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Abstract. The axisymmetric jet is a geometrically simple, statistically stationary example of
inhomogenous turbulence. Considering conservation of volume and momentum, Morton et al.

(1956) offered a prediction of jet development, characterised solely by an unknown, constant
entrainment coefficient. The presence of background rotation complicates the kinematics of
the entrainment, and without special treatment, the jet suffers a helical instability. Here, we
present one technique which stabilises the axisymmetric jet, yet preserves its desirable turbulent
properties. The jet offers a steady-state flow in which there is an axial variation of local Rossby
number, and after decay along the axis to a critical value, cones of inertial waves emerge. In this
paper, we demonstrate these features using our numerical software MOBILE, offer our solution
to stabilise the jet, and explain the mechanisms involved.

1. Introduction

Turbulence in rotating fluids has attracted the attention of many researchers since the
experimental work of Hopfinger et al. (1982) in which turbulence was created by continuously
oscillating a grid by a small amplitude in a large tank. Rossby and Reynolds numbers decayed
away from the grid due to viscous dissipation. However, critical questions arising from this
work have remained unanswered for three decades, particularly regarding the interaction of
turbulence and waves. More recent work by Davidson et al. (2006) examined the problem from
a different angle, choosing to study the emergence of structures from a region of decaying, rather
than continuously forced turbulence. This has the obvious advantage that the turbulence can
freely evolve for a few eddy-turnovers before the Rossby number is sufficiently low to generate
wave-like structures, thus reducing the influence of spatial and temporal forcing of the grid. Our
present work is a novel configuration which imposes neither spatial scales nor temporal forcing,
maintains steady-state inhomogenous rotating turbulence, and has a spatially varying Rossby
number.

In this paper, we consider an axisymmetric jet with its axis coincident with the axis of rotation
of the whole system, and use cylindrical coordinates (er, eθ, ez), where z is the coordinate along
the axis of the jet. In the case without background rotation, ujet ∼

1

z
and rjet ∼ z, as shown

by Morton et al. (1956), and thus, the nominal jet Reynolds number is constant. Provided
the structure of the jet remains unaffected by a background rotation, this would imply in the
rotating case that the Rossby number Ro ∼ 1

z2
. This combination of Re and Ro in a statistically

stationary, unforced, and self-similar flow makes the jet a remarkably clean testcase for analysis
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of turbulence under the influence of the Coriolis force, since structural changes in the turbulence
are, unlike grid generated turbulence for example, a function of one variable only. In contrast
also to the plethora of work on swirling jets for applications to flame stabilisation, here, the
influence of rotation increases (rather than decreases) with axial distance, and thus is robustly
maintained long after the jet has ‘forgotten’ the effects of its emission from a finite aperture.

The following section describes the mechanism of instability we observe in the axisymmetric
jet under the influence of rotation and presents an elegant solution to stabilise the jet, which we
then compare with results from our MOBILE simulations.

2. Mechanisms

2.1. Azimuthal kinematics
Despite the immediate attractiveness of this testcase, a complication arises due to the jet
entrainment. The entrainment flow at sufficiently large distance from the jet axis can be
characterised as an axial sink with constant strength, assuming the axial variation of entrainment
coefficient is small, and the large-scale flow in an infinite domain is approximately two-
dimensional. In the inertially-fixed reference frame, the planetary vorticity gives the initial
circulation Γ0 around each circumferential contour at radius r a finite value,

Γ0 =

∮
(Ω× r).ds, (1)

where ds = rdθeθ is a contour element, Ω = [0, 0,Ω] is the rate of solid body rotation, and r

is the position vector of a point on the contour. Kelvin’s circulation theorem demands that the
circulation on all material contours remains unchanged, ie.

DΓ

Dt
= 0, (2)

so as contours converge towards the axial sink, their radius reduces and it follows that the
velocity component u.ds must increase to preserve the initial circulation. It is clear, therefore,
that the far-field effect of the axial sink is amplification of the background vorticity, and that the
far-field flow around our jet behaves rather similarly to the far-field flow induced by a tornado.
We note that the near-field behaviour is not well-represented by an axial sink, and thus we do not
require specific treatment of the singularity at the origin. Neglecting viscosity, the kinematics of
the far-field are unbounded in time, since the circulation associated with each contour increases
with radius, and contours at all radii eventually converge to the axis.

Naturally we can neither numerically nor experimentally verify our analysis of the far-field
in an unbounded domain; however, with our jet in a finite, enclosed domain, we observed
azimuthal acceleration of the flow consistent with this idealised analysis. In a finite domain we
also observe a helical instability; the jet initially grows, entrains ambient fluid which follows the
far-field behaviour discussed above, and this helically displaces the jet from the axis. At large
displacement amplitude, the jet breaks down, and the associated entrainment flow ceases. With
nothing to drive further radial convergence of material contours, the azimuthal velocity decays
sufficiently for the jet to reform, and a periodic formation/breakdown cycle is established.

The key development that lays the basis for our work on steady-state inhomogenous rotating
turbulence, is the stabilisation of the far-field flow. Ultimately the problem can be recast as
ensuring by some means that the circulation near the axis remains bounded in time. One simple
way to achieve this in a finite domain is to enforce radial inflow (ie. no azimuthal velocity) at
some distance rdom from the jet, thus limiting the maximum circulation to

∮
|Ω× rdom| .ds, and

satisfying continuity by evacuating fluid through a plane at suitably large z. While appropriate
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for a finite domain, as one requires in an experiment, there are obvious theoretical and practical
limitations to this approach. Instead we focus on a much more elegant solution.

We begin by recognising that in the spatially unbounded problem, contours converge from
infinity, and we obtain persistent azimuthal acceleration over time. If one were able to modify
the problem such that contours converge from a constant and finite radius, one would recover
a steady-state with finite circulation near the axis. We achieve this transformation by adding
a small axial velocity ua to the ambient fluid, rather like a co-axial jet with an outer flow of
infinite radius. In the inertially fixed reference frame, flow emanating from the boundary plane
has velocity,

uambient = Ωreθ + uaez, (3)

thus material contours emerge from a bottom boundary plane in solid body rotation, and
converge towards the axis in space. Contours of small initial radius reach the axis at low
values of z and have relatively little circulation, those with larger initial radii reach the axis at
larger values of z with greater circulation. The key to this spatio-temporal transformation is
that everywhere except for the contour at infinite initial radius, the azimuthal velocity obtained
near the axis remains finite and invariant with time, though increasing with z. It is perhaps
clearer in the rotating frame to see why the velocities are bounded. If the relative circulation Γ′

is defined to be zero in solid body rotation, then by considering the projection onto a plane with
the z-axis as its normal, we can use Stokes’ theorem to transform the line integral around the
contour into a double integral across the enclosed, projected area, A. By projecting the relative
velocity field onto the same plane, we obtain an evolution equation for the relative circulation,

DΓ′

Dt
= −

∫∫
2Ω∇2D.u

′dA, (4)

where ∇2D operates solely on the in-plane relative velocity components. Here, one can see
that the relative circulation of a material contour is determined by the time-integral of the sink
strength within the contour for the duration of travel of the contour from initial to final radius.
Thus, if material contours emanate from a boundary at finite radius, their azimuthal velocity
remains bounded.

2.2. Kinematics in the (r, z) plane
By considering continuity along individual stream-tubes, the above arguments quite clearly
generalises to the case of axially varying sink strength, which corresponds to the situation one
might expect from axially developing turbulent anisotropy. The streamline behaviour outside
the jet arises from the balance of entrainment and axial co-flow, and since the azimuthal velocity
uθ is perpendicular to the (r, z) plane and independent of θ, we expect the ur and uz components
of velocity to be approximately irrotational in the interior.

By construction the co-flow imposes a streamfunction boundary condition Ψ(r, 0) ∼ r2, and
modelling the jet entrainment as a line sink corresponds to Ψ(r∗, z) ∼ z, where r∗ represents the
edge of the jet. Since we require axial co-flow, it follows that the streamfunction is not analytic
at (r∗, 0), and to resolve this we need to add a point vortex, analogous to a Kutta condition
on the boundary. The lateral far-field boundary is somewhat simpler; the streamline at r = ∞
takes infinitely long to reach the axis, and thus is vertical with Ψ = const.. The schematic in
figure 1 illustrates how one might expect the far-field streamline pattern to appear, and shows
the contour at infinity as a dashed line.

2.3. Jet dynamics in the high Rossby number region
The volume and axial momentum conservation arguments originally proposed by Morton et al.
(1956) also appear to hold in the transformed case, since one might assume that the local
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Figure 1. Far-field streamline pattern, modelling the jet as an axial sink.

entrainment is not affected by the shape of the entrained stream-tube in the far-field. This is a
reasonable assumption provided the characteristic eddy velocity is significantly faster than the
azimuthal velocity of the entrained fluid at the edge of the jet. By conserving circulation it is
trivial to show that the azimuthal velocity of a material contour originating at radius r is given
by

uθ =
Ωr2

r∗
, (5)

where r∗ is its current radius. If r∗ is taken as the edge of the jet, r∗ ∼ z, and noting that all
volume emanating from the bottom boundary eventually reaches the axis, r ∼ z2, then

uθ ∼ z3. (6)

There exists therefore a region in which our original assumption is valid, sufficiently far from the
origin (we require that the jet commences with a finite aperture to circumvent the singularity
at the axis), but before ujet − ua ∼ O(uθ).

2.4. Jet dynamics in the low Rossby number region
Once the Rossby number of the jet approaches order unity, both the core jet flow and the
relatively slow entrained flow are influenced by rotation. It is well-known that inertial waves
propagate from eddies in a rotating ambient, though the mechanism of generation has been the
focus of widespread debate in recent years. In the rotating reference frame, one obtains the form
of a linear wave equation by neglecting the nonlinear u.∇u term in the momentum equation, ie.

∂2û

∂t2
+ ω̄2û = 0, (7)

where û is the relative velocity field Fourier-transformed onto a set of basis vectors k, and ω̄ has
dimensions of 1

T
. The dispersion relation,

ω̄ = ±
2Ω.k

|k|
, (8)

is unusual, since surfaces of constant phase ripple in the direction of the phase velocity,

cp =
ω̄k

k.k
= ±

2(Ω.k)k

|k|3
, (9)
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while energy is transported in the direction of the group velocity,

cg = ∇ω̄(k) = ±
2k× (Ω× k)

|k|3
, (10)

and it can be shown that the two directions are perpendicular. As demonstrated very beautifully
in Godeferd & Lollini (1999), inertial waves propagate in axisymmetric cones of constant angle
to the rotation axis, with equatorial wave-vectors k corresponding to axial propagation, and
axial wave-vectors being the limiting case of slow, radially propagating inertial waves. The
axisymmetry of our jet configuration is thus a very powerful feature, since it corresponds directly
to the physical nature of the inertial waves. In homogenous turbulence, one can conceive of a
sea of inertial waves of all directions, with, on average, all incoming and outgoing inertial waves
destructively interfering. This elegant symmetry is unavailable in inhomogenous cases such as
our jet. Waves that propagate with group velocities at angles close to the rotation axis remain
within the jet and interact with the turbulence, but those that radiate more horizontally leave
the jet, remove energy, and act as an angular filter on wave-turbulence interactions.

3. Results

3.1. Computational method
Following the Large Eddy Simulation work of Lawrie & Dalziel (2011a,b), for our preliminary
calculations presented here, we use a third order, staggered grid, fractional step methodology to
solve the following equations of motion in the relative frame,

∂(ρu′i)

∂t
+

∂ρu′iu
′

j

∂xj
= −

∂p′

∂xi
+ 2ǫijku

′

jΩk (11)

subject to the constraint
∂u′i
∂xi

= 0, (12)

which is enforced exactly through a pressure re-distribution at each timestep. A parallel
multigrid scheme is used to accelerate the pressure convergence. We use stress-free zero flux
conditions on the side-walls of the domain to mimic the pressure field of our computational setup
while neglecting the influence of thin boundary layers on the walls, and an inflow boundary
condition that represents both the unswirled ambient inflow and the nozzle aperture. The
outflow is a balanced flux, stress-free condition approximately transmissive to inertial waves
with a spatial frequency well-resolved on the mesh. In the calculation we present here, the mesh
was formed from cubic cells, 256× 256× 1024, with the large direction aligned with the nozzle
and the rotation axis. Even with this size of calculation, the nozzle aperture occupies only O(10)
cells of the boundary surface, and hence this region is inadequately resolved. However, in the
critical Rossby number regions that are of specific interest in this work, the inertial waves, the
integral scale of the turbulence and perhaps a decade of inertial range are well resolved.

3.2. Discussion
The numerical work we present here is part of a larger collaborative effort to study the evolution
of anisotropic turbulence, and the stabilised jet configuration is the focus of the numerical and
experimental components thereof. We show with our preliminary calculations firstly that a
quasi-steady state can indeed be achieved for the co-flowing jet, and secondly that our key
scalings are well-matched by the data.
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Figure 2. False-colour perspective rendering of radial velocity in a thin volume at t
2πΩ

= (left)
3, (middle) 6, and (right) a close-up of (middle) in the low Rossby number region, detailing eddy
elongation by inertial waves towards the edge of the jet.

In figure 2, which renders radial velocity in a thin volume around the jet axis, by comparing
the plots taken at times τΩ = 3 and τΩ = 6, where τΩ = t

2πΩ
. The other parametric time-

scale in the problem is the axial advection time-scale τz = zdom
ua

, and for the simulation shown

the corresponding values are τz = 1.25 and τz = 2.5. The testcase selected here uses
uj

ua
= 4

and for this relatively large co-flow velocity ratio, the velocity field does not display the strong
helical instability of the zero co-flow case, despite there being a strong and vertically increasing
azimuthal velocity. The spread angle of the jet, with respect to the classical Morton et al. (1956)
model, is reduced by the co-flow. In common with non-rotating co-flowing jets, the temporal rate
of increase in jet radius is maintained by entrainment, but the axial advection reduces the spatial
rate of growth, leading to its distinctive, shallow angle form. We performed this calculation in
a large-aspect-ratio domain, to ensure that we captured the important jet development regimes,
and that we can quantify deviation from our scalings due to the confinement of the computational
domain.

In an unconfined domain, material contours approaching the axis at continuously increasing
z emanate from continuously increasing r, but this is no longer possible when there is a radial
limit to the domain, and thus rdom sets the maximum circulation of any entrained contour, and
hence bounds uθ. In cases where the volume flux that it is possible for an unconfined jet to
entrain is a significant proportion of the co-flow volume flux, we expect a laterally confined case
to exhibit reduced entrainent. In the calculation presented in figure 2 we chose ua such that the
volume flux entrained into the jet is weak relative to the co-flow volume flux, so accordingly we
expect negligible adjustment of the entrainment. Figure 3 shows the actual azimuthal velocity,
and there are several points of interest to be noted here. The resolution of the flow in the
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Figure 3. Azimuthal velocity averaged over planar annuli 0.35rdom > r > 0.3rdom > rjet as
a function of height, normalised by Ωr2dom/r. The location of the virtual origin is shown by a
dashed line.

vicinity of the nozzle is too poorly resolved to allow turbulence to develop immediately in a
natural manner, and consequently the entrainment flow cannot develop either. The virtual
origin that arises is located at z = 0.2, and one can consider this as being analogous to the
location of a nozzle aperture. Interestingly, in this situation where axial co-flow is only enforced
some distance behind the ‘nozzle’, one obtains a vertically inhomogeneous axial sink. Thus
streamlines in (r, z) emanating from the bottom boundary must converge towards the bottom
extremity of the sink, and this induces anti-cyclonic azimuthal velocity (vortex compression).

Once the entrainment flow begins, at z > 0.2, ∂uθ

∂z
becomes positive and follows the z3 prediction

closely (vortex stretching). At sufficiently large z, it becomes aware of the finite lateral boundary,
and uθ ceases to increase monotonically.

The most valuable feature that we encounter is the Rossby number variation with axial
distance. While this does occur in swirling jets (used for instance to stabilise flames), there,
the influence of rotation decays rapidly as the initial circulation is diffused radially by turbulent
transport, and so low Rossby numbers are restricted to a region close to the nozzle, and it
becomes difficult to separate effects caused by a finite aperture nozzle from those caused by
rotation. In our novel case, however, the jet approaches a self-similar form some distance
downstream of the nozzle, but with appropriate selection of rotation rates, this occurs well before
the Rossby number falls below a critical value. As noted earlier, substantial under-resolution of
turbulent scales close to the nozzle leads to a large displacement of the virtual origin, and here,
such separation of length-scales is particularly desirable. Figure 4 shows the Rossby number as
a function of height, measured from the turbulent integral length- and velocity-scales,

Roturb =
uturb
Ωlturb

, (13)

and it follows reassuringly closely the scaling we predicted in the introduction by extrapolating
from the non-rotating non-co-flowing jet. Thus we can examine the transition from turbulent
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Figure 4. Rossby number as a function of height, with Ro ∼ 1

z2
scaling superimposed.

isotropy to anisotropy simply by reading off time-averaged statistics at each axial position.

4. Conclusions

In this paper we have presented, for the first time to our knowledge, a means of obtaining
unforced statistically stationary rotating turbulence together with a means of varying Rossby
number in space rather than in time in a spatially self-similar flow. Our approach uses a free jet
subject to background rotation and while the most obvious configuration leads to unbounded
azimuthal acceleration, a small modification mitigates this effect and thus the concept has
practical utility. As part of a larger collaborative study on anisotropic turbulence, combining
theoretical, numerical and experimental tools, we present our initial findings from our numerical
software MOBILE on our novel jet configuration.
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