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Introduction

The general objective of this note is to determine conditions on a bounded group of isomorphisms of Banach spaces that ensure the existence of a locally uniformly rotund (LUR) renorming invariant under the action of this group. In particular, we will be interested in this context in the notion of lightness for such groups.

1.1. Light groups. A frequent problem in functional analysis is to determine under which conditions weak convergence and norm convergence coincide. For example, it is well-known that conditions of convexity of the norm of a Banach space ensure that weak and strong convergence are equivalent on its unit sphere. The corresponding problem for isomorphisms of Banach spaces (or more generally of locally convex spaces) was studied by Megrelishvili in [START_REF] Megrelishvili | Operator topologies and reflexive representability, Nuclear groups and Lie groups[END_REF] in the context of group representations, using the concept of fragmentability.

Given a (real) Banach space X, we denote by L(X) the set of bounded linear operators on X, and by GL(X) the group of bounded isomorphisms of X. We also denote by Isom(X) the group of surjective linear isometries of X. If G is a subgroup of GL(X), we write G GL(X). Recall that given a Banach space X, the Strong Operator Topology on L(X) is the topology of pointwise convergence, i.e. the initial topology generated by the family of functions f x : L(X) → X, x ∈ X, given by f x (T ) = T x, T ∈ L(X), and the Weak Operator Topology on L(X) is generated by the family of functions f x,x * : L(X) → R, x ∈ X, x * ∈ X * , given by f x,x * (T ) = x * (T x), T ∈ L(X).

Megrelishvili gives the following definition.

Definition 1.1 ([17]

). A group G GL(X) of isomorphisms on a Banach space X is light if the Weak Operator Topology (WOT) and the Strong Operator Topology (SOT) coincide on G.

Observe that since the two operator topologies are independent of the specific choice of norm on X, the same holds for lightness of G.

Well-known examples of light groups are the group U(H) of unitary operators on a Hilbert space H. However, the main result of [START_REF] Megrelishvili | Operator topologies and reflexive representability, Nuclear groups and Lie groups[END_REF] concerning light groups indicates that the result is more general. Recall that a Banach space X has the Point of Continuity Property (PCP) if for every norm-closed non-empty bounded subset C of X, the identity on C has a point of continuity from the weak to the norm topology: Theorem 1.2 ( [START_REF] Megrelishvili | Operator topologies and reflexive representability, Nuclear groups and Lie groups[END_REF]). If X is a Banach space with the Point of Continuity Property (PCP) and if G GL(X) is bounded in norm, then G is light.

In particular, if X has the Radon-Nikodym Property (RNP) (e.g. if X is reflexive or is a separable dual space), then every bounded subgroup of GL(X) is light. For example, the isometry group of 1 , Isom( 1 ), is light.

We note here that in the literature (and indeed in [START_REF] Megrelishvili | Operator topologies and reflexive representability, Nuclear groups and Lie groups[END_REF]) PCP sometimes appears as the formally weaker condition "every weakly-closed non-empty bounded subset has a weakto-norm point of continuity for the identity". However, as was pointed out to us by G. Godefroy, if X satisfies this definition and F is norm-closed and bounded, then any point of continuity of the weak closure F w belongs to F , so the two definitions are equivalent.

In fact, if x ∈ F w is a weak-to-norm point of continuity for the identity, there exists a net (x α ) α∈I ⊂ F such that x α w -→ x. Hence, x α • -→ x and, since F is norm-closed, x ∈ F .

1.2. Bounded non-light groups. A natural question that arises from Megrelishvili's result is to investigate in which respect his result is optimal, and whether "smallness" assumptions on G or weaker assumptions than the PCP on X could imply that G is light. We show (Theorem 4.6) that any separable space containing an isomorphic copy of c 0 admits a bounded cyclic group of isomorphisms which is not light. This shows that we cannot really expect further general results in this direction.

Megrelishvili gives as example of a non-light group the group Isom(C([-1, 1] 2 )). His proof uses a construction of Helmer [START_REF] Helmer | Joint continuity of affine semigroup actions[END_REF] of a separately continuous group action on [-1, 1] 2 that is not jointly continuous, and the equivalence of pointwise compactness and weak compactness of bounded subsets of C(K). This leads to the following question: Question 1.3. For which compact sets K is the isometry group Isom(C(K)) not light?

We first prove (Proposition 4.3) that the isometry group of c, the space of real convergent sequences, is not light. Neither is the isometry group of C({0, 1} N ) (Corollary 5.6). On the other hand, as a consequence of Theorem 5.9, we show that the isometry group of C[0, 1] is light, while those of the spaces C([0, 1] n ), n ≥ 2, are not light. These constructions simplify the initial example of Megrelishvili.

1.3. Light groups and LUR renormings. In another direction, we study the relation between light groups and the existence of LUR renormings invariant under the action of the group. Recall that a norm • on X is rotund or strictly convex if whenever the vectors x, y belong to the unit sphere S X of X and x + y = 2, x = y. It is locally uniformly convex (LUC) or locally uniformly rotund (LUR) at a vector x 0 ∈ X if whenever (x n ) n∈N is a sequence of vectors of X such that lim x n = x 0 and lim x 0 +x n = 2 x 0 , lim x n -x 0 = 0. Another equivalent definition (in fact, the original Lovaglia's definition) is the following: the norm is LUR at a vector x 0 ∈ S X if for every ε > 0 there exists δ = δ( , x 0 ) > 0 such that

x + y 2 ≤ 1 -δ whenever x -y ≥ ε and y = 1.
The norm is said LUR in X if it is LUR at every point x 0 = 0 of X (or, equivalently, of S X ). The property of the dual norm • * on X * being strictly convex or LUR is closely related to the differentiability of the norm • on X, in the senses of Fréchet and Gateaux respectively. All (real) separable Banach spaces admit an equivalent LUR renorming. For this and much more on renormings of Banach spaces, see [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF].

A fundamental result in the study of LUR renorming is the following theorem, due to Lancien (see [START_REF] Lancien | Dentability indices and locally uniformly convex renormings[END_REF]): [START_REF] Lancien | Dentability indices and locally uniformly convex renormings[END_REF]). If X is a separable Banach space with the RNP, X admits an isometry invariant LUR renorming.

Theorem 1.4 ([
If G GL(X, • ) is a bounded group of isomorphisms on X, the norm on X defined by |||x||| = sup g∈G gx , x ∈ X, is a G-invariant renorming of X.
In other words, G Isom(X, ||| • |||). So a consequence of Lancien's Theorem 1.4 is that whenever X is a separable space with the RNP and G is a bounded group of isomorphisms on X, there exists a G-invariant LUR renorming of X.

The existence of G-invariant LUR renormings for general groups of isomorphisms G was first investigated by Ferenczi and Rosendal in [START_REF] Ferenczi | On isometry groups and maximal symmetry[END_REF]. In that paper, problems of maximal symmetry in Banach spaces were studied, analyzing the structure of subgroups of GL(X) when X is a separable reflexive Banach space. An example of a super-reflexive space with no maximal bounded group of isomorphisms was also exhibited in [START_REF] Ferenczi | On isometry groups and maximal symmetry[END_REF].

The relation between light groups and G-invariant LUR renormings is given by Theorem 2.3. We observe that if a Banach space X admits a G-invariant LUR renorming, then G is light. In fact, this is true even if the norm is LUR only on a dense subset of S X . We also show that the converse assertion is false: although the isometry group of C[0, 1] is light, C[0, 1] admits no strictly convex isometry invariant renorming (Corollary 5.12). This link between the existence of a G-invariant LUR renorming and the lightness of G is a natural one: if X is a Banach space with an LUR norm . , the weak topology and the norm topology coincide on the unit sphere of (X, . ). 1.4. Light groups and distinguished families. In [START_REF] Ferenczi | Countable groups of isometries on Banach spaces[END_REF], Ferenczi and Galego investigated groups that may be seen as the group of isometries of a Banach space under some renorming. Among other results, they prove that if X is a separable Banach space and G is a finite group of isomorphisms of X such that -Id ∈ G, X admits an equivalent norm ||| • ||| such that G = Isom(X, ||| • |||). They also prove that if X is a separable Banach space with LUR norm • and if G is an infinite countable bounded isometry group of X such that -Id ∈ G and such that G admits a point x ∈ X with inf g =Id gx -x > 0, then G = Isom(X, ||| • |||) for some equivalent norm ||| • ||| on X. A point x satisfying the condition inf g =Id gx -x > 0 is called in [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF] a distinguished point of X for the group G.

In [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF], Ferenczi and Rosendal generalized results of [START_REF] Ferenczi | Countable groups of isometries on Banach spaces[END_REF] to certain uncountable Polish groups, and also defined the concept of distinguished family for the action of a group G on a Banach space X. It is clear that if G is an isometry group with a distinguished point, G is SOT-discrete. However, the following question remained open: if G is an isomorphism group of X which is SOT-discrete, should X have a distinguished point for G? In Proposition 6.1 we will see that the answer to this question is negative, and will give an example of an infinite countable group of isomorphisms G of c 0 which is SOT-discrete but does not admit a distinguished point for G. In addition, this group is also not light.

1.5. Light groups on quasi-normed spaces. Although Megrelishvili has defined the concept of light group only for groups of isomorphisms on locally convex spaces, we can extend the definition to quasi-normed spaces, even if they are not locally convex. We finish this article by investigating whether the isometry groups of the quasi-normed spaces p and L p [0, 1], 0 < p < 1, are light.

LUR renormings and light groups

Let G be a bounded group of isomorphisms on a Banach space (X, • ). In this section we are interested in the existence of a G-invariant LUR renorming of X, i.e. in the existence of an equivalent norm ||| • ||| on X which is both invariant under the action of G and is LUR; or in the existence of a G-invariant dense LUR renorming, meaning a renorming which is invariant under the action of G and is LUR on a dense subset of S X . When G = Isom(X, • ) we shall talk about isometry invariant renormings. Our first result is the following: Proposition 2.1. Let X be a Banach space and let G GL(X). If G is SOT-compact and if X admits an LUR renorming, X admits a G-invariant LUR renorming.

Proof. Suppose that • is an equivalent LUR norm on X. The formula

|||x||| = sup T ∈G T x , x ∈ X,
defines a G-invariant LUR renorming of X. Indeed, suppose that x n , n ∈ N, and x are vectors of X such that |||x n ||| = |||x||| = 1 for every n ∈ N and lim |||x n + x||| = 2. Then we can find elements T n , n ∈ N, of G such that lim T n x n + T n x = 2. By SOT-compactness of G we can assume without loss of generality that T n tends SOT to some element T of G, from which it follows that T n x n + T x converges to 2. Since T n x n ≤ |||x n ||| = 1 for every n ∈ N and T x ≤ |||x||| = 1, we deduce that T x = 1 and that T n x n converges to 1. In particular, if we set, for every n ∈ N, y n = Tnxn Tnxn , then y n belongs to the unit sphere of (X, • ) and

y n + T x = 1 T n x n T n x n + T n x n T x → 2.
By the LUR property of • at the point T x, we deduce that y n converges to T x. This means that T n x n converges to T x. So |||x n -x||| = |||T n x n -T n x||| converges to 0 since both T n x n and T n x converge to T x. This shows that ||| • ||| is LUR.

It is also worth mentioning that every SOT-compact group of isomorphisms is light:

Proposition 2.2. Let G GL(X) be a group of isomorphisms of a Banach space X. If G is SOT-compact, then G is light.
Proof. The assumption implies that G is also WOT compact, since the WOT is weaker than the SOT. However, the WOT is also Hausdorff, and so the two topologies must agree on G. In other words, G is light.

In [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF], Ferenczi and Rosendal investigate LUR renormings in the context of transitivity of norms. Recall that a norm • on X is called transitive if the orbit O(x) of every point x ∈ S X under the action of the isometry group Isom(X) is the whole sphere S X . If for every x ∈ X the orbit O(x) is dense in S X we say that • is almost transitive, and if the closed convex hull of O(x) is the unit ball B X , we say that • is convex transitive. Ferenczi and Rosendal proved that if an almost transitive norm on a Banach space is LUR at some point of the unit sphere, it is uniformly convex. They also proved that if a convex transitive norm on a Banach space is LUR on a dense subset of the unit sphere, it is almost transitive and uniformly convex.

In the next Theorem, we exhibit a relation between the existence of LUR renormings and light groups.

Theorem 2.3. Let G GL(X) be a group of isomorphisms of a Banach space X. If X admits a G-invariant renorming which is LUR on a dense subset of S X , then G is light.

Proof. Let . be a G-invariant renorming of X which is LUR on a dense subset of S X . Let (T α ) be a net of elements of G which converges WOT to the identity operator Id on X, and assume that T α does not converge SOT to Id. Let x ∈ S X be such that T α x does not converge to x. Without loss of generality, we can suppose that the norm is LUR at x, and that there exists δ > 0 such that, for every α, T α x -x ≥ δ. Since T α x = x = 1 for every α, the LUR property forbids to have lim T α x + x = 2. So we can assume that there exists ε > 0 such that T α x + x ≤ 2 -ε for every α.

Let φ ∈ X * with φ = 1 be such that φ(x) = 1. Since T α converges WOT to Id, φ(T α x) → 1. On the other hand,

2 -δ ≥ T α x + x = max ψ∈X * ψ =1 |ψ(T α x + x)| ≥ |φ(T α x) + 1| for every α,
which contradicts the WOT convergence of T α to Id. Remark 2.4. In fact, the proof of Theorem 2.3 gives us a formally stronger result: if X admits a G-invariant renorming which is LUR on a dense subset of S X then G is orbitwise light. Megrelishvili defines in [START_REF] Megrelishvili | Fragmentability and representations of flows[END_REF] a group G GL(X) as orbitwise light (or orbitwise Kadec) if for every x ∈ X the orbit O(x) = {T x ; T ∈ G} is a set on which the weak and the strong topologies coincide. It is readily seen that if G is orbitwise light, then it is light, but whether the converse holds is still an open question.

Light Groups and Distinguished Points

As recalled in the introduction, Lancien proved in [START_REF] Lancien | Dentability indices and locally uniformly convex renormings[END_REF] that if X is separable with the RNP, X admits an isometry invariant LUR renorming. Although separable spaces always admit LUR renormings, the generalization of Lancien's result to all separable spaces is false. For example, if X = C([-1, 1] 2 ) and G = Isom(X) then, since G is not light [START_REF] Megrelishvili | Operator topologies and reflexive representability, Nuclear groups and Lie groups[END_REF], there is by Theorem 2.3 no equivalent G-invariant (not even dense) LUR renorming. Another example mentioned in [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF] is the case where

X = L 1 [0, 1] and G = Isom(L 1 [0, 1]).
In this case there is not even a strictly convex G-invariant renorming.

Here we discuss conditions which clarify the relations between the two properties of a group G GL(X) being light and X having a G-invariant LUR renorming, in the case when G is SOT-discrete. The following notion was defined in [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF]. Definition 3.1. Let X be a Banach space, let G GL(X) be a bounded group of isomorphisms of X, and let x ∈ X. We say that x is distinguished for G (or for the action of G on X) if inf

T =Id T x -x > 0. If {x 1 , . . . , x n } is a finite family of vectors of X, then it is distinguished for G if inf T =Id max 1≤i≤n T x i -x i > 0, or, equivalently, if the n-tuple (x 1 , . . . , x n ) is distinguished for the canonical action of G on X n .
This notion does not depend on the choice of an equivalent norm on X. Note also that G is SOT-discrete exactly when it admits a distinguished finite family of vectors. We also have, considering the adjoint action of G on X * :

Lemma 3.2. Assume that G GL(X) is light. If G acts as an SOT-discrete group on X, then G acts as an SOT-discrete group on X * . Proof. Define ψ : G → GL(X * ) by setting ψ(T )(x * ) = x * • T -1 for every T ∈ G and
x * ∈ X * . We want to show that ψ(G) is an SOT-discrete subgroup of GL(X * ). For this it suffices to show the existence of ε > 0 and x * 1 , . . . , x * n ∈ S X * such that the only element

T of G such that ψ(T )(x * i ) -x * i < ε for every 1 ≤ i ≤ n is the identity operator Id X on X.
Since G is light and acts as an SOT-discrete group on X, it is WOT-discrete. So there exist ε > 0, x 1 , . . . , x m ∈ S X and x * 1 , . . . , x * n ∈ S X * such that the only element T of G such that |x * i (T -1 x j -x j )| < ε for every 1 ≤ i ≤ n and 1 ≤ j ≤ m is T = Id X . The conclusion follows immediately. Lemma 3.3. Let X be a Banach space, let G be a bounded subgroup of GL(X), and let {x 1 , . . . , x n } be a distinguished family of vectors for the action of G on X. Let • be a G-invariant norm on X which is LUR at x i for every 1 ≤ i ≤ n. For any functional

x * i ∈ S X * , • * such that x * i (x i ) = x i for every 1 ≤ i ≤ n, the family {x * 1 , . . . , x * n } is distinguished for the action of G on X * . Proof. Assume that x i = 1 for every 1 ≤ i ≤ n. Let α = inf T =Id X max 1≤i≤n T x i -x i > 0. For every T = Id X , choose 1 ≤ i ≤ n such that T -1 x i -x i ≥ α.
By the LUR property of the norm at x i , there exists ε > 0 depending on α but not on i such that

T -1 x i + x i 2 -ε. So x * i (T -1 x i ) 1 -ε.
From this it follows, using the notation introduced in the proof of Lemma 3.2 above, that ψ(T

)(x * i )(x i ) -x * i (x i ) -ε, so that ψ(T )(x * i ) -x * i ≥ ε. This being true for every T = Id X , {x * 1 , . . . , x * n } is distinguished for the action of G on X * .
As a direct corollary, we obtain: Corollary 3.4. Let X be a Banach space, let G GL(X) be SOT-discrete, and assume that X admits a G-invariant dense LUR renorming. If there exists a distinguished family of cardinality n for the action of G on X, there also exists a distinguished family of cardinality n for the action of G on X * .

Bounded groups which are not light

Isometry groups are especially relevant to our study. We introduce the following definition:

Definition 4.1. A Banach space X is light if Isom(X) is a light subgroup of GL(X).
Observe that since the isometry group of a Banach space (X, . ) is not invariant by equivalent renorming, the notion of lightness for a Banach space depends very much on the choice of the norm. In our terminology, Megrelishvili proves in [START_REF] Megrelishvili | Operator topologies and reflexive representability, Nuclear groups and Lie groups[END_REF] that all spaces with the PCP are light but that C([0, 1] 2 ) is not light. Also, we have the following example:

Example 4.2. The space c 0 is light.

In fact, every isometry T of c 0 (endowed with the usual supremum norm) has the form

T ((x k ) k∈N ) = (ε k x σ(k) ) k∈N , (x k ) k∈N ∈ c 0 , where (ε k ) k∈N ∈ {-1, 1} N and σ is a permutation of N. Denote for every i ∈ N by ϕ i the i th coordinate functional on c 0 . Let (T α ) be a net in Isom(c 0 ), such that T α WOT -→ Id. Write each T α as T α ((x k ) k∈N ) = (ε α,k x σα(k) ) k∈N , (x k ) k∈N ∈ c 0 , with (ε α,k ) k∈N ∈ {-1, 1}
N and σ α is a permutation of N. we have for every x ∈ c 0 and every i ∈ N,

|ϕ i (T α x) -ϕ i (x)| = |ε α,i x σα(i) -x i | → 0.
Since this holds for every x belonging to the space c 00 of finitely supported sequences, we must eventually have σ α (i) = i and ε α,i = 1. Hence T α x -x → 0 for every x ∈ c 00 , and by density of c 00 in c 0 , T α x -x → 0 for every x ∈ c 0 .

Another proof of Example 4.2 is based on the observation that c 0 admits a particular LUR renorming, namely the Day's renorming given by

x D = sup    n k=1 x 2 σ(k) 4 k 1 2    , x ∈ c 0 ,
where the supremum is taken over all n ∈ N and all permutations σ of N (see [5, p. 69]). Since this renorming is isometry invariant, it follows from Theorem 2.3 that c 0 is light.

Note that the Day's renorming is actually defined on ∞ , and therefore on the space c of convergent real sequences. In view of Proposition 4.3 below, it may be amusing to observe that Day's renorming is not strictly convex on c (not even on a dense subset of S c ). In fact, it is not strictly convex at the point (1, 1, . . . ) since for every x = (x k ) k∈N ∈ c such that x ∞ = 1 and |x k | = 1 for infinitely many indices k, we have x D = (1, 1, . . . ) D .

We now provide an elementary example of a space which is not light. Proposition 4.3. There exists a subgroup G Isom(c) which has a distinguished point, but whose dual action on 1 is not SOT-discrete. In particular the space c is not light.

Proof. Define G as the subgroup of isometries T of c of the form

T ((x k ) k∈N ) = (ε k x k ) k∈N , (x k ) k∈N ∈ c,
where the sequence (ε k ) k ∈ {-1, 1} N is eventually constant. One easily sees that (1, 1, . . .) is a distinguished point for G. On the other hand, the dual space of c identifies isomorphically with 1 , where ϕ = (y k ) k∈N ∈ 1 acts on an element x = (x k ) k∈N ∈ c by the formula

ϕ(x) = y 1 lim k→∞ x k + ∞ k=2 y k x k-1 .
For every n ∈ N, define the operator T n ∈ G by setting, for every (x k ) k∈N ∈ c,

T n (x 1 , x 2 , . . . , x n-1 , x n , x n+1 , . . . ) = (x 1 , x 2 , . . . , x n-1 , -x n , x n+1 , . . . ).
Obviously T n SOT -→ Id, but for every n ∈ N and every x ∈ c we have

ϕ(T n (x)) = y 1 lim k→∞ (T n (x)) k + ∞ k=2 y k (T n (x)) k-1 = y 1 lim k→∞ x k + ∞ k=2 y k x k-1 -2y n x n
which tends to ϕ(x) as n tends to infinity. Hence T n WOT -→ Id and G is not light, which implies that Isom(c) itself is not light. Actually the inequality

|(T * n ϕ -ϕ)(x)| = 2|y n x n | ≤ 2|y n | x , x ∈ c, ϕ ∈ 1 , implies that T *
n tends SOT to Id, so the dual action of G on 1 is not SOT-discrete.

Remark 4.4. Note that the non-light subgroup G of Isom(c) constructed in the proof above has the property that all its elements belong to the group Isom f (c) of isometries which are finite rank perturbations of the identity.

We observe the following relation between groups acting on a space and on a complemented subspace. Lemma 4.5. Assume Y embeds complementably in X. If every bounded group of isomorphisms on X is light, then every bounded group of isomorphisms on Y is light.

Proof. Let Z be a closed subspace of X such that X Y ⊕ Z. Let G GL(Y ) be a bounded subgroup and for each T ∈ G, consider the operator T = T ⊕ Id Y ∈ GL(X). These operators form a bounded subgroup G of GL(X) which is therefore light.

Let (T α ) α∈I be a net in G such that T α WOT -→ Id Y . Then T α WOT -→ Id X , and since G is light, T α SOT -→ Id X . Since for every y ∈ Y , T α (y) -y Y = T α (y, 0) -(y, 0) X → 0, it follows that T α SOT -→ Id Y .
Assume that X is separable and that G GL(X) is a bounded group of isomorphisms on X. As we have seen, if X either has the RNP or G is SOT-compact, then X admits a G-invariant LUR-renorming. It is natural to wonder whether the assumption on G may be weakened somewhat and, in particular, whether a similar result holds true for cyclic groups G. We show that it is not the case. Theorem 4.6. Let X be a separable Banach space containing an isomorphic copy of c 0 . Then GL(X) contains a WOT-indiscrete bounded cyclic subgroup G with a distinguished point in X. In particular, G is not light.

Proof. Consider the space c(R 2 ) of convergent sequences in the euclidean space R 2 with the supremum norm. We define an isometry T of c(R 2 ) by setting

T (x n ) n∈N = (R n x n ) n∈N for every x = (x n ) n∈N ∈ c(R 2 ),
where, for every n ∈ N,

R n = cos( 2π n ) -sin( 2π n ) cos( 2π n ) sin( 2π n ) is the rotation of R 2 of angle 2π n . Observe that, since lim n 2π n = 0, we have lim n T (x n ) n∈N = lim n (R n x n ) n∈N = lim n (x n ) n∈N for every x = (x n ) n∈N ∈ c(R 2 ). As also R k! n = Id R 2 whenever k ≥ n, we deduce that T k! WOT -→ Id. So the cyclic subgroup T of GL(c(R 2 )) generated by T is indiscrete in the WOT.
On the other hand, if we define x = (x n ) n∈N ∈ c(R 2 ) by setting x n = (1, 0) for every n ∈ N, we find that, for every k ∈ N,

T k x -x c(R 2 ) ≥ R k 2k x 2k -x 2k 2 = (-1, 0) -(1, 0) 2 = 2.
So x is a distinguished point for T . Observe now that c(R 2 ) c ⊕ c c 0 ⊕ c 0 c 0 , so T can be seen as an automorphism of c 0 . Also, if X is a separable Banach space containing c 0 , c 0 is complemented in X by Sobczyk's Theorem, i.e. X can be written as X = c 0 ⊕ Y for some subspace Y of X. Then Lemma 4.5 applies. Actually the group G generated by S = T ⊕ I on X is not light, since S k! WOT -→ Id, while G has a distinguished point in X.

Remark 4.7. It follows from Theorem 4.6 that any separable Banach space X containing an isomorphic copy of c 0 admits a renorming ||| . ||| such that (X, ||| . |||) is not light.

We finish this section with the following observation:

Lemma 4.8. Suppose G is an abelian group acting by isometries on a metric space (X, d) without isolated points, and inducing a dense orbit G • x for some element x ∈ X. Then, for every > 0, there exists g ∈ G \ {1} such that sup z∈X d(gz, z) < .

Proof. Indeed, since X has no isolated points and the orbit G • x is dense, we may pick g ∈ G so that 0 < d(gx, x) < . For any y in G • x, written y = hx for h ∈ G, we have

d(gy, y) = d(ghx, hx) = d(hgx, hx) = d(gx, x) < .
The result follows by density.

As a particular instance, note that if G is an SOT-discrete group of isometries of a Banach space X of dimension > 1 with a dense orbit on S X , then G cannot be abelian.

LUR and Strictly Convex Isometry Invariant Renormings

Theorem 2.3 leads to the following question: Question 5.1. Does there exist a light Banach space X which admits no isometry invariant LUR renorming?

It was observed in [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF] that X = L 1 [0, 1] does not admit any isometry invariant dense LUR renorming. In fact, since the norm of L 1 [0, 1] is almost transitive and is not strictly convex, any equivalent renorming is just a multiple of the original norm, so it is not strictly convex either, and hence is not LUR. Thus L 1 [0, 1] could be a natural example of a light Banach space which admits no isometry invariant LUR renorming. However, Proposition 5.2. The space L 1 [0, 1] is not light.

Proof. For every n ∈ N, define ϕ n : [0, 1] → [0, 1] by setting

ϕ n (t) = t + 1 -cos(2 n πt) 2 n π , t ∈ [0, 1],
and

T n : L 1 [0, 1] → L 1 [0, 1] by T n (f )(t) = ϕ n (t)f (ϕ n (t)), f ∈ L 1 [0, 1], t ∈ [0, 1]. Note that ϕ n is a differentiable bijection from [0, 1] into itself. So T n is a surjective linear isometry of L 1 [0, 1]. Moreover, T n SOT -→ Id, since for f ≡ 1 we have T n (1) -1 1 = sin(2 n πx) 1 = 2 π for every n ∈ N.
On the other hand, T n WOT -→ Id. To prove this, we need to check that

1 0 T n (f )(t)g(t)dt -→ 1 0 f (t)g(t)dt for every f ∈ L 1 [0, 1] and g ∈ L ∞ [0, 1].
By the linearity of T n and the density of step functions in L 1 [0, 1], it is sufficient to consider the case where f is the indicator function of a segment I m,k = [ 2k 2 m , 2(k+1) 2 m ], where m ≥ 1 and 0 ≤ k ≤ 2 m-1 -1. In this case the function ϕ n is a bijection from I m,k into itself for every n ≥ m. Thus f • ϕ n = ϕ n , and

1 0 T n (f )(t)g(t)dt = 1 0 ϕ n (t)f (ϕ n (t))g(t)dt = 1 0 ϕ n (t)f (t)g(t)dt = 1 0 f (t)g(t)dt + 1 0 sin(2 n πt)f (t)g(t)dt.
The result then follows from the Riemann-Lebesgue Lemma.

Remark 5.3. Another space of which it is well known that it does not admits any LUR renorming is ∞ . Indeed ∞ does not admit any equivalent norm with the Kadec-Klee property ([5, Ch. 2, Th. 7.10]), while every LUR norm satisfies the Kadec-Klee property ([5, Ch. 2, Prop. 1.4]). However, ∞ does admit a strictly convex renorming (see [6, p. 120]). We note here that it does not admit any isometry invariant strictly convex renorming. To see this, consider the points x = (1, 1, 0, 1, 0, 1, 0, . . . ) and y = (-1, 1, 0, 1, 0, 1, 0, . . . ). Setting z = (x + y)/2 = (0, 1, 0, 1, 0, 1, 0, . . . ), it is readily seen that there exist two isometries T and S of ∞ such that T x = y and Sx = z. So, for any isometry invariant renorming ||| • ||| of ∞ we have |||x||| = |||y||| = |||z|||, and therefore ||| • ||| cannot be strictly convex.

We now prove

Proposition 5.4. The space ∞ is not light.

Proof. Consider the sequence of isometries T n : ∞ → ∞ , n ∈ N, defined by

T n (x 1 , . . . , x n-1 , x n , x n+1 , . . . ) = (x 1 , . . . , x n-1 , -x n , x n+1 , . . . ), x = (x k ) k∈N ∈ ∞ .
Notice that T n SOT -→ Id, since T n (1, 1, . . . ) -(1, 1, . . . ) ∞ = 2 for every n ∈ N. On the other hand, observe that T n WOT -→ Id. Indeed, if (e j ) j∈N denotes the canonical basis of ∞ , the sequence (β(e j )) j∈N belongs to 1 for every β ∈ * ∞ . In particular, β(e j ) → 0. Thus

β(T n x -x) = -2x n β(e n ) → 0 for every x ∈ ∞ and β ∈ * ∞ , showing that T n WOT -→ Id.
A similar proof allows us to construct many examples of C(K)-spaces which are not light.

Theorem 5.5. Let K be a compact space with infinitely many connected components. Then C(K) is not light.

Proof. We claim that there exists under the assumption of Theorem 5.5 a sequence (N n ) n∈N of disjoint clopen subsets of K. Indeed, choose two points x 1 and y 1 of K which belong to two different connected components of K. Since the connected component of a point x of K is the intersection of all the clopen subsets of K containing x, there exists a clopen subset K 1 of K such that x 1 ∈ K 1 and y 1 ∈ L 1 := K \ K 1 . The two sets K 1 and L 1 are compact, and one of them, say K 1 , has infinitely many connected components. We set then N 1 = L 1 , and repeat the argument starting from the compact set K 1 . This yields a sequence (N n ) n∈N of disjoint clopen subsets of K.

For each integer n ∈ N, define T n ∈ Isom(C(K)) by setting, for every f ∈ C(K) and every x ∈ K,

T n (f )(x) = -f (x) if x ∈ N n f (x) otherwise.
If χ n denotes the indicator function of the set N n , we have

T n (f ) = f (1 -2χ n ) for every f ∈ C(K). Applying this to the constant function f ≡ 1, we have ||T n (f ) -f || ∞ = 2 for
every n ∈ N, so that T n SOT -→ Id. On the other hand, the same kind of argument as in Proposition 5.4 shows that T n WOT -→ Id. Indeed, we have Φ(T n f -f ) = -2Φ(f χ n ) for every functional Φ ∈ C(K) * and every f ∈ C(K). For every sequence (α n ) n∈N ∈ c 0 , the series n∈N α n f χ n converges in C(K), so that the series n∈N α n Φ(f χ n ) converges. It follows that Φ(f χ n ) → 0 as n → +∞, which proves our claim.

As a direct consequence of Theorem 5.5, we retrieve the result, proved in Proposition 4.3 above, that the space c of convergent sequences is not light. Also, we immediately deduce that the space of continuous functions on the Cantor space is not light.

Corollary 5.6. The space C({0, 1} N ) is not light.

In view of the results above, combined with the known fact that the space C([0, 1] 2 ) is not light, it may seem reasonable to conjecture that none of the spaces C(K), where K is any infinite compact space, is light. However, our next result shows that this is not the case.

Theorem 5.7. Let K be an infinite compact connected space. Then C(K) is light if and only if the topologies of pointwise and uniform convergence coincide on the group Homeo(K) of homeomorphisms of K.

Proof. Suppose first that the topologies of pointwise and uniform convergence coincide on Homeo(K). Let (T α ) α∈I be a net of isometries of C(K) such that T α WOT -→ Id. By the Banach-Stone Theorem and the connectedness of K, each isometry T α of C(K) has the form

T α (f ) = ε α f • ϕ α for every f ∈ C(K),
where ε α ∈ {-1, 1} and ϕ α ∈ Homeo(K). Since T α WOT -→ Id, ε α → 1, so we can suppose without loss of generality that ε α = 1 for every α ∈ I. Moreover, the fact that T α WOT -→ Id also implies that the net (ϕ α ) α∈I converges pointwise to the identity function id K on K.

Our assumption then implies that (ϕ α ) α∈I converges uniformly to id K on K, from which it easily follows that T α SOT -→ Id. Thus C(K) is light.

Conversely, suppose that C(K) is light. Let (ϕ α ) α∈I be a net of elements of Homeo(K) which converges pointwise to ϕ ∈ Homeo(K). Consider the isometries T α and T of C(K) defined by

T α (f ) = f • ϕ α and T (f ) = f • ϕ for every f ∈ C(K). Then T α WOT -→ Id. Since C(K) is light, T α

SOT

-→ Id and thus (ϕ α ) α∈I converges to ϕ uniformly on K.

Remark 5.8. Theorem 5.7 characterizes the lightness of C(K) for infinite connected compact spaces K. One may naturally wonder whether the connectedness assumption is really necessary. It is indeed the case: there exist compact spaces K with infinitely many connected components which are rigid in the sense that their homeomorphism group Homeo(K) is trivial (it consists uniquely of the identity map on K). The existence of such compacta is proved in [START_REF] De Groot | Rigid continua and topological group pictures[END_REF] (see the remark on p. 443 at the end of Section 2 of [START_REF] De Groot | Rigid continua and topological group pictures[END_REF]). By Proposition 5.5, C(K) is not light for such a compact K, but the topologies of pointwise and uniform convergence obviously coincide on Homeo(K).

Birkhoff studied in his paper [START_REF] Birkhoff | The topology of transformation-sets[END_REF] various topologies on so-called "transformation spaces", in particular on the groups of homeomorphisms of topological spaces. The notions of A-, B-and C-convergence of sequences of homeomorphisms on a given space X introduced there correspond respectively to pointwise convergence, continuous convergence, and continuous convergence in both directions. Since on compact spaces continuous convergence and uniform convergence coincide, Proposition 5.7 can be rephrased, using Birkhoff's language, as saying that for compact connected spaces K, C(K) is light if and only if Aand B-convergence coincide on Homeo(K). Now, it is observed in [2, Th. 18] that Aconvergence implies B-and C-convergence for homeomorphisms of (disjoint or not) finite unions of segments of the real line (this is essentially the content of Dini's second convergence theorem), while if K contains an n-dimensional region with n ≥ 2 (i.e. an open set homeomorphic to an open subset of R n ), A-convergence implies neither B-nor Cconvergence for homeomorphisms of K ([2, Th. 19]). In a more modern language, there exists under this assumption a sequence (ϕ n ) n∈N of homeomorphisms of K such that ϕ n converges pointwise but not uniformly on K to the identity function on K. Combined with Proposition 5.7 above, this yields: Theorem 5.9. Let K be an infinite compact connected space.

(a) If K is homeomorphic to a finite union of segments of R, C(K) is light. (b) If K contains an n-dimensional region for some n ≥ 2, C(K) is not light.
For instance, the space C[0, 1] is light, while spaces C([0, 1] n ), n ≥ 2, are not light. We thus retrieve in a natural way the original example of Megrelishvili of a non-light space. Theorem 5.9 allows us to answer Question 5.1 in the negative. Although C[0, 1] is light, it does not admit any isometry invariant LUR renorming. In fact, C[0, 1] does not admit any isometry invariant strictly convex renorming. In order to prove this, we need the following lemma: Lemma 5.10. Let f ∈ C[0, 1] be such that there exists an interval [a, b] ⊂ [0, 1], a < b, on which f is strictly monotone. Then there exists g ∈ C[0, 1] with the following three properties:

(a) f ∞ = g ∞ = f + g 2 ∞ ; (b) f -g ∞ > 0;
(c) there exist two homeomorphisms ϕ and

ψ of [0, 1] such that g = f •ϕ and f + g 2 = f •ψ. Proof. Let 0 ≤ a < b ≤ 1 be such that f is strictly monotone on [a, b]. Without loss of generality, suppose that f is strictly increasing on [a, b]. Let ξ : [a, b] → [f (a), f (b)] be an increasing homeomorphism such that ξ ≡ f | [a,b] . Define g ∈ C[0, 1] and an homeomor- phism ϕ : [0, 1] → [0, 1] by g(x) = ξ(x) if x ∈ [a, b]; f (x) otherwise ϕ(x) = f -1 (ξ(x)) if x ∈ [a, b]; x otherwise. Then, g = f • ϕ, g ∞ = f ∞ = f + g 2 ∞ and f -g ∞ > 0. Moreover, f • ψ = f + g 2 ,
where ψ : [0, 1] → [0, 1] is the homeomorphism defined by 

ψ(x) =    f -1 ξ(x) + f (x) 2 if x ∈ [a
|||g||| = |||f • ϕ||| = |||f ||| = |||f • ψ||| = f + g 2 .
So ||| • ||| is not strictly convex at the point f . The result then follows from the fact that the set of piecewise linear functions is dense in C[0, 1].

Combining Theorem 5.9 and Proposition 5.11, we obtain:

Corollary 5.12. The space C[0, 1] is light, but does not admit any isometry invariant LUR renorming.

Remark 5.13. Using the same arguments as in the proofs of Proposition 5.7, Theorem 5.9 and Proposition 5.11, one can prove that C 0 (R) is light, but does not admit a strictly convex isometry invariant renorming either.

Remark 5.14. The examples presented in this section show that there is no general relation between closed subspaces and their respective isometry groups, in terms of being light, apart from Lemma 4.5. In fact:

(1) c 0 is a closed subspace of c, c 0 is light, but c is not;

(2) c is isometrically isomorphic to a closed subspace of C[0, 1], c is not light but C[0, 1] is light.

Corollary 5.12 gives us a positive answer to Question 5.1. On the other hand, Remark 2.4 suggests the following new question: Question 5.15. Does there exist a Banach space X and an orbitwise light group G GL(X) such that X admits no G-invariant LUR renorming?

The next proposition shows that the isometry group of C[0, 1] also gives a positive answer to Question 5.15: Proposition 5.16. The group Isom(C[0, 1]) is orbitwise light.

Proof. Let f ∈ C[0, 1] and let (g α ) α∈I be a net in the orbit O(f ) of f under the action of the group Isom(C[0, 1]) such that g α converges weakly to g ∈ O(f ). By the Banach-Stone Theorem, there exist homeomorphisms ϕ, ϕ α ∈ Hom([0, 1]) and , α ∈ {-1, 1} such that g = • f • ϕ and g α = α • f • ϕ α . Since g α converges weakly to g (hence, pointwise), we can assume that the ϕ α are increasing homeomorphisms, = α = 1 for every α ∈ I and g = f .

Suppose by contradiction that f • ϕ α does not converge uniformly to f . Then we can assume that there exists ε > 0 and for every α ∈ I there exists x α ∈ [0, 1] such that |f (ϕ α (x α )) -f (x α )| > 2ε. We also can assume that x α → x ∈ [0, 1] and x α ≤ x for every α. Then by the continuity of f at the point x,

|f (ϕ α (x α )) -f (x)| > ε. Let δ > 0 be such that |x -y| < δ =⇒ |f (x) -f (y)| < ε 8 . Then ϕ α (x α ) ∈ (x -δ, x + δ)
for every α, and ϕ α (x α ) < x -δ for infinitely many indices α ∈ I, or ϕ α (x α ) > x + δ for infinitely many indices α ∈ I. Without loss of generality, we may assume that ϕ α (x α ) < x -δ, for every α ∈ I.

We also may assume that

x -δ < x α ≤ x, for every α ∈ I (the cases ϕ α (x α ) > x + δ and/or x < x α < x + δ for every α ∈ I are similar). Let α 1 ∈ I and let y 1,1 = ϕ α 1 (x α 1 ).

We claim that for every n ≥ 2, there exists a finite sequence in [0, 1],

y n,1 < y n,2 < • • • < y n,2n-1 < x -δ such that a) |f (y n,2k+1 ) -f (x)| > ε - ε 8 - ε 2 k+4   n-k-2 j=0 1 2 j   > 3ε 4 for k = 0, 1, . . . , n -1 and b) |f (y n,2k ) -f (x)| < ε 8 + ε 2 k+3   n-k-1 j=0 1 2 j   < ε 4 for k = 1, 2, . . . , n -1.
Notice that the existence of such a sequence for every n ≥ 2 contradicts the uniform continuity of f on [0, 1]. Hence it suffices to prove the claim in order to complete the proof of Proposition 5.16.

We proceed to the proof of the claim by induction. Since f • ϕ α converges pointwise to f and x α → x, we can take α 2 α 1 such that

x α 1 < x α 2 < x, |f (ϕ β (y 1,1 )) -f (y 1,1 )| < ε 16 and |f (ϕ β (x α 1 )) -f (x α 1 )| < ε 16 for every β α 2 . Let y 2,1 = ϕ α 2 (y 1,1 ), y 2,2 = ϕ α 2 (x α 1 ) and y 2,3 = ϕ α 2 (x α 2 ).
Since ϕ α 2 is an increasing homeomorphism and y 1,1 < x -δ < x α 1 < x α 2 , we have y 2,1 < y 2,2 < y 2,3 and

y 2,3 = ϕ α 2 (x α 2 ) < x -δ. Moreover, |f (y 2,1 ) -f (x)| > ε - ε 8 - ε 16 , |f (y 2,2 ) -f (x)| < ε 8 + ε 16 and |f (y 2,3 ) -f (x)| > ε - ε 8 ,
which proves the inequalities for n = 2.

Suppose now that the inequalities hold for n. Let α n+1 α n such that

x αn < x α n+1 < x, |f (ϕ β (y n,r )) -f (y n,r )| < ε 2 n+3 and |f (ϕ β (x αn )) -f (x αn )| < ε 2 n+3
for every r = 1, 2, . . . , 2n -1 and every β α 2 . Let y n+1,r = ϕ α n+1 (y n,r ) for r = 1, . . . , 2n -1, y n+1,2n = ϕ α n+1 (x αn ) and y n+1,2n+1 = ϕ α n+1 (x α n+1 ).

It follows that

|f (y n+1,2k+1 ) -f (x)| > ε - ε 8 - ε 2 k+4   n-k-1 j=0 1 2 j   for k = 0, 1, . . . , n and |f (y n+1,2k ) -f (x)| < ε 8 + ε 2 k+3   n-k j=0 1 2 j   for k = 1, 2, . . . , n.
Since ϕ α n+1 is an increasing homeomorphism, and

y n,1 < y n,2 < • • • < y n,2n-1 < x -δ < x αn < x α n+1 , we have y n+1,1 < y n+1,2 < • • • < y n+1,2n+1 = ϕ α n+1 (x α n+1 ) < x -δ,
which proves the claim.

An example of a group with a discrete orbit but no distinguished point

In this section we solve a problem of [START_REF] Ferenczi | Displaying Polish groups on separable Banach spaces[END_REF], mentioned in the introduction, by exhibiting an SOT-discrete group of isomorphisms of c 0 which admits no distinguished point. More generally, we show the following: Proposition 6.1. For any integer r ≥ 2, there exists a bounded infinite SOT-discrete group of isomorphisms of c 0 of the form Id + F , F ∈ L(c 0 ) of finite rank, admitting a distinguished family of cardinality r, but none of cardinality r -1.

Proof. For every x ∈ r 1 , the sequence (R n (x)) n∈N tends weakly to 0 in c 0 . We also know that the sequence (U n ) n∈N tends WOT to Id. Therefore (T n ) n∈N also tends WOT to Id. On the other hand, we have for every x ∈ r 1 and every n ∈ N that

T n (x ⊕ 0) -x ⊕ 0 = R n (x) = φ n (x) .
By the density of the sequence (φ n ) n∈N in the unit sphere of r ∞ , this implies that the sequence (T n (x ⊕ 0)) n∈N does not tend to x in norm, and thus (T n ) n∈N does not tend SOT to Id.

We have thus proved: Corollary 6.3. There exists a bounded group G of isomorphisms of c 0 which is infinite, not light, SOT-discrete, and does not admit a distinguished point.

Proof. Take r = 2 in Proposition 6.1.

Quasi-normed spaces

Although Megrelishvili has defined the concept of light group of isomorphisms only for locally convex spaces, we can extend the definition to quasi-normed spaces, even if these spaces are not locally convex. One could ask if there is a general answer for the isometry groups of non-locally convex spaces, in terms of being light. The spaces p and L p [0, 1], 0 < p < 1, are examples that give a negative answer to this question.

Recall that for 0 < p < 1, (L p [0, 1]) * = {0}, i.e., the only linear continuous functional f : L p [0, 1] → R is the constant function f ≡ 0 (see [14, p. 18]). Considering the sequence (T n ) n∈N constantly equal to -Id, we observe that T n SOT -→ Id while T n WOT -→ Id. So L p [0, 1] is trivially non-light for every 0 < p < 1. On the other hand, Proposition 7.1. For 0 < p < 1, the space p is light.

Proof. Let 0 < p < 1, and let (T α ) α∈I be a net in Isom( p ) such that T α WOT -→ Id. Each T α acts on vectors (x n ) n∈N ∈ p as T α ((x n ) n∈N ) = (ε (α) n x σα(n) ) n∈N , where σ α is a permutation of N and (ε (α) n ) n∈N is a sequence of elements of {-1, 1} (the proof of this fact is similar of the case where p > 1 and p = 2, found in [1, p. 178]). Assume, by contradiction, that T α SOT -→ Id. Then there exist x ∈ p , ε > 0 and an infinite sequence (α i ) i∈N of indices in I such that T α i x -x p p > ε for every i ∈ N. Since x ∈ p , there exists N ∈ N such that ∞ k=N +1 |x k | p < ε/2. The dual space of p identifies isomorphically with ∞ , where Φ = (y k ) k∈N acts on an element x = (x k ) k∈N ∈ p by the formula Φ(x) = k∈N y k x k (see [14, p. 21]). Considering for 1 ≤ j ≤ N the functionals Φ j identified with the vectors of the canonical basis e j ∈ ∞ , as well as the vectors e k ∈ p for 1 ≤ k ≤ N , we obtain by the WOT convergence of T α to Id that Φ j (T α (e k )) -Φ j (e k ) = ε (α) j δ σα(k),j -δ k,j → 0, where δ k,j = 1 if k = j and δ k,j = 0 if k = j. In particular, ε (α) k δ σα(k),k → 1 for every 1 ≤ k ≤ N . So we may assume that the permutations σ α fix the first N integers and that ε We finish the paper with a few related questions or comments.

Questions and comments

Our first question concerns renormings of the space c. Since it c is not light, as proved in Proposition 4.3, it does not admit any isometry invariant LUR renorming. But it may still admit an isometry invariant strictly convex renorming. Question 8.1. Does c admits an isometry invariant strictly convex renorming?

We have observed in Section 4 that if the isometry group Isom(X) of a Banach space X of dimension > 1 acts almost transitively on S X and is SOT-discrete, it is not abelian. Question 8.2. Suppose X is a separable Banach space of dimension > 1 and G Isom(X) is an SOT-discrete amenable subgroup. Can G have a dense orbit on S X ?

We have seen in Corollary 6.3 that there exists a bounded group G of isomorphisms of c 0 which is infinite, not light, SOT-discrete, and does not admit a distinguished point. One may wonder about the role of the space c 0 in this construction. For example, one can ask: Question 8.3. Does there exist a reflexive space X with an SOT-discrete bounded group G GL(X) that does not admit a distinguished point?

Of course such a group G, if it exists, must be light, as all reflexive spaces are light. Noting that the example of Proposition 4.3 is a group of finite rank perturbations of the identity on the space c 0 , a question in the same vein is: Question 8.4. Does there exist a reflexive space X with an SOT-discrete infinite bounded group G GL(X) such that all elements of G are finite rank perturbations of the identity?

This question is relevant to [START_REF] Ferenczi | On isometry groups and maximal symmetry[END_REF], where isometry groups on complex, reflexive, separable, hereditarily indecomposable spaces are studied. A negative answer to this question would imply that all isometry groups on such spaces act almost trivially, i.e., there would exist an isometry invariant decomposition F ⊕ H of the space where F is finite dimensional and all elements of the group act as multiple of the identity on H, [8] Theorem 6.9.

Another natural space which could be investigated in this context is the universal space of Gurarij, whose isometry group possesses a very rich structure (see [START_REF] Gurarij | Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces[END_REF] for its definition and [START_REF] Garbulińska | Remarks on Gurarij spaces[END_REF] for a recent survey). The answer is positive when X has an unconditional basis: this follows from Theorem 4.6, the fact that an unconditional basis whose span does not contain c 0 must be boundedly complete, and the fact that separable dual spaces have the RNP and therefore the PCP.
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 511 Let ||| • ||| be an isometry invariant renorming of C[0, 1]. Then there exists a dense subset of C[0, 1] where ||| • ||| is not strictly convex. Proof. Let f ∈ C[0, 1] be a non-constant and affine function, and take g, ϕ and ψ as in Lemma 5.10. Since f → f • ϕ and f → f • ψ define surjective linear isometries of C[0, 1],
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 2 every 1 ≤ k ≤ N . Hence we have for everyi ∈ N ∞ k=N +1 |(T α i (x)) k | p = ∞ k=N +1 |x k | p < ε However, taking z = (z k ) k∈N ∈ p defined by z k = 0 if 1 ≤ k ≤ N and z k = 1 if k > N , we have z p p = ∞ k=N +1 |x k | p < ε/2 and T α i x -x p p = T α i z -z p p ≤ T α i z p p + z p p = ε for every i ∈ N, which is a contradiction.
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 8586 Is the isometry group of the Gurarij space light?Finally, whether the converse to Megreleshvili's result holds remains an open question: Does a Banach space X have the PCP if and only if all bounded subgroups of GL(X) are light?
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Proof. Since c 0 r 1 ⊕ ∞ c 0 it is enough to define the group G as an infinite bounded SOT-discrete group of isomorphisms on r 1 ⊕ ∞ c 0 . Let (e n ) n∈N be the canonical basis of c 0 , and let (U n ) n∈N be the sequence of isometries of c 0 defined by setting, for every n, m ∈ N, U n (e n ) = -e n and U n (e m ) = e m whenever m = n. Let (φ n ) n∈N be dense in the unit sphere of r ∞ , and define the rank-one operator

We then define an operator T n on r 1 ⊕ ∞ c 0 in matrix form as

It is readily checked that T 2 n = Id for every n ∈ N and that for every distinct integers n 1 , . . . , n k ,

Therefore the group G generated by the operators T n is abelian. Furthermore, since for every x ∈ r

1 and z i ∈ c 0 , we note that U n z i → z i for every 1 ≤ i ≤ r -1. Since the vectors y 1 , . . . , y r-1 generate a subspace of dimension strictly less than r of r 1 , there exists a norm 1 functional φ ∈ r ∞ such that φ(y i ) = 0 for every 1 ≤ i ≤ r -1. Let D ⊂ N be such that φ n → φ in r ∞ as n tends to infinity along D. Then R n (y i ) → 0 as n tends to infinity along D, and therefore T n (x i ) → x i as n tends to infinity along D for every 1 ≤ i ≤ r -1. So the family {x 1 , . . . , x r-1 } is not distinguished for G.

On the other hand, if we denote by (f 1 , . . . , f r ) the canonical basis of r 1 , then the family {f 1 ⊕ 0, . . . , f r ⊕ 0} is distinguished for G. To check this, note that for any operator T ∈ GL( r 1 ⊕ ∞ c 0 ) of the form

where F in a non-empty subset of N, and U is an isometry of c 0 , we have

and so inf

Hence {f 1 , . . . , f r } is a distinguished family for G.

We immediately deduce Corollary 6.2. The group of isomorphisms of c 0 constructed in the proof of Proposition 6.1 is not light.