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Abstract  

The first commercial fleets of Robo-Taxis will be on the road soon. Today important efforts are 

made to anticipate future Robo-Taxi services. Fleet size is one of the key parameters considered 

in the planning phase of service design and configuration. Based on multi-agent approaches, the 

fleet size can be explored using dynamic demand response simulations. Time and cost are the 

most common variables considered in such simulation approaches. However, personal taste 

variation can affect the demand and consequently the required fleet size. In this paper, we 

explore the impact of user trust and willingness-to-use on the Robo-Taxi fleet size. This research 

is based upon simulating the transportation system of the Rouen-Normandie metropolitan area in 

France using MATSim, a multi-agent activity-based simulator. A local survey is made in order to 

explore the variation of user trust and their willingness-to-use future Robo-Taxis according to the 

sociodemographic attributes. Integrating survey data in the model shows the significant 

importance of traveler trust and willingness-to-use varying the Robo-Taxi use and the required 

fleet size. 
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INTRODUCTION 

Technology advancements on autonomous driving as well as increasing popularity of recently 

appeared shared mobility and on-demand services show that personal mobility will profoundly 

change in the next decades. Travelers increasingly use such services because they become more 

accessible, easy to use and affordable (Chan and Shaheen, 2012; Shaheen et al., 2016, 1998). 

With the reference to past experiences, these advantages for users result in various issues for the 

operators (Shaheen et al., 2015). One example is fleet rebalancing. The emergence of 

autonomous vehicles (AVs) could result in resolving such issues. The idea may be to share a 

fleet of autonomous vehicles, which is maintained and managed by a third-party organization to 

respond to the travel demand of the entire urban population or a community. We call this shared-

mobility on-demand service “Robo-Taxi”. Other concepts of shared autonomous vehicles 

(SAVs), such as the sharing of a fleet among a group of members or company employees 

requiring a pre-subscription can be developed. Such considerations are of high importance for 

car manufacturers given their recent investments in AV technology. Automakers are aware of 

such transformation and are interested in playing the role of an operator with new business 

models capturing profit per kilometer or per trip (Firnkorn and Müller, 2012; Stocker and 

Shaheen, 2018). 

In order to design future Robo-Taxi services, the basic operational characteristics are to 

be estimated in the upstream planning. Fleet size, fleet specifications, relocation strategies and 

service area are the main ones. Due to recently developed demand-responsive simulation and 

modeling, those characteristics and their impacts on service demand can be explored at a fine-

grained level. The major part of recent studies on planning for future SAVs are focusing on this 

subject. For this purpose, agent-based simulation is widely applied. Compared to other 

approaches, due to the disaggregate temporal and spatial data in the simulation, complex supply-

demand relationships can be assessed (Vosooghi et al., 2017). Nevertheless, the application of 

such approaches is usually limited to the operational aspects of such services. One of the 

research gaps is that the traveler tendency to use such service is not integrated into the simulation 

as an influencing factor of the use of AVs. This research aims to fill this gap by providing a 

novel method in order to integrate both user trust and willingness-to-use into recently applied 

multi-agent simulation with the aim of exploring their impacts on Robo-Taxi fleet sizes. 

Furthermore, in this study, the waiting time as an essential factor of mode choice decision is 

incorporated into the simulation. To the best of our knowledge, this is the first time that 

individual systematic taste variation and service waiting time is considered in Robo-Taxi fleet 

sizing simulations. It should also be mentioned that in this research, the demand of a new service 

is assumed not to be eliminated due to the service acceptance but substituted by other modes (if 

available with less disutility). However, the importance of service acceptance could be as well 

explored with the proposed approach.  

The contribution of the present study is mainly the proposition of a new scoring process 

in a widely used multi-agent transport simulation platform (MATSim). A second contribution is 
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synthetic population generation. Simulation experiments are based upon the real data for the 

transportation system of the Rouen-Normandie metropolitan area in France. A local survey is 

also made in order to explore the variation of user trust and their willingness-to-use future Robo-

Taxis. The remainder of this paper is structured as follows: we first present a review of the 

relevant literature. This is followed by the methodology description. Next section describes the 

data preparation and scenario setup. After that, detailed results and comparisons are presented. 

Finally, insights gained through this research are discussed and suggestions for further work are 

given. 

RELATED WORK 

A review of the existing literature reveals the large attention given today to behavioral 

experimental studies considering the use of various types of AVs. Some limited investigations 

also address the case of shared AVs (Bansal et al., 2016; Haboucha et al., 2017; Krueger et al., 

2016; Steck et al., 2018). In almost all these studies, the traveler perception and tendency 

towards using AVs are explored in an attempt to predict the market penetration rate. However, 

the results have not been taken into account in the comprehensive travel demand-responsive 

models. One of the main reasons is the fact that developing reliable models for on-demand and 

shared transport systems is still in progress. The most appropriate approach to simulate such 

systems is considered to be activity-based multi-agent simulation (Vosooghi et al., 2017). This 

approach is widely used today. Nevertheless, several components specifically related to the 

interactive relation of demand and transport service still need more investigation. Recently, Hörl 

(2017) has addressed this issue for autonomous taxis and developed an extension of a previously-

developed framework in order to make multi-agent simulation demand responsive. Wang et al. 

(2018) also dealt with this issue and proposed a different methodology with the aim of exploring 

fleet size and strategy optimization of autonomous on-demand service. Fagnant and Kockelman 

(2018) applied a more sophisticated approach for fleet sizing of a system of SAV in Austin. All 

aforementioned studies are based on MATSim (2012), a multi-agent transport simulator, and 

clearly none of them have integrated the traveler-related aspect of decision making. In a recent 

paper, we addressed the impact of user preferences on SAV modal share in Paris, applying a 

similar simulation approach (Kamel et al., 2019). In our work, traveler preferences have been 

integrated into the scoring function used within a co-evolutionary algorithm in order to optimize 

agent plans. For the case study scenario, all the taxis have been replaced by SAVs and the 

simulation results have been compared. The latter indicates that the overall modal split of SAVs 

as well as the use of this service before and after the introduction of user preferences are 

significantly different. In the mentioned study, SAV utility has been defined based on 

conventional taxi utility without considering the impact of waiting time. Martinez and Viegas 

(2017) have applied another agent-based model in order to deal with the discussed issue. In their 

study, the sociodemographic attributes (i.e. age and income) are represented in the model by 

applying a discrete choice approach. However, as their model is based on real trip-taking activity 

(i.e. all modes currently available), those attributes are neglected for SAV mode. 
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The impact of individual-related attributes on the mode choice is well reflected in the 

classic travel demand models at an aggregated level across the discrete choice model. These 

attributes can be added to the travelers’ decision-making mechanism separately through the 

disaggregated level of data in agent-based simulation. The main drawback here is that the modal 

choice, as an element of the genetic algorithm embedded in the agent-based approach, is not well 

investigated. Hörl et al. (2018) tried to integrate discrete choice modeling into co-evolutionary 

algorithm in MATSim. However, consistency of the proposed integration method and its 

compatibility with the other part of the multi-agent framework remain uncertain. 

METHODOLOGY 

This research is based upon the multi-agent transport simulation MATSim (2012) and its 

Dynamic Vehicle Routing Problem (DVRP) extension (Maciejewski, 2016). In the following, a 

short introduction to this simulation framework is given. 

MATSim uses the artificial population with an initial daily plan for each agent as an 

input. The plans incorporate activities that are performed throughout a day with their respective 

arrival times, locations, and durations as well as the initial transport modes, which agents use to 

move between two activity locations. The daily plan could exceed 24 hours, but the simulation is 

done for a single day only. In the first simulation, each agent realizes its plan for the given day. 

A dynamic queue-based model measuring the traffic flows and estimating the travel times 

simulates the movements of agents from one activity to the next. It is possible that due to 

congestion or crowded public transport some agents arrive too late to the next activity location. 

Likewise, some others might arrive too early. Any deviation from the initial activity plan 

(especially start time) for each agent is memorized and measured by the score in the end of the 

day. In addition, an extra score is calculated for the mode that has been used. For the next 

iteration, agents try to slightly modify their plan (e.g. the mode that they use for each trip or 

activity end-time) to diminish the less negative score. The iteration is repeated until the average 

overall scores of the executed plans in the population start to fluctuate slightly around an 

equilibrium state. This evolutionary re-planning and learning process is the core component of 

the simulation.  

The measurements (i.e. scoring) in the simulation are based on two general occurrences: 

activities and trips (or legs). Scores are described by marginal utility of activities and marginal 

disutility of legs. Utility is measured through time- and equivalent cost-varying parameters. 

However, score functions can be set for each agent according to its corresponding 

sociodemographic attributes or personal preferences. In order to integrate user trust and 

willingness-to-use in this simulation and to address the previously discussed research gap, we 

propose to extend the modeling approach detailed further in the present article.  

This research study is organized around three major parts: 1) categorized scoring 

function, 2) population synthesis, and 3) scenario set up and model calibration. 
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Categorized scoring function 

Some major changes are required to integrate systematic taste variations among 

individuals. In MATSim the scoring function is based on the Charypar-Nagel scoring method 

(Charypar and Nagel, 2005). The function includes both activity and leg scores. Since the 

purpose of this study is to add the new mode and anticipate short-term changes, only leg (trip) 

scores have been modified. The initial leg scoring function is described as below: 

𝑆𝑡𝑟𝑎𝑣 = 𝐶𝑚𝑜𝑑𝑒 + 𝛽𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒 × 𝑡𝑡𝑟𝑎𝑣 + 𝛽𝑚𝑜𝑑𝑒,𝑑𝑖𝑠𝑡 × 𝑑𝑡𝑟𝑎𝑣 …  (1) 

where for each mode in a leg the score is calculated from constant utility of mode 𝐶𝑚𝑜𝑑𝑒 , 

marginal disutility of travel duration 𝛽𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒, travel time 𝑡𝑡𝑟𝑎𝑣, marginal disutility of travel 

distance  𝛽𝑚𝑜𝑑𝑒,𝑑𝑖𝑠𝑡, and the distance traveled between two activity locations 𝑑𝑡𝑟𝑎𝑣. Furthermore, 

mode-specific additional terms (e.g. waiting time for public transport) may be added separately. 

A more specific scoring method has been developed based upon the initial function and some 

additional variables have been added. Moreover, the function has been categorized by travelers’ 

socio-professional categories in order to integrate the different behavior of travelers according to 

their personal attributes. Furthermore, this categorization could help us to differentiate the 

similar daily activity pattern of groups of individuals according to their main daily activity tour. 

The proposed scoring function is the following one: 

𝑆′𝑡𝑟𝑎𝑣,𝑐𝑎𝑡 = 𝜅𝑢𝑡 × 𝐶𝑚,𝑐𝑎𝑡 + 𝛽𝑡𝑟𝑎𝑣,𝑚,𝑐𝑎𝑡 × (𝜅𝑖𝑣𝑡 × 𝑡𝑖𝑣𝑡 + 𝜅𝑤𝑡 × 𝑡𝑤𝑡) + 𝛽𝑑𝑖𝑠𝑡,𝑚,𝑐𝑎𝑡 × 𝑑𝑡𝑟𝑎𝑣 +

𝜈𝑐𝑜,𝑚,𝑐𝑎𝑡 + 𝛾𝑝𝑙,𝑚,𝑐𝑎𝑡 (2) 

where  

 𝜅𝑢𝑡 is the user trust factor which equals to “1” for all modes except Robo-Taxi 

 𝐶𝑚,𝑐𝑎𝑡 is the constant utility of mode 𝑚 by traveler category 𝑐𝑎𝑡 

 𝛽𝑡𝑟𝑎𝑣,𝑚,𝑐𝑎𝑡 is the marginal disutility of travel duration of mode 𝑚 by traveler category 

𝑐𝑎𝑡 

 𝜅𝑖𝑣𝑡 is the willingness-to-use factor of in-vehicle travel time utility which equals to “1” 

for all modes except Robo-Taxi 

 𝑡𝑖𝑣𝑡 is the in-vehicle travel time 

 𝜅𝑤𝑡 is the willingness-to-use factor of waiting time utility which equals to “1” for all 

modes except Robo-Taxi 

 𝑡𝑤𝑡 is the waiting time 

 𝛽𝑑𝑖𝑠𝑡,𝑚,𝑐𝑎𝑡 is the marginal disutility of travel distance for mode 𝑚 by traveler category 

𝑐𝑎𝑡 

 𝑑𝑡𝑟𝑎𝑣 is the travel distance 

 𝜈𝑐𝑜,𝑚,𝑐𝑎𝑡 is the dummy factor of household car ownership (one, two and more) for mode 

𝑚 by traveler category 𝑐𝑎𝑡 
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 𝛾𝑝𝑙,𝑚,𝑐𝑎𝑡 is the dummy factor of parking availability level at destination (medium and 

high) for mode 𝑚 by traveler category 𝑐𝑎𝑡 

All parameters except additional factors are derived from the utility functions estimated 

for each socio-professional category. As a result, the respective Value-of-Travel-Time (VTT) is 

included implicitly in the marginal disutility of travel duration. For Robo-Taxis, given that this 

mode is not yet widely available and consequently the marginal disutility cannot be estimated 

from the revealed preferences and discrete choice model, another approach has been devised. 

According to a recent survey made in France that addressed 457 persons with different individual 

attributes and current modes, car users are much more likely to use Robo-Taxis when the service 

is proposed with a fixed monthly cost and unlimited rides (Al-Maghraoui, 2019). Based on this 

survey, we assume that the marginal disutility of in-vehicle travel time for Robo-Taxi is similar 

to individually owned cars. Moreover, the marginal disutility of waiting time is assumed ten 

times bigger. These naïve assumptions do not fully reflect the real behavior of travelers 

regarding the use of a future Robo-Taxi service, but given the purpose of this study, i.e. to 

explore the impact of Robo-Taxi user trust and willingness-to-use variations, those assumptions 

are acceptable.  

The above-mentioned survey shows that user trust varies according to the age and gender. 

In general, men are more likely to use a Robo-Taxi than women. Similarly, younger persons are 

more likely to use Robo-Taxis in comparison to older ones (Al-Maghraoui, 2019). In our 

simulation, in order to integrate user trust, we assume that the constant utility of mode Robo-

Taxi varies according to those attributes. This is given by using variable user trust factor: 

𝜅𝑢𝑡 = 2 −
(𝜅𝐴𝑔𝑒+𝜅𝑆𝑒𝑥)

2
  (3) 

where different variations with the mean value equal to one are supposed for age factor 𝜅𝐴𝑔𝑒 and 

gender factor 𝜅𝑆𝑒𝑥. These variations are derived from the results of the aforementioned survey 

and the distribution graph is based on it (see Fig. 1). Concerning gender, two fixed values are 

assumed for the distribution. Additionally, a different variation is supposed for the age 

preference factor 𝜅𝐴𝑔𝑒: for both persons younger than 45 years and older than 60 constant values 

are considered respectively, and for middle-age travelers this factor changes linearly. 
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Fig. 1  Distribution graphs of Robo-Taxi user systematic taste variation factors, a Sex, b Age, c Income. 

According to the survey results, the Robo-Taxi willingness-to-use  is strongly correlated 

to the household income (Al-Maghraoui, 2019). Therefore, we assumed that the perception of in-

vehicle and waiting times varies with income: 

𝜅𝑖𝑣𝑡 =
1

𝜅𝐼𝑛𝑐𝑜𝑚𝑒
  (4) 

𝜅𝑤𝑡 = 𝜅𝐼𝑛𝑐𝑜𝑚𝑒   (5) 

where the in-vehicle factor 𝜅𝑖𝑣𝑡 is inversely correlated to income. As wealthy persons are more 

likely to use this service compared to less fortunate, the income factor 𝜅𝐼𝑛𝑐𝑜𝑚𝑒 is assumed to 

grow logarithmically. However, because of the higher value of time for wealthy persons the 

waiting factor 𝜅𝑤𝑡 is assumed to vary directly when income growths.  

All of the above-mentioned attributes as well as socio-professional categories have been 

identified and defined for each traveler in the population synthesis. 

Population synthesis 

The synthetic population is an essential input for multi-agent transport simulation. The 

population synthesis is based on the sociodemographic data of individuals and households. As 

this microdata is not available for the whole population, a synthetic population is generated. This 

is done by drawing households and individuals from microdata samples on a zonal level. In the 

case of multi-agent transport simulation, more detailed information related to the individuals’ 
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activity and travel patterns must be synthesized. In this research, we call the second process 

activity chain allocation. 

 As stated before, we aim to set the scoring function according to the socio-professional 

attributes of each individual. It is therefore mandatory to have those data for the population. 

Popular procedures for population synthesis include both the generation of a joint multiway 

distribution of all attributes of interest using iterative proportional fitting (IPF) and combinatorial 

optimization (CO). Recognizing their limitations, including the inability to deal with multilevel 

controls (e.g. controls on the socio-professional attributes), as well as the need for determining a 

joint multiway distribution, we have devised a novel method. The process is simple, while a set 

of households is drawn randomly from the sample, a multilevel controller measures the fitness of 

marginal synthetic and real data by zone and by attributes of interest. We call this procedure 

fitness‐based synthesize with multilevel controls (FBS-MC). An open source generator has been 

developed which is applicable for synthetic population generation for all large cities in France 

(Kamel et al., 2018). Once the synthetic population is generated, the next step is to allocate 

activity chains to each individual. This has been done using the frequency of each activity chain 

in the transport survey according to socio-professional attributes. By analyzing the transport 

survey of the case study area, we found that the activity chains are significantly correlated to 

those attributes, especially in the case of employed persons, students and people under 14 years 

(see Fig. 2).  

 

Fig. 2  Top ten activity chains of Rouen-Normandie metropolitan population and the frequency of socio-professional 

categories of individuals.  
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SCENARIO SETUP 

The base scenario that is used in this paper has been created for the Rouen-Normandie 

metropolitan area with a population of around 490,000 inhabitants (see Fig. 3). The synthetic 

population is generated from public use microdata (INSEE 2014) and the regional transport 

survey (EMD 2017) relying on a simulation-based synthesis. The multilevel controller has been 

set up to generate the population with the minimum errors for household numbers, age ranges 

and socio-professional category attributes. 

 

 

Fig. 3  a Simulation baseline scenario area with 240 population zones and around 490,000 inhabitants, b Fine-

grained road network of the city of Rouen. 

 

 For each individual of the population an activity chain is then assigned. This is done 

based on the recent transport survey analysis (EMD 2017). We have found 929 different activity 

chains for eight trip purposes in the observations including around 5,000 households and 11,000 

individuals, for which 124 are common for 75% of the surveyed people. All the activity chains 

are assigned according to the socio-professional categories by frequency into the synthetic 

population. 

In the next step, for each activity of individuals, a location is assigned. This process has 

been carried out based on the origin-destination estimation derived from the public use microdata 

and the regional transport survey. For each individual in the public use microdata census and 

accordingly in the synthetic population, the aggregated locations of home, study and work 

activities are known. In order to assign the relevant locations for other activities (i.e. other work, 

leisure, shopping, family/personal errands and escort) a simplified model has been developed. 

This model estimates the probability of destination zones according to the origins and 

destinations activity types. Once activity zones are known, the next categorical model assigns the 

(a) (b)
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exact location within each zone according to the facility’s specific type. The distribution has 

been done using the gravity distance model.  

The final step is to allocate the start time and the duration to each individuals’ activity. 

Statistics on these data have been measured from the regional transport survey. Subsequently, 

categorized models have been developed. Fig. 4 shows the plotted kernel distribution estimates 

of start time for different activity types. As shown in the figure, for almost all activity types there 

are two peak hours (in the morning and evening). For study trip purpose, the morning peak hour 

is much more important and deviation from this peak is more limited due to the strict start time 

of educational institutions. The second peak for work and other work activities originates from 

secondary activities (such as lunch or visit). The models for shopping and family/personal 

errands are relatively similar and only the evening peak hour for shopping lasts longer. The peak 

times for leisure/visit is shifted to the right and it seems that those activities are performed more 

during lunch or dinner times. The home activity start time here refers to returning to home 

between other activities during the day as well as the end of the daily activities. The peak start 

time for this activity match obviously with other ones. Only a small peak of the beginning of the 

day is present in this model, which is derived from the escort activity of homemakers in the 

survey. 

 

Fig. 4  Activity start time models estimated from regional transport survey (Rouen-Normandie EMD 2017). 
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Fig. 5 shows the plotted kernel distribution estimates of activity duration for different 

activity types. Activity duration models of study and work purposes are almost similar. The two 

peaks here are due to the middle activities, which are more home and leisure/visit ones. 

However, for other work (i.e. work at an unusual location, meetings, missions, etc.) the behavior 

of the model is completely different. In the case of shopping and family/personal errands, there 

is an important peak for a short duration and then, the frequency has an inverse correlation with 

the duration of the activity. For the home activity during the day, a similar behavior is given, 

with the difference that the correlation has a slighter slope.  

 

Fig. 5  Activity duration models estimated from regional transport survey (Rouen-Normandie EMD 2017). 

 

The described models have been used to assign time-related characteristics of the 

allocated activities to the synthetic population by socio-professional categories. The multi-agent 

simulation is performed over this fine-grained synthetic population. The next step is to set up the 

model. For this purpose, the utility functions for the transportation system of the case study area 
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have been estimated for each category based on the recent transport survey (EMD 2017). The 

scoring function has been set up accordingly (see Table 1).  

Table 1  Estimated parameters of categorized scoring function. 

 Employed Unemployed 
Retired or 

Pre-retired 

Students, unpaid trainees 

14 years of age or older 

Under 

14 years 
Homemakers 

Car       

𝐶 -3.6020 -2.7890 -2.5520 -3.8919 10.7037 -4.2870 

𝛽𝑡𝑟𝑎𝑣 -0.1062 -0.1290 -0.3794 -0.2962* -0.4286 -0.5477 

𝛽𝑑𝑖𝑠𝑡 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 

𝜈1 2.6257 3.3000 1.7200 1.8292 2.9565 3.0860 

𝜈≥2  3.3727 3.5930 2.4910 2.3111 3.9719 5.0510 

𝛾𝑚 -0.1465 2.3770 -0.4820 -1.7695 -15.2280 -0.1020 

𝛾ℎ -0.7282 -2.2050 0.1040 -1.4279 -15.1742 0.3920 

PT       

𝐶 -3.9290 -2.2850 -3.6290 -2.2643 11.4187 -4.6340 

𝛽𝑡𝑟𝑎𝑣 -0.0327 -0.0910 -0.2088 -0.2385* -0.2191 -0.2202 

𝜈1 -0.7330 0.0350 -1.0540 0.1292 -0.4358 0.2950 

𝜈≥2  -1.0170 0.1710 -1.7670 0.1848 -0.7283 1.0570 

𝛾𝑚 0.9463 -2.5320 1.4040 -1.4570 -14.6497 0.9190 

𝛾ℎ 0.5606 -1.0530 1.1650 -1.0114 -14.3791 1.0200 

Walk       

𝐶 0 0 0 0 0 0 

𝛽𝑡𝑟𝑎𝑣 -0.8137 -0.7236 -0.7308 -3.0852* -0.8051 -0.8708 

*These values represent an estimation based on the logarithm function of corresponding variables. 

 

It is assumed that the VTT for all trip purposes is 10 Euros per hour (DG Trésor). 

However, one could assume varied VTT in terms of trip purposes, which would result in 

estimations that are more accurate. It should be noted that the VTT by socio-professional 

category is implicitly considered in the marginal disutility of travel duration. According to the 

survey, the modal split of taxi is almost zero; as a result, the models do not include this mode. 

Based on data of the average French driver, the relevant non-fixed costs (the marginal disutility 

of travel distance by car) is assumed 0.3 Euro kilometer (DG Trésor). Likewise, the public 

transport price is set at 1.43 Euro per trip (ticket price when sold in book of 10 full fare tickets) 

and the walking speed at 5 km per hour.  

The simulation is afterwards calibrated according to the modal split of the case study area 

by varying the constant utility of modes. Concerning Robo-Taxis, as there is no revealed-

preferences data at hand, some assumptions for the valuation of parameters are required. As 

stated before, two marginal disutility of travel duration measures are assumed for Robo-Taxi: in-

vehicle and waiting times. For in-vehicle time, the marginal disutility of travel duration is 

considered the same as for car, and for the waiting time, it is assumed ten times bigger. 

Additionally, in accordance with the survey analysis applied in this research, it is assumed that 
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Robo-Taxis has the fixed monthly cost rate (one and a half times bigger than the fixed cost of 

car) with unlimited rides for the users.  

SIMULATION RESULTS 

In order to serve the 1,508,160 person-trips ten scenarios with various Robo-Taxi fleet sizes have 

been generated. Four initial distribution points are assumed in the simulation. The service has 

been considered available during the whole day. All Robo-Taxi requests are made by customers 

right before departure, there are no in advance bookings. Moreover, ingress and egress times are 

supposed to be one and two minutes respectively. These scenarios have been evaluated with and 

without considering user trust and willingness-to-use and analyzed in terms of fleet usage, 

average vehicle on-board mileage and average passenger waiting time.  

Fig. 6 shows modal shares for all scenarios. The results illustrate that Robo-Taxi modal 

share increases proportionally to the fleet size. Consistent with findings in the literature, modal 

shifts toward Robo-taxi come mainly from public transport, car and walk, but the use of public 

transport decreases significantly relative to other ones (Hörl et al., 2016; Martinez and Viegas, 

2017; Vinet and Zhedanov, 2011). The overall changes on Robo-Taxi modal shares for the same 

fleet sizes vary from 1.5% to 4.4% with two significant values for the fleet sizes of 2-3k and 7k 

vehicles. 

 

Fig. 6  Modal split comparison for various fleet sizes without and with considering user trust and willingness-to-use.   

 

By comparing passenger wait time, service demand and Robo-Taxi with passenger on-

board mileage with and without considering user trust and willingness-to-use, we observe that 

these indicators vary for all fleet sizes with unlike ratio but with similar trends (see Fig. 7). The 

difference on average passenger waiting time is positive and less than 1.1 minute for all 

scenarios. However, service demand and average vehicle with passenger on-board driving 

5
5
.1

5
5
.1

5
4
.9

5
4
.8

5
4
.4

5
4
.4

5
4
.1

5
3
.9

5
3
.8

5
3
.7

5
3
.4

5
3
.4

5
3
.3

5
3
.0

5
3
.1

5
3
.0

5
2
.9

5
2
.8

5
2
.6

5
2
.6

3
.1

3
.2

5
.0 5
.2

6
.8 7

.0 8
.2

8
.6

9
.3

9
.6

1
0
.3

1
0

.6

1
1

.1

1
1

.6

1
1
.8

1
2
.1

1
2
.5

1
2

.7

1
3
.2

1
3

.41
0
.2

1
0
.0

8
.9

8
.9 7
.9

7
.9 7
.1 7

.0
6
.4

6
.4

5
.9

5
.9

5
.4

5
.4

5
.1

5
.2

4
.7

4
.8

4
.5

4
.5

3
0
.4

3
0
.4

3
0
.0

2
9
.9

2
9
.8

2
9
.6

2
9
.6

2
9
.4

2
9
.5

2
9
.2

2
9
.4

2
9
.1

2
9
.2

2
9
.0

2
9
.0

2
8
.8

2
8
.9

2
8
.6

2
8
.7

2
8
.5

1.
2

1.
2

1.
1

1.
1 1.
1

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

w/o  w/ w/o  w/ w/o  w/ w/o  w/ w/o  w/ w/o  w/ w/o  w/ w/o  w/ w/o  w/ w/o  w/

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

M
o

d
a

l 
s

p
li

t 
(%

)

Robo-Taxi fleet size (number of vehicules)

Bike

Walk

Public
Transport

Robo-Taxi

Private Car



14 

mileages have two major changes in the fleet sizes of 3k and 7k vehicles. In fact, for the scenario 

without considering individual taste variation, the maximum demand with all vehicles occupied 

at least for one hour is met with about 6k Robo-Taxis in operation; while considering user trust 

and willingness-to-use , more than 7k Robo-Taxis are needed to reach this goal (see Fig. 8). 

Therefore, the significant changes for fleet size of 7k comes mainly from the overall demand. 

However, for the scenario with 3k vehicles important differences occur due to some other 

factors.  

 

Fig. 7  Robo-Taxi service and user related relative changes before and after the introduction of user trust and 

willingness-to-use for various Robo-Taxi fleet sizes a Average passenger waiting time differences, b Service 

demand changes, c Average vehicle on-board driving mileage changes  
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Fig. 8  Hourly Robo-Taxi in-service rate a with, and b without considering user trust and willingness-to-use. 

 

The changes on Robo-Taxi service demand after introducing user trust and willingness-

to-use are due to the user’s variation in terms of sociodemographic attributes and socio-

professional profiles (see Table 2). As mentioned before, women and elder people are less likely 

to use a Robo-Taxi. As a result, retired people and homemakers used less Robo-Taxis in almost 

all scenarios compared to those when user trust and willingness-to-use are neglected. In the 

contrary, students and persons under 14 years used this mode more significantly. However, the 

average trip distance especially for persons under 14 years is shorter than for retired people and 

homemakers (see Table 3). Thus, the fleet is available to serve larger number of users and the 

overall demand increases for all fleet sizes. Regarding to employed people, the change on Robo-

Taxi usage remains minor for all scenarios. However, for unemployed people some fluctuations 

could be observed especially for the fleet size of 7k vehicles. Once there are enough vehicles to 

serve all demands (e.g. more than 7k), the indicators become more stable except for 

homemakers, which is due to the limited number of users in this profile. 
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Table 2  Changes on Robo-Taxi users grouped by socio-professional categories after considering user trust and 

willingness-to-use. 

Fleet size 

Profiles 

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 

Employed -2% 1% 4% 0% 2% 2% 4% 3% 1% 3% 

Unemployed 5% 0% 3% 1% 8% 1% 14% 1% 6% 3% 

Retired or pre-retired 4% -31% -12% -11% -31% -24% -18% -16% -18% -17% 

Students >14 years 12% 36% 39% 35% 24% 26% 25% 13% 15% 12% 

< 14 years of age 5% 11% 24% 5% 6% 9% 7% 6% 8% 10% 

Homemakers -29% -21% -31% -2% -28% -42% -16% -28% -7% -11% 

 

Table 3  Comparison of entire population attributes and average trip distance by socio-professional categories.   

 
Population, female / 

male (% of total) 

Average 

Age (year) 

Average Household 

Income (€) 

Average Trip 

Distance (m) 

Employed  51.0 / 49.0 41 26 623 15 190 

Unemployed 48.8 / 51.2 35 22 968 13 516 

Retired or pre-retired 56.9 / 43.1 73 25 272 14 209 

Students >14 years  42.4 / 47.6 19 29 715 14 001 

< 14 years of age 49.2 / 50.8 7 29 415 9 482 

Homemakers 98.1 / 1.9 49 29 517 16 196 

 

As discussed before, travelers with different socio-professional categories and 

consequently dissimilar daily trip patterns have a different willingness-to-use Robo-Taxis for 

their trips. Therefore, by introducing this variation, Robo-Taxis are used in a different temporal 

pattern. The hourly Robo-Taxi in-service rates of all scenarios shown in Fig. 8 prove this 

variation. We can observe here two peaks related to peak hours. As illustrated by color intensity, 

peak areas corresponding to the case of considering user trust and willingness-to-use have higher 

values especially for the fleet size of between 2k and 7k vehicles. Meanwhile, almost all Robo-

Taxis are in service from 8 a.m. to 8 p.m. in the second and third scenarios in which individual 

taste variation are considered. As mentioned above, the service use for students, persons under 

14 years, retired people and homemakers have significantly changed in those scenarios and 

especially in the case of a fleet size of 3k. People of different profiles have different temporal trip 

pattern, particularly those related to their secondary activities. However, these results can be 

intensely different for other case study areas with dissimilar sociodemographic structure. 

The other observation obtained from Fig. 8 is that the maximum fleet usage occurs when 

the fleet size is between 2k and 3k in both cases, with and without considering user trust and 

willingness-to-use. One can conclude that in the case of minimum fleet size (1k), the passenger 

wait time is relatively high and the users choose other means of transportation instead of Robo-

Taxi. Meanwhile, by increasing the fleet size, the passenger waiting time decreases and the 
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utility of using Robo-Taxi becomes relatively competitive compared to other modes until the 

maximum demand reached.  

The fleet usage is one of the key parameters that helps planners to size the fleet and to 

evaluate service performance. In order to illustrate the differences in two cases, we further 

compared relative changes on average daily and peak hour in-service rates (see Fig. 9). The 

average in-service rate has been defined as the total duration of in-service drive over the total 

duration of all tasks (including stay task, when there is no demand for a Robo-Taxi). The peak 

hours are assumed 8-10 a.m. and 5-7 p.m. As shown in the figure, while average daily in-service 

rate changes after introducing individual taste variation are significant for the fleet sizes of 3k 

and 7k vehicles, for the fleet sizes of less than 5k, the average morning peak hour in-service rate 

remains unchanged. This is due to the excessive demand for the Robo-Taxi service in the 

morning peak. Considering average evening peak hour in-service rate, the changes are more 

scattered with a significant increase for the feet size of 7k vehicles. 

 

Fig. 9  Comparison of average in-service rate changes before and after the introduction of user trust and willingness-

to-use for various Robo-Taxi fleet sizes for a all day, b morning peak hour, and c evening peak hour. 

 

The overall fleet usage rate during a day could meaningfully change service profits of 

operators. As shown in Fig. 8, by introducing individual taste variation the hourly service use in 

off-peak hours changes especially in the case of the small fleet sizes. Fig. 10 illustrates this 

difference; we observe an important alteration for the fleet size of 3k vehicles. This is also the 

reason for which the other key indicators for this fleet size change expressively.  
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Fig. 10  Comparison of average in-service rate changes for off-peak hours before and after the introduction of user 

trust and willingness-to-use for various Robo-Taxi fleet size. 

 

These results indicate that by introducing user trust and willingness-to-use, the significant 

changes are occurred for two fleet sizes. The first one in the case of the fleet required to meet the 

maximum demand (with all vehicles in-service at least for one hour), and the second one for the 

fleet size in which the maximum usage is approximately met (less than about a half size of the 

first case). Meanwhile, in the latter case, as all the vehicles are in-service in the morning and 

evening peak hours, off-peak Robo-Taxi demand becomes notably the main cause to affect 

overall service indicators. As mentioned before, this is largely due to the diversity of users 

having different temporal daily trip patterns. Unlike other indicators, the passenger waiting times 

remain almost stable for all fleet sizes.  

CONCLUSION AND OUTLOOKS 

In this paper, the scoring function of a multi-agent simulator (MATSim) has been categorized 

and modified to integrate user trust and willingness-to-use in the simulation. The transportation 

system of the Rouen-Normandie metropole area with ten different Robo-Taxi fleet sizes was 

simulated. The outputs are analyzed in terms of fleet usage, temporal distribution of in-service 

rides, customer waiting times and average Robo-Taxi on-board driving mileage throughout a 

day. The results reveal significant changes not only for the fleet size required to meet maximum 

demand, but also for a smaller fleet size. User diversity in terms of socio-professional profiles 

(with different temporal trip pattern) and different value of waiting time are the main reasons for 

those changes. 

The above discussions of user trust, willingness-to-use and travel demand pattern 

variations are key to operator costs and system profitability. Fleet variation can have important 
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consequences for costs and customer experience. Moreover, operators will want to size their 

fleets to maximize profits, while offering users a relatively high level of service. The results 

indicate that Robo-Taxi fleet sizing must be taken into account according to the demographic 

structure of the city or region of interest as well as the preferences variation of its inhabitants.  

Future work aims at extending our current framework in order to do a similar analysis for 

Robo-Taxi ride-share services. Assessing the spatial aspect of services (e.g. initial distribution 

points, relocation strategy, charging station locations in the case of electric Robo-Taxis, etc.) by 

considering the spatial dispersion of travelers with different profiles can result in clearer 

predictions on the use of Robo-Taxis in real-world scenarios. In the future research, taking into 

consideration vehicle-related aspects such as Robo-Taxi capacity and range could also help 

operators to configure their fleet specification according to the sociodemographic structure of 

people in the service area.  
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