary proof of Furstenberg's Diophantine result[END_REF] for an elementary proof of this result and the references mentioned in [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF]Chapter 2] for several extensions. Since S = {p k q k ; k, k ≥ 0} is a non-lacunary semigroup whenever p and q are multiplicatively independent, the only infinite closed subset of T which is simultaneously T p -invariant and T q -invariant is T. Starting with the work of Lyons in [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], Furstenberg's conjecture has given rise to an impressive amount of related questions and results, concerning in particular the dynamics of commuting group automorphisms. We refer the reader to the papers [START_REF] Rudolph | ×2 and ×3 invariant measures and entropy[END_REF], [START_REF] Bourgain | Some effective results for ×a × b[END_REF], [START_REF] Einsiedler | Rigidity of measures invariant under the action of a multiplicative semigroup of polynomial growth on T[END_REF] or [START_REF] Hochman | Geometric rigidity of ×m invariant measures[END_REF] for example, as well as to the texts [START_REF] Lindenstrauss | Rigidity of multiparameter actions, Probability in mathematics[END_REF], [START_REF] Hochman | Lectures on dynamics, fractal geometry, and metric number theory[END_REF] or [START_REF] Venkatesh | The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjecture[END_REF] for surveys of results related to this conjecture, as well as for perspectives.

As written in [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF], conjecture (C4) is a natural version of Furstenberg's conjecture about measures, but not involving invariance. If (C4) were true, it would imply an affirmative answer to the Furstenberg conjecture (if µ ∈ P c (T) is T p -and T q -invariant, applying (C4) to each of the measures µ j := T j (µ), j ∈ Z\{0}, yields that μ(j) = 0 for every j ∈ Z\{0}).

Kazhdan sets and modified Kazhdan constants. -It turns out that Lyons' conjecture is related to an important property of subsets of Z, namely that of being or not a Kazhdan subset of Z. Kazhdan subsets Q of a second-countable topological group G are those for which there exists ε > 0 such that any strongly continuous representation π of G on a complex separable Hilbert space H admitting a vector x ∈ H with ||x|| = 1 which is ε-invariant on Q (i.e. sup g∈Q ||π(g)x -x|| < ε) has a G-invariant vector. Such an ε is called a Kazhdan constant for Q, and the supremum of all ε's with this property is the Kazhdan constant of Q. Groups with Property (T), also called Kazhdan groups, are those which admit a compact Kazhdan set. See the book [START_REF] Bekka | Kazhdan's Property (T)[END_REF] for more on Property (T) and its numerous important applications.

As suggested in [START_REF] Bekka | Kazhdan's Property (T)[END_REF]Sec. 7.12], it is of interest to study Kazhdan sets in groups which do not have Property (T), such as locally compact abelian groups, Heisenberg groups, etc. See [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF] and also [START_REF] Chatterji | Relative property (T) for nilpotent subgroups[END_REF] for a study of such problems. In the case of the group Z, the definition above is equivalent to the following one: Definition 1.1. -(Kazhdan sets and constants) A subset Q ⊂ Z is said to be a Kazhdan set if there exists ε > 0 such that any unitary operator U acting on a complex separable Hilbert space H satisfies the following property: if there exists a vector x ∈ H with ||x|| = 1 such that sup n∈Q ||U n x -x|| < ε, then there exists a non-zero vector y ∈ H such that U y = y (i.e. 1 is an eigenvalue of U ). We will say in this case that (Q, ε) is a Kazhdan pair. We define the Kazhdan constant of Q as

Kaz(Q) = inf U inf x =1 sup q∈Q U q x -x ,
where the first infimum is taken over all unitary operators U on H without fixed vectors.

It follows from [7, p. 30] 

that 0 ≤ Kaz(Q) ≤ √ 2 for every Q ⊆ Z.
Several characterizations of Kazhdan subsets of Z were obtained in [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF] as consequences of results applying to a much wider class of groups; self-contained proofs of these characterizations of Kazhdan subsets of Z, involving only classical tools from harmonic analysis, were obtained in the paper [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]. One of the characterizations of generating Kazhdan sets obtained in [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF]Th. 6.1] (see also [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]Th. 4.12]) runs as follows. Recall that Q is said to be generating in the group

Z if the smallest subgroup containing Q is Z itself. Theorem 1.2 ([4]). -Let Q be a generating subset of Z. Then Q is a Kazhdan subset of Z if and only if there exists ε ∈ (0, √ 2] such that (Q, ε
) is a modified Kazhdan pair, that is any unitary operator V acting on a complex separable Hilbert space H satisfies the following property: if there exists a vector x ∈ H with ||x|| = 1 such that sup n∈Q ||V n x -x|| < ε , then V has at least one eigenvalue.

We define now the modified Kazhdan constant of Q as

Kaz(Q) = inf V inf x =1 sup q∈Q V q x -x ,
where the first infimum is taken this time over unitary operators V on H without eigenvalues (that is, with continuous spectra). Therefore

0 ≤ Kaz(Q) ≤ Kaz(Q) ≤ √ 2 and for every Q ⊆ Z, Kaz(Q) = 0 if and only if Kaz(Q) = 0 if and only if Q is a non- Kazhdan set.
The property of being or not a Kazhdan set can also be expressed in terms of Fourier coefficients of probability measures; see Section 5 for a discussion. The characterization of Kazhdan subsets of Z obtained by the authors in [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF] (see also [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]) implies that the generating subsets Q of Z which satisfy the property stated in (C4) (namely that there exists for every µ ∈ P c (T) an infinite sequence (n k ) k≥1 of elements of Q such that µ(n k ) → 0 as k → +∞) are exactly the Kazhdan subsets of Z with modified Kazhdan constant Kaz(Q) = √ 2. Since √ 2 is the modified Kazhdan constant of Z seen as a subset of itself, √ 2 is the maximal modified Kazhdan constant, and thus (C4) can be reformulated as: every generating non-lacunary semigroup S of integers is a Kazhdan subset of Z with maximal modified Kazhdan constant √ 2. The relationship between Furstenberg ×2-×3 conjecture and modified Kazhdan constants can be also seen directly from Proposition 5.4 below.

Main results

The first main result of this paper is the following: Theorem 2.1. -Let p 1 , . . . , p r be positive distinct integers and set

E = {p k 1 1 . . . p kr r ; k 1 ≥ 0, . . . , k r ≥ 0}.
There exists a continuous probability measure µ on T such that

inf k 1 ≥0,...,kr≥0 | µ(p k 1 1 . . . p kr r )| > 0.
Equivalently,

Kaz(E) < √ 2.
It should be noted that, as conjecture (C4) does not involve invariant measures, we do not assume in Theorem 2.1 that the integers p j are multiplicatively independent. Notice also that the statement of Theorem 2.1 is well-known in the lacunary case: if r = 1 it suffices to consider the classical Riesz product associated to the sequence (p k ) k≥0 . In the non-lacunary case, Theorem 2.1 disproves Conjecture (C4), as well as the related conjectures (C5) and (C6) of [START_REF] Lyons | On measures simultaneously 2-and 3-invariant[END_REF] (which are both stronger than (C4)). It applies in particular to the Furstenberg set F = {2 k 3 k ; k, k ≥ 0} and shows the existence of a measure µ ∈ P c (T) such that inf

k,k ≥0 µ(2 k 3 k ) > 0.
In view of this result, one may naturally wonder for which values of δ ∈ (0, 1) there exists a measure µ ∈ P c (T) such that inf

k,k ≥0 µ(2 k 3 k ) ≥ δ,
or, equivalently, whether the Furstenberg set F is a Kazhdan set in Z, and if yes, with which (modified) Kazhdan constant. In this direction, we prove the following result:

Theorem 2.2. -Let F = {2 k 3 k ; k, k ≥ 0}. Then Kaz(F ) ≤ 1.
More precisely, there exists for every δ ∈ (0, 1/2) a continuous probability measure µ on T with nonnegative Fourier coefficients such that inf

k,k ≥0 µ(2 k 3 k ) > δ.
Rigidity sequences. -Our strategy for proving Theorem 2.1 is to construct measures µ ∈ P c (T) whose Fourier coefficients tend to 1 along a substantial part of the set {p k 1 1 . . . p kr r ; k 1 ≥ 0, . . . , k r ≥ 0}. In other words, we show that certain large subsets of this set form are, when taken in a strictly increasing order, rigidity sequences in the sense of [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF] or [START_REF] Eisner | Hilbertian Jamison sequences and rigid dynamical systems[END_REF]. Recall that a dynamical system (X, B, m; T ) on a Borel probability space is called rigid if there exists a strictly increasing sequence of integers

(n k ) k≥1 such that ||U n k T f -f || → 0 as k → +∞ for every f ∈ L 2 (X, B, m)
, where U T denotes as usual the Koopman operator f → f • T associated to T on L 2 (X, B, m). Equivalently, m(T -n k A A) → 0 as k → +∞ for every A ∈ B. We say in this case that the system is rigid with respect to the sequence (n k ) k≥1 , or that (n k ) k≥1 is a rigidity sequence for (X, B, m; T ). The case where the system (X, B, m; T ) is weakly mixing is particularly interesting, and is the object of the works [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF] and [START_REF] Eisner | Hilbertian Jamison sequences and rigid dynamical systems[END_REF]. A strictly increasing sequence (n k ) k≥1 of integers is called a rigidity sequence if there exists a weakly mixing system which is rigid with respect to (n k ) k≥1 .

Using Gaussian dynamical systems, one can show that (n k ) k≥1 is a rigidity sequence if and only if there exists a measure µ ∈ P c (T) such that µ(n k ) → 1 as k → +∞. The study of rigidity sequences was initiated in [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF] and [START_REF] Eisner | Hilbertian Jamison sequences and rigid dynamical systems[END_REF]. Further works on this topic include the papers [START_REF] Aaronson | Rational ergodicity, bounded rational ergodicity and some continuous measures on the circle[END_REF], [START_REF] Adams | Tower multiplexing and slow weak mixing[END_REF], [START_REF] Aaronson | IP-rigidity and eigenvalue groups[END_REF], [START_REF] Grivaux | IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products[END_REF], [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF] [21] and [START_REF] Griesmer | Recurrence, rigidity, and popular differences[END_REF] among others. The paper [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF] by Fayad and Thouvenot is especially relevant here: the authors re-obtain a result of Adams [START_REF] Adams | Tower multiplexing and slow weak mixing[END_REF], showing that whenever (n k ) k≥1 is a rigidity sequence for an ergodic rotation on the circle, it is a rigidity sequence for a weakly mixing system. The proof of this result in [START_REF] Adams | Tower multiplexing and slow weak mixing[END_REF] relies on an involved construction of a suitable weakly mixing system by cutting and stacking, while the authors of [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF] proceed by a direct construction of suitable continuous probability measures: they show that if λ n k → 1 for some λ = e 2iπθ ∈ T with θ ∈ R \ Q, there exists µ ∈ P c (T) such that µ(n k ) → 1.

The most important tool for proving Theorems 2.1 and 2.2 is the following theorem, which generalizes the result of Fayad and Thouvenot and provides some new examples of non-Kazhdan subsets of Z: Theorem 2.3. -Let (n k ) k≥0 be a strictly increasing sequence of integers. Suppose that the set

C = {λ ∈ T ; λ n k → 1 as k → +∞} is dense in T. Then there exists for every ε > 0 a measure µ ∈ P c (T) such that µ(n k ) → 1 as k → +∞ and sup k≥0 | µ(n k ) -1| < ε. In particular, {n k ; k ≥ 0} is a non-Kazhdan subset of Z.
Notice that C, like every subgroup of the circle group, is dense in T as soon as it is infinite. We deduce from Theorem 2.3 the following two-dimensional statement, which is asymmetric and involves a uniformity assumption.

Theorem 2.4. -Let (m k ) k≥0 and (n k ) k ≥0 be two strictly increasing sequences of integers. Let also ψ : N -→ N be such that ψ(k) → +∞ as k → +∞, and set

D ψ = {(k, k ) ∈ N 2 ; 0 ≤ k ≤ ψ(k)}.
Suppose that the set

C ψ = {λ ∈ T ; λ m k n k → 1 as k → +∞, (k, k ) ∈ D ψ } is dense in T. There exists for every ε > 0 a measure µ ∈ P c (T) such that µ(m k n k ) → 1 as k → +∞ with (k, k ) ∈ D ψ and sup k≥0, 0≤k ≤ψ(k) | µ(m k n k ) -1| < ε. In particular, {m k n k ; k ≥ 0, 0 ≤ k ≤ ψ(k)} is a non-Kazhdan subset of Z.
Given a doubly indexed sequence (z k,k ) k,k ≥0 of complex numbers, saying that z k,k converges to z ∈ C as k → +∞ with (k, k ) ∈ D ψ means that there exists for every γ > 0 an integer k 0 such that |z k,k -z| < γ for every (k, k ) ∈ N 2 with k ≥ k 0 and 0 ≤ k ≤ ψ(k).

Remark also that the assumption of Theorem 2.4 is in particular satisfied if the set

C = {λ ∈ T ; λ m k n k → 1 as k → +∞ uniformly in k } is dense in T.
Theorem 2.3 allows us to retrieve essentially all known examples of rigidity sequences (notable exceptions being the examples of [START_REF] Fayad | Rigidity times for a weakly mixing dynamical system which are not rigidity times for any irrational rotation[END_REF] and [START_REF] Griesmer | Recurrence, rigidity, and popular differences[END_REF]). We state separately as Corollaries 2.5 and 2.6 the parts of Theorems 2.3 and 2.4 dealing with rigidity sequences: Corollary 2.5. -Let (n k ) k≥0 be a strictly increasing sequence of integers. Suppose that the set

C = {λ ∈ T ; λ n k → 1 as k → +∞} is dense in T. Then (n k ) k≥1 is a rigidity sequence.
Corollary 2.6. -Let (m k ) k≥0 and (n k ) k ≥0 be two strictly increasing sequences of integers. Let also ψ : N -→ N be such that ψ(k) → +∞ as k → +∞, and suppose that the set

C ψ = {λ ∈ T ; λ m k n k → 1 as k → +∞, (k, k ) ∈ D ψ }
is dense in T. Then there exists a continuous probability measure µ on T such that

µ(m k n k ) → 1 as k → +∞ with (k, k ) ∈ D ψ .
The proof of Theorem 2.3 builds on some ideas from [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF]. While being an immediate consequence of Theorem 2.3, Corollary 2.5 admits a direct proof which is very much in the spirit of that of the main result of [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF]. As Corollary 2.5 is of independent interest in the study of rigidity sequences, we will briefly sketch this direct proof in Section 4 of the paper.

Theorem 2.1 is obtained by first observing that the set {p k 1 1 . . . p kr r ; p 1 ≥ 0, . . . , p r ≥ 0} can be split into r sets to which Theorem 2.4 (or Corollary 2.6) applies, and then considering a convex combination of the continuous measures obtained in this way.

Organization of the paper. -The paper is structured as follows. We give in Section 3 the proof of Theorems 2.3 and 2.4, and sketch in Section 4 a direct proof of Corollaries 2.5 and 2.6, essentially following the arguments of Fayad and Thouvenot in [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF]. In Section 5, we recall a characterization of generating Kazhdan subsets of Z from [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF], and detail the links between several natural constants involved in this characterization. We explain in particular why the generating subsets of Z which satisfy the property stated in (C4) are exactly the Kazhdan subsets of Z with modified Kazhdan constant √ 2. Section 6 is devoted to applications: we prove Theorems 2.1 and 2.2, and show how to retrieve many examples of rigidity sequences, using Corollaries 2.5 and 2.6. We also provide an application of Theorem 2.2 to the study of the size of the exceptional set of values θ ∈ R for which the sequence (n k θ) k≥0 is not almost uniformly distributed modulo 1 with respect to a (finite) complex Borel measure ν ∈ M(T), where (n k ) k≥0 denotes the Furstenberg sequence. Namely, we show that this exceptional set is uncountable, thus providing a new example of a sublacunary sequence with uncountable exceptional set for (almost) uniform distribution.

Proof of Theorems 2.3 and 2.4

Given two integers a < b, we will when the context is clear denote by [a, b] 

the set of integers k such that a ≤ k ≤ b.
Proof of Theorem 2.3. -Fix ε ∈ (0, 1/2). The general strategy of the proof is the following: we construct a sequence (λ i ) i≥1 of pairwise distinct elements of C, as well as a strictly increasing sequence of integers (N p ) p≥0 and, for every p ≥ 0, a sequence (a

(p) i ) 1≤i≤2 p of positive weights with 2 p i=1 a (p) i = 1
, such that the probability measures

µ p = 2 p i=1 a (p) i δ {λ i }
satisfy certain properties stated below. At step p, we determine the elements λ i for 2 p-1 < i ≤ 2 p as well as the integer N p and the weights a

(p) i , 1 ≤ i ≤ 2 p , in such a way that λ 1 = 1 and a (0) 1 = 1, so that µ 0 = δ {1} , N 0 = 0, and (1) for every p ≥ 1, every j ∈ [0, p -1] and every k ∈ [N j , N j+1 ], T |λ n k -1| dµ p (λ) < 3ε(1 -ε) j ; (2) for every p ≥ 1, every q ∈ [0, p -1], l ∈ [1, 2 p-q ), r ∈ [1, 2 q ],
|λ l2 q +r -λ r | < η q where η q = 1 4 inf 1≤i<j≤2 q |λ i -λ j | for every q ≥ 1, and η 0 = 1;

(3) for every p ≥ 1 and every k ≥ N p ,

T |λ n k -1| dµ p (λ) < ε(1 -ε) p+1 ; (4) for every p ≥ 1, every q ∈ [1, p] and every r ∈ [1, 2 q ], {i∈[1,2 p ] ; i≡r mod 2 q } µ p ({λ i }) ≤ (1 -ε) q .
Remark that property (2) implies that the sequence (λ i ) i≥1 satisfies (5) for every q ≥ 0, every l ≥ 0, and every r ∈ [1, 2 q ],

|λ l2 q +r -λ r | < η q ,
and that property (4) applied to q = p yields that (6) for every p ≥ 1 and every i ∈ [1, 2 p ],

µ p ({λ i }) ≤ (1 -ε) p .
Suppose that the sequences (λ i ) i≥1 , (N p ) p≥0 and (a (p) i ) 1≤i≤2 p , p ≥ 0, have been constructed so as to satisfy properties (1) to (4) above, and let µ be a w * -limit point of the sequence (µ p ) p≥0 in P(T). Property [START_REF] Aaronson | Rational ergodicity, bounded rational ergodicity and some continuous measures on the circle[END_REF] 

clearly implies that sup k≥0 | µ(n k ) -1| ≤ 3ε. Claim 3.1. -We have µ(n k ) → 1 as k → +∞.
Proof. -For every k ≥ 0, denote by j k ≥ 0 the unique integer j such that k ∈ [N j , N j+1 ). For every p > j k , we have by ( 1)

T |λ n k -1| dµ p (λ) < 3ε(1 -ε) j k so that T |λ n k -1| dµ(λ) ≤ 3ε(1 -ε) j k . Since j k → +∞ as k → +∞, T |λ n k -1| dµ(λ) → 0, i.e. µ(n k ) → 1. Claim 3.2.
-The probability measure µ is continuous.

Proof. -Fix q ≥ 1, and consider for every r ∈ [1, 2 q ] the two arcs Γ r and ∆ r of T defined by

Γ r = {λ ∈ T ; |λ -λ r | ≤ η q } and ∆ r = {λ ∈ T ; |λ -λ r | < 3 2 η q }.
The 2 q arcs ∆ r are pairwise disjoint. Indeed, for every r, r ∈ [1, 2 q ] with r = r , every λ ∈ ∆ r and every λ ∈ ∆ r , we have by the definition of

η q that |λ -λ | ≥ |λ r -λ r | -3η q ≥ 4η q -3η q = η q > 0.
So ∆ r and ∆ r do not intersect.

Let us next estimate the quantity µ p (Γ r ) for every r ∈ [1, 2 q ] and every p ≥ q. We have

µ p (Γ r ) = {i∈[1,2 p ] ; λ i ∈Γr} µ p ({λ i }).
Every i ∈ [1, 2 p ] can be written as i = l2 q + s for some l ≥ 0 and s ∈ [1, 2 q ]. By [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF], λ i belongs to Γ s . Since the arcs ∆ r , r ∈ [1, 2 q ], are pairwise disjoint, it follows that

µ p (∆ r ) = µ p (Γ r ) = {i∈[1,2 p ] ; i≡r mod 2 q } µ p ({λ i }) ≤ (1 -ε) q
by (4). Also,

µ p 2 q r=1 Γ r = 1.
Since the arcs Γ r are closed while the arcs ∆ r are open, going to the limit as p goes to infinity yields that µ(∆ r ) ≤ (1 -ε) q for every r ∈ [1, 2 q ] and µ

2 q r=1 Γ r = 1. If λ ∈ T is such that µ({λ}) > 0, there exists an r ∈ [1, 2 q ] such that λ ∈ Γ r ⊂ ∆ r . So µ({λ}) ≤ µ(∆ r ) ≤ (1 -ε) q , a
contradiction if q is sufficiently large. It follows that the measure µ is continuous.

By Claims 3.1 and 3.2, it suffices to construct (λ i ) i≥0 , (N p ) p≥0 and (a (p) i ) 1≤i≤2 p , p ≥ 0, satisfying properties (1) to (4) in order to prove Theorem 2.3. Recall that for p = 0, we set

λ 1 = 1, a (0) 1 = 1 and N 0 = 0, so that µ 0 = δ {1} . For p = 1, we choose λ 2 ∈ C distinct from λ 1 with |λ 2 -λ 1 | < 1 and set µ 1 = (1 -ε)δ {1} + εδ {λ 2 } . We have for every k ≥ 0 T |λ n k -1| dµ 1 (λ) = ε|λ n k 2 -1| ≤ 2ε < 3ε.
Hence property (1) is satisfied whatever the choice of N 1 . Since η 0 = 1 and

|λ 2 -λ 1 | < 1, property (2) 
is satisfied. We now have to choose N 1 in such a way that property (3) is satisfied. Since λ 2 belongs to C,

T |λ n k -1| dµ 1 (λ) = ε|λ n k 2 -1| → 0 as k → +∞, so we can choose N 1 so large that T |λ n k -1| dµ 1 (λ) < ε(1 -ε) 2 for every k ≥ N 1 .
Moreover, µ 1 ({1}) = 1 -ε and µ 2 ({λ 2 }) = ε < 1 -ε, so (4), which we only need to check for q = p = 1, is true. This terminates the construction for p = 1.

Suppose now that the construction has been carried out until step p, i.e. that the quantities λ i , i ∈ [1, 2 p ], (a (l) i ) 1≤i≤2 l , and N l , l ∈ [0, p], have been constructed satisfying properties (1) to [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF].

We construct by induction on s ∈ [1, 2 p ] elements λ 2 p +s of C, measures µ p,s ∈ P(T) of the form

µ p,s = 2 p +s i=1 b (p,s) i δ {λ i } with b (p,s) i > 0 and 2 p +s i=1 b (p,s) i = 1,
and integers N p,s in such a way that the elements

λ i , i ∈ [1, 2 p+1 ], are all distinct, N p < N p,1 < • • • < N p,2 p ,
and the following five properties are satisfied:

(a) for every j ∈ [0, p -1] and every k ∈ [N j , N j+1 ], T |λ n k -1| dµ p,s (λ) < 3ε(1 -ε) j ; (b) for every k ≥ N p , T |λ n k -1| dµ p,s (λ) < 3ε(1 -ε) p ; (c) for every k ≥ N p,s , T |λ n k -1| dµ p,s (λ) < 3ε(1 -ε) p+2 ; (d) µ p,s ({λ i }) = µ p ({λ i }) for every i ∈ (s, 2 p ] and µ p,s ({λ i }) + µ p,s ({λ 2 p +i }) = µ p ({λ i }) for every i ∈ [1, s]; (e) µ p,s ({λ i }) ≤ (1 -ε) p+1 for every i ∈ [1, s] ∪ [2 p + 1, 2 p + s].
Let us start with the construction of λ 2 p +1 . By density of C, one can choose λ 2 p +1 distinct from all the elements λ i , i ∈ [1, 2 p ], with |λ 2 p +1 -λ 1 | arbitrarily small. We define µ p,1 as

µ p,1 = µ p + µ p ({1}) ε (δ {λ 2 p +1 } -δ {λ 1 } ) = µ p ({1}) (1 -ε) δ {λ 1 } + 2 p i=2 µ p ({λ i }) δ {λ i } + µ p ({1}) ε δ {λ 2 p +1 } .
In other words, we split the point mass δ {λ 1 } appearing in the expression of µ p into (1 -ε)δ {λ 1 } + εδ {λ 2 p +1 } . We have for every k ≥ 0

T |λ n k -1| dµ p,1 (λ) ≤ T |λ n k -1| dµ p (λ) + µ p ({1}) ε |λ n k 2 p +1 -λ n k 1 | (7) ≤ T |λ n k -1| dµ p (λ) + (1 -ε) p ε |λ n k 2 p +1 -λ n k 1 | since µ p ({1}) ≤ (1 -ε) p by (6). If |λ 2 p +1 -λ 1 | is sufficiently small, we have by (1) that T |λ n k -1| dµ p,1 (λ) < 3ε(1 -ε) j
for every j ∈ [0, p -1] and every k ∈ [N j , N j+1 ] (the set of pairs of integers (j, k) with j ∈ [0, p -1] and k ∈ [N j , N j+1 ] is finite). So (a) holds true. Also, ( 7) and (3) imply that for every k ≥ N p ,

T |λ n k -1| dµ p,1 (λ) < ε (1 -ε) p+1 + 2ε (1 -ε) p < 3ε (1 -ε) p so that (b) holds true. Since all the elements λ i , i ∈ [1, 2 p + 1], belong to C, there exists N p,1 > N p such that T |λ n k -1| dµ p,1 (λ) < 3ε(1 -ε) p+2 for every k ≥ N p,1 .
Property (d) is clear from the expression of µ p,1 , and property (e) is satisfied since [START_REF] Baker | On a theorem of Erdös and Taylor[END_REF]. Properties (a) to (e) are thus satisfied for s = 1. Suppose now that λ 2 p +s , µ 2 p +s , and N 2 p +s have been constructed for s < s. Let λ 2 p +s ∈ C \ {λ 1 , . . . , λ 2 p +s-1 } be very close to λ s , and set

µ p,1 ({1}) = µ p ({1}) (1 -ε) ≤ (1 -ε) p+1 and µ p,1 ({λ 2 p +1 }) = µ p ({1}) ε ≤ ε (1 -ε) p ≤ (1 -ε) p+1 by
(8) µ p,s = µ p,s-1 + µ p,s-1 ({λ s }) ε (δ {λ 2 p +s } -δ {λs} ).
This time, the point mass δ {λs} appearing in µ p is split as

(1 -ε)δ {λs} + εδ {λ 2 p +s } . Since, by (6), (9) 
T |λ n k -1| dµ p,s (λ) ≤ T |λ n k -1| dµ p,s-1 (λ) + (1 -ε) p ε |λ n k 2 p +s -λ n k s |,
for every k ≥ 0, the induction assumption implies that (a) holds true provided |λ 2 p +s -λ s | is sufficiently small. As to (b), we have to consider separately the cases N p ≤ k < N p,s-1 and k ≥ N p,s-1 . If |λ 2 p +s -λ s | is sufficiently small, we have by ( 9) and (b) for s -1 that

T |λ n k -1| dµ p,s (λ) < 3ε (1 -ε) p for every N p ≤ k < N p,s-1 .
By property (c) at step s -1 and (9), 

T |λ n k -1| dµ p,s (λ) < ε (1 -ε) p+2 + 2ε (1 -ε) p < 3ε (1 -ε) p for every k ≥ N p,s-1 . Hence (b) is satisfied at step s. Property (c) is satisfied if N p,
({λ i }) = µ p,s-1 ({λ i }) for every i ∈ {s, 2 p + s}. Also, µ p,s-1 ({λ i }) = µ p ({λ i }) for every i ∈ [s, 2 p ], so that µ p,s ({λ i }) = µ p ({λ i }) for every i ∈ (s, 2 p ]. Observe next that µ p,s ({λ i }) + µ p,s ({λ 2 p +i }) = µ p,s-1 ({λ i }) + µ p,s-1 ({λ 2 p +i }) = µ p ({λ i }) for every i ∈ [1, s -1]. Lastly, µ p,s ({λ s }) + µ p,s ({λ 2 p +s }) = µ p,s-1 ({λ s }) = µ p ({λ s }). So property (d) is true at step s.
As to property (e), we have µ p,s ({λ i }) = µ p,s-1 ({λ i }) for every i ∈ {s,

2 p + s}. So µ p,s ({λ i }) ≤ (1 -ε) p+1 for every i ∈ [1, s) ∪ [2 p + 1, 2 p + s). Also µ p,s ({λ s }) = µ p,s-1 ({λ s }) (1 -ε) = µ p ({λ s }) (1 -ε) ≤ (1 -ε) p+1
by [START_REF] Baker | On a theorem of Erdös and Taylor[END_REF], while µ p,s ({λ 2 p +s }) = µ p,s-1 ({λ s }) ε ≤ (1 -ε) p+1 , again by [START_REF] Baker | On a theorem of Erdös and Taylor[END_REF]. So (e) holds true at step s. This terminates the construction of the measures µ p,s .

Let us now set µ p+1 = µ p,2 p and N p+1 = N p,2 p . It remains to check that with these choices of λ i , i ∈ [1, 2 p+1 ], µ p+1 and N p+1 , properties (1) to (4) are satisfied. By (a), property (1) is satisfied for every j ∈ [0, p -1]. The case where j = p follows from (b). So (1) is true. Property (3) follows immediately from (c). Property ( 4) is a consequence of (d) and (e). Indeed, suppose first that q ∈ [1, p]. Then

{i∈[1,2 p+1 ] ; i≡r mod 2 q } µ p+1 ({λ i }) = {i∈[1,2 p ] ; i≡r mod 2 q } (µ p+1 ({λ i }) + µ p+1 ({λ 2 p +i })) = {i∈[1,2 p ] ; i≡r mod 2 q } µ p ({λ i }) ≤ (1 -ε) q
by (d) above and (4) at step p. If q = p + 1, (4) follows immediately from (e). So it only remains to check (2).

Fix q ∈ [0, p], l ∈ [1, 2 p+1-q ) and r ∈ [1, 2 q ]. Consider first the case where q = p. In this case l = 1, and the quantities under consideration have the form |λ 2 p +r -λ r |, with r ∈ [1, 2 p ]. One can ensure in the construction that |λ 2 p +r -λ r | < η p for every r ∈ [1, 2 p ] and then (2) holds true for q = p.

Suppose then that q ∈ [0, p -1], and write l as l = l + ε2 p-q with ε ∈ {0, 1} and l ∈ [1, 2 p-q ). Then l2 q +r = l 2 q +r+ε2 p . Set s = l 2 q +r. Then 1 ≤ s ≤ (2 p-q -1)2 q +2 q = 2 p , i.e. s ∈ [1, 2 p ]. We have

|λ l2 q +r -λ r | ≤ |λ s+ε2 p -λ s | + |λ l 2 q +r -λ r |.
If ε = 0, the first term is zero; if ε = 1, it is equal to |λ 2 p +s -λ s |, which can be assumed to be as small as we wish in the construction. As to the second term, it is less than η q by property (2) at step p, since l ∈ [1, 2 p-q ) and r ∈ [1, 2 q ] with q ∈ [0, p -1]. We can thus ensure that |λ l2 q +r -λ r | < η q for every q ∈ [0, p], l ∈ [1, 2 p+1-q ), and r ∈ [1, 2 q ]. So property ( 2) is satisfied at step p + 1, and this concludes the proof of Theorem 2.3. Theorem 2.4 is now a formal consequence of Theorem 2.3.

Proof of Theorem 2.4. -Recall that D ψ = {(k, k ) ∈ N 2 ; 0 ≤ k ≤ ψ(k)} and C ψ = {λ ∈ T ; λ m k n k → 1 as k → +∞, (k, k ) ∈ D ψ }.
Order the set {m k n k ; (k, k ) ∈ D ψ } as a strictly increasing sequence (p l ) l≥0 of integers. Since there exists for every integer k 1 ≥ 0 an integer l 1 ≥ 0 such that

{p l ; l ≥ l 1 } ⊆ {m k n k ; (k, k ) ∈ D ψ , k ≥ k 1 },
every element λ ∈ C ψ has the property that λ p l → 1 as l → +∞. By Theorem 2.3 applied to the sequence (p l ) l≥1 , there exists for every ε > 0 a measure µ ∈ P c (T) such that µ(p l ) → 1 as l → +∞ and sup

l≥0 | µ(p l ) -1| < ε. Then sup k≥0, 0≤k ≤ψ(k) | µ(m k n k ) -1| < ε.
Using this time the fact that there exists for every integer l 2 ≥ 0 an integer

k 2 ≥ 0 such that {m k n k ; (k, k ) ∈ D ψ , k ≥ k 2 } ⊆ {p l ; l ≥ l 2 }, we deduce that µ(m k n k ) → 1 as k → +∞ with (k, k ) ∈ D ψ . Theorem 2.4 is proved.

A direct proof of Corollaries 2.5 and 2.6

We sketch in this section a direct proof of Corollary 2.5 (Corollary 2.6 is a formal consequence of it), following almost step by step the construction given in [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF] and bypassing the additional technical difficulties of the proof of Theorem 2.3.

Proof. -Using the notation of the proof of Theorem 2.3, we construct a sequence (λ i ) i≥1 of pairwise distinct elements of C, as well as a strictly increasing sequence of integers (N p ) p≥0 , such that the measures

µ p = 2 -p 2 p i=1 δ {λ i } , p ≥ 0 satisfy (1') for every p ≥ 1, every j ∈ [0, p -1] and every k ∈ [N j , N j+1 ], T |λ n k -1| dµ p (λ) < 2 -(j-1) ; (2') for every p ≥ 1, every q ∈ [0, p -1], l ∈ [1, 2 p-q ), r ∈ [1, 2 q ],
|λ l2 q +r -λ r | < η q where η q = 1 4 inf 1≤i<j≤2 q |λ i -λ j | for every q ≥ 1, and η 0 = 1;

(3') for every p ≥ 1 and every k ≥ N p ,

T |λ n k -1| dµ p (λ) < 2 -(p+1) .
Again, property (2') implies that (4') for every q ≥ 0, every l ≥ 0, and every r ∈ [1, 2 q ], |λ l2 q +r -λ r | < η q .

Then an argument similar to the one given in the proof of Theorem 2.3 shows that any w * -limit point µ of (µ p ) p≥0 will be a continuous measure which satisfies µ(n k ) → 1 as k → +∞.

For p = 0, we set λ 1 = 1, N 0 = 0, and

µ 0 = δ {1} . For p = 1, we choose λ 2 ∈ C \ {λ 1 } with |λ 2 -λ 1 | < 1 and set µ 1 = 1 2 (δ {1} + δ {λ 2 } ). We have T |λ n k -1| dµ 1 (λ) = 1 2 |λ n k 2 -1| ≤ 1 < 2 for every k ≥ 0.
Hence property (1') is satisfied whatever the choice of

N 1 . Since |λ 2 -λ 1 | < 1, (2') is true. If N 1 is chosen sufficiently large, µ 1 satisfies (3').
Suppose now that the construction has been carried out until step p. We can then construct by induction on s ∈ [1, 2 p ] measures µ p,s which satisfy (a') every j ∈ [0, p -1] and every k ∈ [N j , N j+1 ],

T |λ n k -1| dµ p,s (λ) < 2 -(j-1) ; (b') for every k ≥ N p , T |λ n k -1| dµ p,s (λ) < 2 -(p-1) ; (c') for every k ≥ N p,s , T |λ n k -1| dµ p,s (λ) < 2 -(p+2) .
We define µ p,1 as

µ p,1 = µ p + 2 -(p+1) δ {λ 2 p +1 } -δ {λ 1 } where λ 2 p +1 ∈ C \ {λ 1 , . . . , λ 2 p } is such that |λ 2 p +1 -λ 1 | is very small. Then for every k ≥ 0, ( 10 
) T |λ n k -1| dµ p,1 (λ) ≤ T |λ n k -1| dµ p (λ) + 2 -(p+1) |λ n k 2 p +1 -λ n k 1 |.
It follows that (a') holds true for µ p,1 , provided that |λ 2 p +1 -λ 1 | is sufficiently small. Also, we have by ( 10) and (3') that for every k ≥ N p ,

T |λ n k -1| dµ p,1 (λ) < 2 -(p+1) + 2 -p < 2 -(p-1)
which is (b'). If N p,1 is sufficiently large, (c') is true.

Supposing now that s ≥ 2 and that the construction has been carried out for every s < s, we choose λ 2 p +s ∈ C \ {λ 1 , . . . , λ 2 p +s-1 } very close to λ s , and set µ p,s = µ p,s-1 + 2 -(p+1) δ {λ 2 p +s } -δ {λs} .

Since, for every k ≥ 0, (11)

T |λ n k -1| dµ p,s (λ) ≤ T |λ n k -1| dµ p,s-1 (λ) + 2 -(p+1) |λ n k 2 p +s -λ n k s |,
the induction assumption implies that (a') holds true provided |λ 2 p +s -λ s | is sufficiently small. As to (b'), we consider separately the cases

N p ≤ k < N p,s-1 and k ≥ N p,s-1 . If |λ 2 p +s -λ s | is sufficiently small, T |λ n k -1| dµ p,s (λ) < 2 -(p-1) for every N p ≤ k < N p,s-1 .
By property (c') at step s -1 and (11),

T |λ n k -1| dµ p,s (λ) < 2 -(p+2) + 2 -p < 2 -(p-1)
for every k ≥ N p,s-1 . Hence (b') is satisfied at step s. Property (c') is satisfied if N p,s is chosen sufficiently large. This terminates the construction of the measures µ p,s .

We then set µ p+1 = µ p,2 p and N p+1 = N p,2 p and check as in the proof of Theorem 2.3 that properties (1'), (2'), and (3') are satisfied.

Remark 4.1. -Suppose that the set

C = {λ ∈ T ; λ m k n k → 1 as k → +∞ uniformly in k } is dense in T.
It is natural to wonder whether there exists a measure µ ∈ P c (T) such that µ(m k n k ) → 1 as k → +∞ uniformly in k . The following example shows that it is not the case: set m k = 2 k and n k = k for every k, k ≥ 0. The set

C = {λ ∈ T ; λ m k n k → 1 as k → +∞ uniformly in k }
contains all 2 k -th roots of 1, and so is dense in T. Suppose that µ ∈ P(T) is such that µ(2 k k ) → 1 as k → +∞ uniformly in k . Then there exists an integer k 0 ≥ 1 such that | µ(2 k 0 k )| ≥ 1/2 for every k ≥ 0. Consider the measure ν = T 2 k 0 (µ). Since ν(n) = µ(2 k 0 n) for every n ∈ Z, ν cannot be continuous. Also, ν({λ 0 }) = µ({λ ∈ T ; λ 2 k 0 = λ 0 }) for every λ 0 ∈ T, and so the measure µ itself cannot be continuous.

So the conclusion of Corollary 2.6 seems to be essentially optimal.

5. From Conjecture (C4) to the study of some non-Kazhdan subsets of Z 5.1. Kazhdan constants and Fourier coefficients of probability measures. -We begin this section by recalling a characterization of generating Kazhdan subsets of Z, obtained in [4, Th. 6.1] (see also [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]Th. 4.12]) and presenting some facts concerning the (modified) Kazhdan constants of such sets. We state it here in a slightly modified way (condition (ii) is not exactly the same as in [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]Th. 4.12]), and include a discussion concerning the links between the various constants appearing in the equivalent conditions.

Theorem 5.1. -Let Q be a generating subset of Z. Then Q is a Kazhdan subset of Z if and only if one of the following equivalent assertions holds true:

(i) there exists ε ∈ (0, √ 2) such that (Q, ε) is a modified Kazhdan pair. Equivalently, Kaz(Q) ≥ ε;
(ii) there exists γ ∈ (0, 1) such that any measure µ ∈ P(T) with sup n∈Q (1 -e µ(n)) < γ has a discrete part; (iii) there exists δ ∈ (0, 1) such that any measure µ ∈ P(T) with inf n∈Q | µ(n)| > δ has a discrete part. Moreover:

-

(i) is satisfied for ε ∈ (0, √ 2) if and only if (ii) is satisfied for γ = ε 2 /2; -if (ii) is satisfied for γ ∈ (0, 1), (iii) is satisfied for δ = √ 1 -γ, while if (iii) is satisfied for δ ∈ (0, 1), (ii) is satisfied for γ = 1 -δ; -hence if (i) is satisfied for ε ∈ (0, √ 2), (iii) is satisfied for δ = 1 -ε 2 /2 , while if (iii) is satisfied for δ ∈ (0, 1), (i) holds true for ε = 2(1 -δ).
We prove briefly here the statement concerning the relations between the constants ε, γ, and δ appearing in (i), (ii), and (iii) respectively, following [START_REF] Badea | Kazhdan sets in groups and equidistribution properties[END_REF] and [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF].

Proof. -Suppose that (i) is satisfied for ε ∈ (0, √ 2), and let µ ∈ P(T). Consider the unitary operator U = M λ of multiplication by λ on L 2 (T, µ). Let f be the function constantly equal to 1. Then

||U n f -f || 2 = 2(1 -e µ(n)). If sup n∈Q (1 -e µ(n)) < ε 2 /2,
U has an eigenvalue since Kaz(Q) ≥ ε, and so µ has a discrete part.

Conversely, suppose that (ii) is satisfied for γ ∈ (0, 1). Let U be a unitary operator on a separable Hilbert space H, and let x ∈ H with ||x|| = 1 be such that

sup n∈Q ||U n x -x|| < 2γ.
The proof of [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]Th. 4.6] shows then that there exists µ ∈ P(T) such that

2 sup n∈Q (1 -e µ(n)) = sup n∈Q ||U n x -x|| 2 < 2γ.
So sup n∈Q (1 -e µ(n)) < γ. By (ii), µ has a discrete part, and so U has an eigenvalue. Hence Kaz(Q) ≥ √ 2γ.

Suppose next that property (ii) is satisfied for γ ∈ (0, 1). Let µ ∈ P(T) be such that Lastly, suppose that (iii) is satisfied for δ ∈ (0, 1). Let µ ∈ P(T) be a measure satisfying

inf n∈Q | µ(n)| > √ 1 -γ. Set ν = µ * µ. Then inf n∈Q ν(n) > 1 -γ. It follows that sup n∈Q (1 -ν(n)) < γ,
sup n∈Q (1-e µ(n)) < 1 -δ. Then inf n∈Q | µ(n)| ≥ inf n∈Q e µ(n) > δ, so µ has a discrete part.
Remark 5.2. -Given a subset Q of Z, one can prove, using the spectral theorem for unitary operators, that the following assertions are equivalent (see [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]Th. 4.6]): (i') Q is a Kazhdan subset of Z, i.e. there exists ε ∈ (0, √ 2) such that (Q, ε) is a Kazhdan pair; (ii') there exists γ ∈ (0, 1) such that any measure µ ∈ P(T) with sup n∈Q (1 -e µ(n)) < γ is such that µ({1}) > 0.

Moreover (i') holds true for a certain constant ε ∈ (0, √

) (i.e. Kaz(Q) ≥ ε) if and only if (ii') holds true for γ = ε 2 /2. 2 
It is interesting to note that these two conditions (i') and (ii') are not equivalent to the natural version (iii') of (iii) (namely, that there exists δ ∈ (0, 1) such that any measure µ ∈ P(T) with inf n∈Q | µ(n)| > δ satisfies µ({1}) > 0). Indeed, (iii') is satisfied for any Dirac mass δ {λ} , λ ∈ T. The proof that (ii) implies (iii) in Theorem 5.1 above uses in a crucial way the fact that if µ ∈ P(T) is such that µ * µ has a discrete part, µ itself has a discrete part. But µ * µ may very well satisfy µ * µ({1}) > 0 while µ({1}) = 0, and so (ii') does not imply (iii').

Theorem 5.1 is related to Conjecture (C4) in the following way: Corollary 5.3. -Let Q be a generating subset of Z. The following assertions are equivalent: So Conjecture (C4) is equivalent to the statement that any non-lacunary semigroup of integers has modified Kazhdan constant √ 2. We can also estimate the Fourier coefficients of a continuous probability measure on T which is T 2 -and T 3 -invariant in terms of the modified Kazhdan constant κ > 0 of the Furstenberg set. Notice that Proposition 5.4 is meaningful only if κ > 0.

(α) Q is a Kazhdan subset of Z with Kaz(Q) = √ 2; (β) any measure µ ∈ P c (T) satisfies inf n∈Q | µ(n)| = 0; (γ) any measure µ ∈ P c (T) satisfies lim inf |n|→+∞ n∈Q | µ(n)| = 0.
Proposition 5.4. -Let F = {2 k 3 k ; k, k ≥ 0} and set κ = Kaz(F ). Let µ be a continuous probability measure on T which is T 2 -and T 3 -invariant. Then

|μ(j)| ≤ 1 - κ2 2 for every j ∈ Z \ {0}.
Proof. -Set, for every j ∈ Z \ {0}, µ j = T j µ. Then µ j is a continuous measure which satisfies μj (2 k 3 k ) = μ(j) for every k, k ≥ 0 It follows that if δ ∈ (0, 1) is such that (iii) of Theorem 5.1 is satisfied, δ ≥ |μ(j)|. Hence, by Theorem 5.1 again, κ ≤ 2(1 -|μ(j)|).

Remark 5.5. -Although a generating subset Q of Z is a Kazhdan set if and only if Kaz(Q) > 0, there is no link between the Kazhdan constant and the modified Kazhdan constant of Q. Indeed, there exist Kazhdan subsets Q of Z with maximal modified constant Kaz(Q) = √ 2 and arbitrarily small Kazhdan constant Kaz(Q). This relies on the following observation, which can be extracted from the proof of [5, Th 7.1] and results from Proposition 6.10 below.

Proposition 5.6. -Let (n k ) k≥0 be a strictly increasing sequence of integers with

n 0 = 1 such that (n k θ) k≥0 is uniformly distributed modulo 1 for every θ ∈ R \ D, where D is countable subset of R. Then the set Q = {n k ; k ≥ 0} is a Kazhdan subset of Z which satisfies Kaz(Q) = √ 2.
Consider, for every integer p ≥ 2, the set

Q p = p N + 1. By Proposition 5.6, Q p is a Kazhdan subset of Z with Kaz(Q p ) = √ 2. But the measure µ = δ {e 2iπ/p } satisfies sup n∈Qp (1 -e µ(n)) = 1 -cos(2π/p).
Hence Kaz(Q p ) ≤ 2(1 -cos(2π/p)), which can be arbitrarily small if p is sufficiently large.

6. Applications 6.1. Proof of Theorem 2.1. -Our first and main application of Theorem 2.4 (or Corollary 2.6) is Theorem 2.1, which solves in particular Conjecture (C4) and shows that the invariance assumption on the measure is indeed essential in the statement of Furstenberg's ×2 -×3 conjecture.

Proof of Theorem 2.1.

-If r = 1, Theorem 2.1 claims the existence, for every integer p ≥ 2, of a measure µ ∈ P c (T) such that inf k≥0 | µ(p k )| > 0. As mentioned in Section 2, this statement is well-known: it suffices to consider the classical Riesz product associated to the sequence (p k ) k≥0 . One can also show, either as in [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF] or [START_REF] Eisner | Hilbertian Jamison sequences and rigid dynamical systems[END_REF], or as an application of Corollary 2.5, that (p k ) k≥0 is a rigidity sequence, so that there exists µ ∈ P c (T) with µ(p k ) → 1 as k → +∞.

Suppose now that r ≥ 2, and consider, for every fixed index 1 ≤ j ≤ r, the set

C j = {e 2iπnp -l j ; n, l ≥ 0}
of roots of all powers of p j . It is dense in T, and has the following property: there exists for every λ ∈ C j an integer l j such that λ p k 1

1 p k 2 2 ... p kr r = 1 for every k j ≥ l j and k i ≥ 0, 1 ≤ i ≤ r with i = j. Hence sup k i ≥0 1≤i≤r, i =j λ p k 1 1 ... p kr r -1 → 0 as k j → +∞.
Consider the two sequences (m k ) k≥0 and (n k ) k ≥0 obtained by setting m k = p k j , k ≥ 0, and ordering the set

p k 1 1 . . . p k j-1 j-1 p k j+1 j+1 . . . p kr r ; k i ≥ 0, 1 ≤ i ≤ r with i = j
as a strictly increasing sequence (n k ) k ≥0 , and let ψ : N -→ N be a strictly increasing function such that

p k 1 1 . . . p k j-1 j-1 p k j+1 j+1 . . . p kr r ; 0 ≤ k i ≤ k, 1 ≤ i ≤ r with i = r is contained in the set {n k ; 0 ≤ k ≤ ψ(k)} for every k ≥ 0. By Corollary 2.6, there exists a measure µ j ∈ P c (T) such that µ j (p k 1 1 . . . p kr r ) → 1 as k j → +∞ with 0 ≤ k i ≤ k j , 1 ≤ i ≤ r with i = j.
Replacing, for every 1 ≤ j ≤ r, µ j by µ j * µ j , we can suppose without loss of generality that µ j (n) ≥ 0 for every n ∈ Z.

Let now ρ ∈ P c (T) be such that ρ(n) > 0 for every n ∈ Z, and set

µ = 1 r + 1 r j=1 µ j + ρ .
Then µ is a continuous probability measure on T with µ(n) > 0 for every n ∈ Z. Moreover, we have [START_REF] Boshernitzan | Homogeneously distributed sequences and Poincaré sequences of integers of sublacunary growth[END_REF] lim inf µ p k 1 1 p k 2 2 . . . p kr r ≥ 1 r + 1 as max(k 1 , . . . , k r ) → +∞.

Indeed, if (k

(l) 1 , . . . , k (l) 
r ) l≥1 is an infinite sequence of elements of N r , one can extract from it a sequence (still denoted by (k

(l) 1 , . . . , k (l)
r ) l≥1 ) with the following property: there exists 1 ≤ j ≤ r such that k

(l) i ≤ k (l) j for every 1 ≤ i ≤ r. Then lim inf l→+∞ µ p k (l) 1 1 . . . p k (l) r r ≥ 1 r + 1 lim inf l→+∞ µ j p k (l) 1 1 . . . p k (l) r r = 1 r + 1 •
This yields [START_REF] Boshernitzan | Homogeneously distributed sequences and Poincaré sequences of integers of sublacunary growth[END_REF]. Since µ(n) > 0 for every n ≥ 0, it follows that inf

k i ≥0 1≤i≤r µ p k 1 1 . . . p kr r > 0,
and Theorem 2.1 is proved. As mentioned in the introduction, it is natural to look for the optimal constant δ ∈ (0, 1) for which there exists a measure µ ∈ P c (T) such that [START_REF] Bourgain | On the maximal ergodic theorem for certain subsets of the integers[END_REF] inf

k,k ≥0 µ(2 k 3 k ) ≥ δ
This is equivalent to asking whether F is a Kazhdan set in Z, and if yes, with which (modified) Kazhdan constant. The best result which can be obtained via the methods presented here is that there exists a measure µ ∈ P c (T) satisfying [START_REF] Bourgain | On the maximal ergodic theorem for certain subsets of the integers[END_REF] for every δ ∈ (0, 1/2): this is the content of Theorem 2.2, which we now prove.

Proof of Theorem 2.2. -The proof goes along the same lines as that of Theorem 2.1, but it requires the full force of Theorem 2.4 rather than the weaker statement of Corollary 2.6.

Fix δ ∈ (0, 1/2). There exist by Theorem 2.4 two measures µ 1 , µ 2 ∈ P c (T) such that The measure µ = 1 2 (µ 1 * µ 1 + µ 2 * µ 2 ) has nonnegative Fourier coefficients and satisfies µ(2 k 3 k ) ≥ δ for every k, k ≥ 0.

| µ 1 (2 k 3 k )| ≥ √ 2δ
It then follows from Theorem 5.1 that if {2 k 3 k ; k, k ≥ 0} is a Kazhdan subset of Z, its modified Kazhdan constant must be less than 2(1 -δ) for every δ ∈ (0, 1/2), so must be at most 1.

That the bound 1/2 can be further improved does not seem clear at all, and we do not know whether there exists for every δ ∈ [1/2, 1) a measure µ ∈ P c (T) such that inf

k,k ≥0 µ(2 k 3 k ) ≥ δ. Question 6.1. -Is the Furstenberg set {2 k 3 k ; k, k ≥ 0} a Kazhdan set in Z?
Note that a lacunary semigroup {a n ; n ≥ 0}, a ≥ 2, cannot be a Kazhdan set (see [START_REF] Badea | Sets of integers determined by operator-theoretical properties: Jamison and Kazhdan sets in the group Z, in Actes du 1 er congrès national de la SMF -Tours 2016[END_REF]Ex. 5.2]). We also observe that Theorem 2.4 immediately yields Corollary 6.2. -For any function ψ : N → N with ψ(k) → +∞ as k → +∞, the sets

{2 k 3 k ; k ≥ 0, 0 ≤ k ≤ ψ(k)} and {2 k 3 k ; k ≥ 0, 0 ≤ k ≤ ψ(k )} are non-Kazhdan sets in Z.
Along the same lines, one can also ask for which values of δ ∈ (0, 1] there exists a measure µ ∈ P c (T) such that lim inf µ(2 k 3 k ) ≥ δ as max(k, k ) → +∞. The proof of Theorem 2.1 allows us to exhibit a measure µ ∈ P c (T) with nonnegative Fourier coefficients (namely µ = (µ 1 + µ 2 )/2) such that lim inf µ(2 k 3 k ) ≥ 1/2 as max(k, k ) → +∞. Again, we do not know whether the constant 1/2 can be improved. The strongest statement which could be expected in this direction is the existence of a measure µ ∈ P c (T) such that µ(2 k 3 k ) → 1 as max(k, k ) → +∞. This would show that the Furstenberg sequence is a rigidity sequence for weakly mixing dynamical systems. This natural question is raised in Remark 3.12 (b) of [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF] Remark 3.29 c) of [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF], and we record it anew here: Question 6.3. -Is the Furstenberg sequence a rigidity sequence for weakly mixing dynamical systems? 6.3. Examples of rigidity sequences. -Corollaries 2.5 and 2.6 allow us to retrieve directly all known examples of rigidity sequences from [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF], [START_REF] Eisner | Hilbertian Jamison sequences and rigid dynamical systems[END_REF], [START_REF] Aaronson | IP-rigidity and eigenvalue groups[END_REF], [START_REF] Aaronson | Rational ergodicity, bounded rational ergodicity and some continuous measures on the circle[END_REF] and [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF]. The only examples of rigidity sequences not covered by our results are those of [START_REF] Fayad | Rigidity times for a weakly mixing dynamical system which are not rigidity times for any irrational rotation[END_REF] and [START_REF] Griesmer | Recurrence, rigidity, and popular differences[END_REF]. Indeed, Fayad and Kanigowski construct in [START_REF] Fayad | Rigidity times for a weakly mixing dynamical system which are not rigidity times for any irrational rotation[END_REF] examples of rigidity sequences (n k ) k≥0 such that {λ n k ; k ≥ 0} is dense in T for every λ = e 2iπθ ∈ T with θ ∈ R \ Q, and there exist for every integer p ≥ 2 infinitely many integers k such that p does not divide n k . So such sequences never satisfy the assumption of Corollary 2.5. Griesmer strengthens this result in [START_REF] Griesmer | Recurrence, rigidity, and popular differences[END_REF] by showing the existence of rigidity sequences (n k ) k≥0 such that {n k ; k ≥ 0} is dense in Z in the Bohr topology.

We briefly list here some of the examples of rigidity sequences which can be obtained from Corollaries 2.5 and 2.6. Our first example is that of Fayad and Thouvenot in [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF]. Example 6.4. - [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF] If the sequence (n k ) k≥0 is such that there exists λ = e 2iπθ ∈ T, with θ ∈ R \ Q, such that λ n k → 1 as k → +∞, (n k ) k≥0 is a rigidity sequence. This result of [START_REF] Fayad | On the convergence to 0 of m n ξ mod 1[END_REF] follows directly from Corollary 2.5. Indeed, if λ n k → 1 with λ = e 2iπθ , θ ∈ R \ Q, λ pn k → 1 for every p ∈ Z. Since θ is irrational, the set {λ p ; p ∈ Z} is dense in T, and Corollary 2.5 applies. Example 6.5. - [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF], [START_REF] Eisner | Hilbertian Jamison sequences and rigid dynamical systems[END_REF] If (n k ) k≥0 is a strictly increasing sequence of integers such that n k |n k+1 for every k ≥ 0, (n k ) k≥0 is a rigidity sequence. Indeed, under the assumption of Example 6.5, the set C = {λ ∈ T ; λ n k → 1} contains all n k -th roots of 1, k ≥ 0, and is hence dense in T.

Corollary 2.6 shows that Example 6.5 can be improved into Example 6.6. -Let (m k ) k≥0 be a strictly increasing sequence of integers such that m k |m k+1 for every k ≥ 0. Let ψ : N -→ N be a strictly increasing function. Order the set {k m k ; k ≥ 0 , 1 ≤ k ≤ ψ(k)} as a strictly increasing sequence (n k ) k≥0 . Then (n k ) k≥0 is a rigidity sequence.

Indeed, the set C = {λ ∈ T ; λ k m k → 1 as k → +∞ uniformly in k } contains all m k -th roots of 1, and is dense in T. So Corollary 2.6 applies.

For instance, if (r k ) k≥0 is any sequence of positive integers, the sequence (n k ) k≥0 obtained by ordering the set {k 2 k ; k ≥ 0, 1 ≤ k ≤ r k } in a strictly increasing sequence is a rigidity sequence. This provides new examples of rigidity sequences (n k ) k≥0 such that

n k+1 n k → 1 as k → +∞.
Example 6.7. -Let (r k ) k≥0 be any sequence of positive integers with r k → +∞ as k → +∞. The sequence (n l ) l≥0 obtained by ordering in a strictly increasing fashion the set {j2 k ; k ≥ 0, 1 ≤ j ≤ r k } is a rigidity sequence which satisfies n l+1 n l → 1 as l → +∞.

Proof. -It suffices to show that for every ε > 0 and every l sufficiently large there exists l > l such that n l n l < 1 + ε.

-Suppose first that n l = j2 k for some k ≥ 0 and some 1/ε < j < r k . Then taking n l = (j + 1)2 k , we have

n l n l = j+1 j < 1 + ε.
-Suppose next that n l = j2 k for some k ≥ 0 and some 1 ≤ j ≤ 1/ε. Fix an integer p such that 2 -p < ε. If l is sufficiently large, we have r k-p > 2 p /ε. Set j = j2 p . Since j ≤ 2 p /ε < r k-p , the integer n l = (j + 1)2 k-p appears in the sequence (n l ) l≥0 . Also, since n l = (j + 1)2 k-p > j2 k = n l , we have l > l, and

n l n l = (j + 1)2 k-p j2 k = (j + 1) j 2 -p ≤ j + 2 -p j < 1 + 2 -p < 1 + ε.
-The last case we have to deal with is when n l = r k 2 k for some k ≥ 0. Let j ≥ 1 be such that j ≤ r k /2 < j + 1. Then j < r k+1 , and if we set n l = (j + 1)2 k+1 , the integer n l appears in the sequence (n l ) l≥0 . We have This has been proved by Aaronson in [1, Th. 4]; a simpler construction with the weaker conclusion that n k ≤ d k for infinitely many k was given in [START_REF] Bergelson | Rigidity and nonrecurrence along sequences[END_REF]Prop. 3.18]. The proof given below uses Corollary 2.5 and a result of Bugeaud [START_REF] Bugeaud | On sequences (a n ξ) n≥1 converging modulo 1[END_REF].

n l n l = (j + 1)2 k+1 r k 2 k = 2(j + 1) r k ≤ 1 + 2 r k < 1 + ε if k is sufficiently large,
Proof. -As the statement (a) is a simple consequence of (b), we only give the proof of (b). Set g 0 = 1 and g k = d k /k for every k ≥ 1. Then (g k ) k≥0 is a sequence of reals with g k ≥ 1 for every k ≥ 0 which tends to infinity (notice that for (a) this holds since (d k ) k≥0 is a sequence of density zero). Using (a particular case of) [16, Th. 1], we obtain that there exists for every fixed irrational number θ an increasing sequence (n k ) k≥0 of positive integers such that n k ≤ kg k = d k for every k ≥ 1 and exp(2iπθ) n k → 1. It follows from Example 6.4 that (n k ) k≥0 is a rigidity sequence. Example 6.9. -Let (m k ) k≥0 be a strictly increasing sequence of positive integers with m k+1 -m k → +∞. There exists a strictly increasing sequence of integers (n k ) k≥0 which is a rigidity sequence and satisfies m k ≤ n k < m k+1 for every k ≥ 0.

Proof. -The proof is exactly the same as the preceding one, replacing the result from [START_REF] Bugeaud | On sequences (a n ξ) n≥1 converging modulo 1[END_REF] by [START_REF] Bergelson | New examples of complete sets, with connections to a Diophantine theorem of Furstenberg[END_REF]Obs. 1.36].

6.4. Exceptional sets for (almost) uniform distribution. -Let (n k ) k≥0 be a strictly increasing sequence of integers, and let ν ∈ M(T) be a (finite) complex Borel measure on T. We stress that ν is not necessarily a probability measure. Given θ ∈ R, the sequence (n k θ) k≥0 is said ( [START_REF] Lyons | Fourier-Stieltjes coefficients and asymptotic distribution modulo 1[END_REF], [30, p. 53]) to be almost uniformly distributed with respect to ν if there exists a strictly increasing sequence (N j ) j≥1 of positive integers such that for every arc I ⊂ T whose endpoints are not atoms (mass-points) for ν one has In this case, the limit is ν(m). It can also be proved that (n k θ) k≥0 is almost uniformly distributed with respect to ν if and only if there exists a strictly increasing sequence (N j ) j≥1 of positive integers such that We now denote by W ((n k ) k≥0 , ν), the exceptional set of almost uniform distribution of (n k ) with respect to ν. This is the set of all θ ∈ R such that (n k θ) k≥0 is not almost uniformly distributed with respect to ν. We will write U ((n k ) k≥0 , ν) for the exceptional set of (classical) uniform distribution of (n k ) with respect to ν, which corresponds to the case where N j = j for every j ≥ 1.

The size of the exceptional set U ((n k ) k≥0 , ν) has been studied in many works, in particular in the case where ν is the normalized Lebesgue measure on T. In this case, we write it as U ((n k ) k≥0 ). If the sequence (n k ) k≥0 is lacunary, U ((n k ) k≥0 ) is uncountable, and even of Hausdorff dimension 1 ( [START_REF] Erdös | On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences[END_REF], see also [START_REF] Helson | A Fourier method in Diophantine problems[END_REF]). See also [START_REF] Pollington | On the density of sequence (n k ξ)[END_REF] and [START_REF] De Mathan | Sur un problème de densité modulo 1[END_REF] for a stronger result. On the other hand, it is known (see [START_REF] Boshernitzan | Density modulo 1 of dilations of sublacunary sequences[END_REF], [START_REF] Bourgain | On the maximal ergodic theorem for certain subsets of the integers[END_REF]) that among various natural classes of random sequences of integers, almost all sequences (n k ) k≥0 satisfy U ((n k ) k≥0 ) = Q. These typical random sequences (n k ) k≥0 are sublacunary, i.e. satisfy n k+1 /n k → 1 as k → +∞ Nonetheless, examples of sublacunary sequences (n k ) k≥0 with U ((n k ) k≥0 ) uncountable were constructed in [START_REF] Erdös | On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences[END_REF] (see also [START_REF] Baker | On a theorem of Erdös and Taylor[END_REF]). Concerning the size of W ((n k ) k≥0 , ν) we refer for instance to [START_REF] Piatetski-Shapiro | On the laws of distribution of the fractional parts of an exponential function[END_REF], [START_REF] Helson | A Fourier method in Diophantine problems[END_REF] and [START_REF] Kahane | Sur les mauvaises répartitions modulo 1[END_REF]. See also [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF] for other references.

Our results about the size of W ((n k ) k≥0 , ν) rely on the following generalization of Proposition 5.6, which provides a link between the size of the exceptional set W ((n k ) k≥0 , ν) and the modified Kazhdan constant of the set {n k ; k ≥ 0}. Suppose that the measure µ is continuous. Since there exists a strictly increasing sequence (N j ) j≥1 of integers such that 1 N j N j k=1 λ n k → ν(1) as j → +∞ for every λ ∈ T \ C, where C is a finite or countable infinite subset of T, we have 1 -e ν(1) ≤ γ, which contradicts our initial assumption. So µ has a discrete part. It then follows from Theorem 5.1 that the modified Kazhdan constant of Q is at least 2(1 -e ν(1)).

The following result provides an example of a nonlacunary semigroup (n k ) k≥0 whose associated exceptional sets W ((n k ) k≥0 , ν) with respect to ν are uncountable for a large class of measures ν ∈ M(T). Theorem 6.11. -Denote by (n k ) k≥0 the sequence obtained by ordering the Furstenberg set F = {2 k 3 k ; k, k ≥ 0} in a strictly increasing fashion. For every measure ν ∈ M(T) such that e ν(1) < 1/2, the set W ((n k ) k≥0 , ν) is uncountable.

Proof of Theorem 6.11. -Fix ν ∈ M(T), and suppose that U ((n k ) k≥0 , ν) is at most countable. Since Kaz(F ) ≤ 1 by Theorem 2.2, it follows from Proposition 6.10 that 2(1 -e ν(1)) ≤ 1, i.e. that e ν(1) ≥ 1/2. This proves Theorem 6.11.

  and ν has a discrete part. So µ itself has a discrete part.

  Proof. -The equivalence between (α) and (β) follows immediately from Theorem 5.1. So only the implication (β)=⇒(γ) requires a proof. Suppose that any µ ∈ P c (T) satisfies inf n∈Q | µ(n)| = 0. We want to show that the conclusion can be reinforced into lim inf |n|→+∞ n∈Q | µ(n)| = 0. Let ρ ∈ P c (T) be a Rajchman measure with positive coefficients, that is such that lim |n|→+∞ ρ(n) = 0 and ρ(n) > 0 for every n ∈ Z. Consider the measure ν = (µ * µ + ρ)/2. It is continuous and satisfies ν(n) > 0 for every n ∈ Z. Since inf n∈Q ν(n) = 0 and ν(n) > 0 for every n ∈ Z, lim inf |n|→+∞ n∈Q ν(n) = 0. Hence lim inf |n|→+∞ n∈Q | µ(n)| 2 = 0, and the conclusion follows.

6. 2 .

 2 The case of the Furstenberg set. -Theorem 2.1 applies to the Furstenberg set F = {2 k 3 k ; k, k ≥ 0} and shows the existence of a measure µ ∈ P c (T) such that infk,k ≥0 µ(2 k 3 k ) > 0(the fact that the measure µ can be supposed to have nonnegative Fourier coefficients can be extracted from the proof of Theorem 2.1, or deduced formally from Theorem 2.1 by considering the measure µ * µ). By Corollary 5.3, this means that Kaz(F ) < √ 2.

  for every k ≥ 0 and every 0 ≤ k ≤ k and | µ 2 (2 k 3 k )| ≥ √ 2δ for every k ≥ 0 and every 0 ≤ k ≤ k .

  and this terminates the proof. Example 6.8. -[1] (a) Let (d k ) k≥0 be a strictly increasing sequence of positive integers of density zero. There exists a strictly increasing sequence of integers (n k ) k≥0 which is a rigidity sequence and satisfies n k ≤ d k for every k ≥ 0. (b) Let (d k ) k≥0 be a sequence of real numbers with d k ≥ k for every k ≥ 0 and d k k → +∞ as k → +∞. There exists a strictly increasing sequence of integers (n k ) k≥0 which is a rigidity sequence and satisfies n k ≤ d k for every k ≥ 0.

lim j→+∞ 1

 1 N j # {n ≤ N j : exp(2iπn k θ) ∈ I} = ν(I).The analog of Weyl's criterion states that (n k θ) k≥0 is almost uniformly distributed with respect to ν if and only if there exists a strictly increasing sequence (N j ) j≥1 of positive integers k θ) exists for every m ∈ Z.

  j / / +∞ for every f ∈ C(T).

Proposition 6 .

 6 10. -Let (n k ) k≥0 be a strictly increasing sequence of positive integers with n 0 = 1, and let ν ∈ M(T)with ν = δ {1} . If W ((n k ) k≥0 , ν) is finite or countable infinite, Q = {n k ; k ≥ 0}is a Kazhdan subset of Z, and Kaz(Q) ≥ 2(1 -e ν(1)).

λ

  Proof. -Fix γ ∈ (0, 1 -e ν(1)), and let µ be a probability measure on T such that sup k≥0 (1 -e µ(n k )) < γ. n k dµ(λ) < γ for every N ≥ 1.

This work was supported in part by the project FRONT of the French National Research Agency (grant ANR-17-CE40-0021) and by the Labex CEMPI (ANR-11-LABX-0007-01). We are grateful to Étienne Matheron for pointing out a simplification of our original proof of Corollary 2.6, and to Étienne Matheron, Martine Queffélec, Jean-Paul Thouvenot and Benjy Weiss for several interesting discussions.