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Hamiltonian regularisation of shallow water equations with uneven bottom

DIDIER CLAMOND˚, DENYS DUTYKH, AND DIMITRIOS MITSOTAKIS

Abstract. The regularisation of nonlinear hyperbolic conservation laws has been a problem
of great importance for achieving uniqueness of weak solutions and also for accurate numer-
ical simulations. In a recent work, the first two authors proposed a so-called Hamiltonian
regularisation for nonlinear shallow water and isentropic Euler equations. The characteristic
property of this method is that the regularisation of solutions is achieved without adding any
artificial dissipation or dispersion. The regularised system possesses a Hamiltonian structure
and, thus, formally preserves the corresponding energy functional. In the present article we
generalise this approach to shallow water waves over general, possibly time-dependent, bot-
toms. The proposed system is solved numerically with continuous Galerkin method and its
solutions are compared with the analogous solutions of the classical shallow water and disper-
sive Serre–Green–Naghdi equations. The numerical results confirm the absence of dispersive
and dissipative effects in presence of bathymetry variations.

1. Introduction

Many phenomena in fluid mechanics are described mathematically by systems of hyper-
bolic equations [16]. We can mention the celebrated inviscid Burgers–Hopf equation [4] as
a prototype of pressureless Euler equations, the isentropic Euler equations [18], the shallow
water (Airy or Saint-Venant) equations [1], the compressible Euler equations [16] and even
some two-phase flow models [8]. These equations have a common property: if we solve an
initial value problem with infinitely smooth (or even analytic) data, the solutions will develop
a finite time singularity (e.g., a gradient “catastrophe”). Thus, to speak mathematically
about these solutions, one has to introduce the so-called weak solutions [9], or even weaker
than weak solutions [13]. One strategy employed by mathematicians to study such systems
consists in considering a perturbed version of equations with a perturbation being chosen so
that the new (perturbed) system has more regular (i.e., smoother) solutions. The original
system of governing equations can be formally recovered as a singular limit of the perturbed
system. Then, some conclusions about weak solutions of the original system are obtained by
employing the bootstrap argument [16]. The perturbation is usually chosen to be of dissipa-
tive, dispersive or of both types [14]. We can mention a few previous attempts to regularise
the inviscid Burgers–Hopf equation with dissipative/dispersive terms [2, 3].

In a recent work, Clamond and Dutykh [6] propose a regularisation of the nonlinear shallow
water (or Saint-Venant) equations (NSWE) with flat bottom, that describe long gravity waves
propagating in both directions under the hydrostatic pressure assumption. In particular,
these regularised Saint-Venant (rSV) equations are a conservative Hamiltonian system that
regularises the solutions of the NSWE without adding any artificial dissipation or dispersion.

Key words and phrases. shallow water flow; dispersion; regularisation; energy conservation; well-balanced;
uneven bottom.
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Figure 1. Definition sketch.

Some properties of these regularised shallow water equations are mathematical study in [17,
24].

The goal of the present manuscript is to generalise the approach proposed by Clamond
and Dutykh [6] to general uneven and time-dependent bottoms. The latter might be useful
for tsunami-generation problems [10]. The model we derive below conserves all the good
properties of regularised Saint-Venant equations (such as the energy conservation) despite
bathymetry variations in space and in time.

We note that the rSV equations are a two-component generalisation of the dispersionless
Camassa and Holm [5] (CH) equation. Shallow water equations, such as KdV, KP and CH,
are also known to play a fundamental role in theoretical Physics and in Geometry [12, 19, 20].
Therefore, the rSV equations may be of general physical and mathematical interest.

The present manuscript is organised as follows. In section 2, we point out the shortcomings
of the rSV equations (as proposed in [6]) for varying bottoms and we address these limitations
in order to obtain a suitable regularisation of the NSWE for general bottoms. In particular,
the Hamiltonian structure of the obtained system is also highlighted in this section. The
obtained system is briefly studied numerically in section 3, providing numerical evidences that
we indeed derived a dispersionless Hamiltonian regularisation of the Saint-Venant equations.
The main conclusions and perspectives of this study are outlined in the section 4.

2. Mathematical model

We consider a two-dimensional irrotational motion due to a gravity wave propagating at
the free surface of an ideal, incompressible and homogeneous shallow fluid. Let x, y and t be
the horizontal, upward vertical and temporal coordinates, respectively. The equations y “ 0,
y “ ηpx, tq and y “ ´dpx, tq denote, respectively, the equations of the still water level, of the

impermeable free surface and of the impermeable bottom; h
def
“ η` d denoting the total eight

of the water column. The parameters g and ρ denote, respectively, the acceleration due to
gravity directed downwards and the constant fluid density. A sketch of the fluid domain is
shown in Figure 1.

The definition of the still water level yields

x η y “ 0, (2.1)

where x¨y denotes the horizontal Eulerian averaging. The mean water depth is

d̄
def
“ x d y. (2.2)

Sketch.eps
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A priori, d̄ can be a function of time for a moving bottom. However, via a change of vertical

coordinate y‹ def
“ y ` d̄ ´ d0 (d0 a constant) it is always possible to consider d̄ independent of

t. In that case, g is a function of time t and the frame of reference is no longer Galilean in
the vertical direction. Thus, from now on, we assume that g “ gptq and that d̄ is constant.

2.1. Lagrangian for the regularised Saint-Venant equations. Clamond and Dutykh [6]
have shown that regularised Saint-Venant (rSV) equations for flat bottoms can be obtained
from the Lagrangian density

L ǫ

def
“ 1

2
h u2 ´ 1

2
g h2 ` p ht ` r h u s

x
q φ ` 1

2
ǫ h2

`
h u 2

x ´ g h 2
x

˘
, (2.3)

where upx, tq is the depth-averaged horizontal velocity of fluid particles and ǫ ě 0 is a regular-
isation parameter, which controls the ‘magnitude’ of regularisation. In other words, one can
see ǫ as a measure of the ‘width’ of regularised shock-wave solutions [6]. The resulting Euler–
Lagrange equations yield the classical Saint-Venant equations if ǫ “ 0 and a regularisation of
the latter if ε ą 0 [6].

The Lagrangian density (2.3) yields the correct Saint-Venant equations for constant depths,
but fails to do so for varying bottoms. Indeed, the Euler–Lagrange equations for L 0 yield

ht ` r h u s
x

“ 0, ut ` u ux ` g hx “ 0, p2.4 a,bq

while the classical shallow water equations are [25]:

ht ` r h u s
x

“ 0, ut ` u ux ` g η
x

“ 0. p2.5 a,bq

The mass conservation (2.4a) and (2.5a) are identical. However, the momentum conservations
(2.4b) and (2.5b) are identical in constant depth only, but differ when dx ‰ 0. This discrepancy
is due to the potential energy term in equation (2.3) that is evaluated from the seabed instead
of the free surface (i.e., the potential energy density in L 0 is 1

2
gh2 instead of 1

2
gη2). This is of

no consequence in constant depth but it is incorrect in presence of an uneven bottom. Thus,
this issue is addressed with the Lagrangian density for the classical shallow water equations

L0
def
“ 1

2
h u2 ´ 1

2
g η2 ` p ht ` r h u s

x
q φ, (2.6)

and a suitable regularisation of these equation has to be introduced.
In [6], the regularised Lagrangian density (2.3) is obtained re-injecting the momentum

equation into the Lagrangian density as

L
1

ǫ

def
“ L 0 ` 1

6
ǫ h3 r ut ` u ux ` g hx s

x
. (2.7)

The Lagrangian density (2.7) reduces to the simplified form (2.3) after integrating by parts

the extra terms and omitting the resulting boundary terms (i.e., L
1

ǫ ´ L ǫ ” r¨ ¨ ¨ st ` r¨ ¨ ¨ sx,

see [7, §3.1] for details), so L
1

ǫ and L ǫ yield the same equations because boundary terms do
not contribute to the Euler–Lagrange equations, but L ǫ yields somewhat simpler derivations.

According to the discussion above, for varying bottoms, a regularised Lagrangian density
candidate is

ĂL 1

ǫ

def
“ L0 ` 1

6
ǫ h3 r ut ` u ux ` g η

x
s
x

, (2.8)

that can be easily reduced, after integrations by parts and omitting boundary terms, to the
equivalent simplified form

ĂLǫ

def
“ 1

2
h u2 ´ 1

2
g η2 ` p ht ` r h u s

x
q φ ` 1

2
ǫ h2

`
h u 2

x ´ g hx ηx

˘
, (2.9)
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following the procedure described in [6, 7], slightly modified to accommodate the varying
depth. However, the Lagrangian densities (2.8) and (2.9) yield unbalanced equations, i.e., the
still water (u “ η “ 0) is not a solution of the equations if dx ‰ 0 (see Appendix A). Therefore,
the Lagrangian density (2.9) is not suitable for general varying bottoms and an alternative
Lagrangian must then be introduced. In order to derive such a suitable Lagrangian density,
we note first that the densities of kinetic and potential energies of (2.9) are

ĂKǫ

def
“ 1

2
h
`

u2 ` ǫ h2 u 2
x

˘
, rVǫ

def
“ 1

2
g
`
η

2 ` ǫ h2 hx ηx

˘
. p2.10 a,bq

The regularising term in the kinetic energy can be interpreted physically as modelling a
vertical velocity, while mathematically it is a control of the first derivative of the horizontal
velocity. The corresponding term in the potential energy is not a proper control of the free
surface slope if the bottom varies; such a suitable control is obviously obtained substituting
η

2
x

for hxηx
. Thus, an obvious Lagrangian density for the regularised shallow water equations

with varying bottom is

Lǫ

def
“ 1

2
h u2 ´ 1

2
g η2 ` p ht ` r h u s

x
q φ ` 1

2
ǫ h2

`
h u 2

x ´ g η 2
x

˘
. (2.11)

Note that the derivation of regularised Saint-Venant equations with varying bottom is
quite easy from the variational principle. It is almost intractable to derive such a model by
tweaking directly the equations, while preserving good properties such as Galilean invariance,
conservation laws, well balancing, etc. We could have introduced the regularised equations at
once and study their properties, showing afterwards that they have several desirable charac-
teristics. However, we find more enlightening to explain where and why there are issues with
the original model and how we address them. Note also that the regularisation above is only
one possibility among (possibly) many others, but it is not our purpose here to derive and
compare several regularisations.

2.2. Regularised Saint-Venant equations. The Euler–Lagrange equations for the La-
grangian density (2.11) are

δφ : 0 “ ht ` r h u s
x

, (2.12)

δu : 0 “ h u ´ h φx ´ ǫ
“

h3 ux

‰
x

, (2.13)

δη : 0 “ 1
2

u2 ´ g η ´ φt ´ u φx ` 3
2

ǫ h2 u 2
x ` ǫ g

“
h2
η

x

‰
x

´ ǫ g h η 2
x

, (2.14)

thence

φx “ u ´ ǫ h´1
“

h3 ux

‰
x

, (2.15)

φt “ ´ 1
2

u2 ´ g η ` ǫ h´1 u
“

h3 ux

‰
x

` 3
2

ǫ h2 u 2
x ` ǫ g h2

η
xx

` ǫ g h η
x

phx ` dxq . (2.16)

Eliminating the variable φ between these last two relations one obtains

Bt

 
u ´ ǫ h´1

“
h3 ux

‰
x

(
` Bx

 
1
2

u2 ` g η ´ ǫ h´1 u
“

h3 ux

‰
x

´ 3
2

ǫ h2 u 2
x ´ ǫ g h2

η
xx

´ ǫ g h η
x

phx ` dxq
(

“ 0. (2.17)

Equations (2.12) and (2.17) form a regularised Saint-Venant system for a varying bottom.
(2.17) describes the conservation of the tangential momentum at the free surface. Several
equations for momentum and total energy fluxes can be subsequently derived as

ut ` u ux ` g η
x

` ǫ h´1
“

h2 R
‰
x

“ ǫ g h η
x

dxx, (2.18)
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r h u s
t

`
“

h u2 ` 1
2

g h2 ` ǫ h2 R
‰
x

“ g h dx ` ǫ g h2
η

x
dxx, (2.19)

mt `
“

m u ` 1
2

g h2 ´ ǫ h2
`

2 h u 2
x ` g h η

xx
` 1

2
g η 2

x
` g η

x
dx

˘ ‰
x

“ g h dx ` ǫ g h2
η

x
dxx, (2.20)

“
1
2

h u2 ` 1
2

ǫ h3 u 2
x ` 1

2
g η2 ` 1

2
ǫ g h2

η
2
x

‰
t

`
“

1
2

h u3 ` 1
2

ǫ h3 u u 2
x ` g h u η ` ǫ g h3

η
x

ux ` ǫ h2 u R
‰
x

“ 1
2

9g
`
η

2 ` ǫ h2
η

2
x

˘
´ g η dt ´ ǫ g h2

η
x

dxt, (2.21)

with m
def
“ hu ´ ǫ

“
h 3u x

‰
x
, 9g

def
“ dg{dt and

R
def
“ h

`
u 2

x ´ uxt ´ u uxx

˘
´ g

`
h η

xx
` 1

2
η

2
x

` η
x

dx

˘

“ 2 h u 2
x ´ 1

2
g
`

h 2
x ´ d 2

x

˘
´ h r ut ` u ux ` g η

x
s
x

. (2.22)

Equation (2.20) for the momentum flux is particularly helpful in revealing the Hamiltonian
structure of regularised Saint-Venant equations.

2.3. Hamiltonian formulation. Let be the Hamiltonian functional density

Hǫ

def
“ 1

2
h u2 ` 1

2
g ph ´ dq2 ` 1

2
ǫ h3 u 2

x ` 1
2

ǫ g h2 phx ´ dxq2, (2.23)

and the momentum m
def
“ EutHǫu “ hu ´ ǫ

“
h3ux

‰
x

where Eu is the Euler–Lagrange operator
with respect of the variable u. The variables m and u are related via a linear non-autonomous

self-adjoint positive-definite (because h and ǫ are positive) Sturm–Liouville operator Lh

def
“ h´

ǫBxrh3Bxs, i.e., m “ Lhtuu that can be inverted as u “ Ghtmu with Gh

def
“ L

´1
h

. Expressing
the Hamiltonian functional density (2.23) as function of h and m, we have

Emt Hǫ u “ Gh t h Ght m u u ´ ǫ Gh Bx

 
h3 Bx Ght m u

(
“ Gh Lh Ght m u “ u, (2.24)

Eht Hǫ u “ g η ´ ǫ g h η
x

phx ` dxq ´ ǫ g h2
η

xx
´ 1

2
u2 ´ 3

2
ǫ h2 u 2

x . (2.25)

The derivation of Equation (2.24) is straightforward because G h is self-adjoint, but the deriva-
tion of Equation (2.25) is more involved. The latter is obtained exploiting the relations

Lh`δh “ h ` δh ´ ǫ Bx ph ` δhq3 Bx “ Lh ` δh ´ 3 ǫ Bx h2 δh Bx ` O
`
pδhq2

˘

“ Lh

“
1 ` Gh δh ´ 3 ǫ Gh Bx h2 δh Bx

‰
` O

`
pδhq2

˘
. (2.26)

Thence, inverting this relation,

Gh`δh “
“

1 ` Gh δh ´ 3 ǫ Gh Bx h2 δh Bx

‰´1
Gh ` O

`
pδhq2

˘

“ Gh ´ Gh δh Gh ` 3 ǫ Gh Bx h2 δh Bx Gh ` O
`
pδhq2

˘
. (2.27)

Thus, for the kinetic energy functional Kph, mq “
ş
K dx with density∗

K
def
“ 1

2
m Ght m u,

we obtain

Kph ` δh, mq ´ Kph, mq “ ´
1

2

ż
m Ght δh u u dx `

3 ǫ

2

ż
m Gh Bx t h2 δh ux u dx

“ ´
1

2

ż
u δh u dx ´

3 ǫ

2

ż
ux h2 δh ux dx , (2.28)

∗Integrating by parts, we have hu
2 ` ǫh

3
u

2

x “ uLhtuu `
“
ǫh

3
uux

‰
x

“ mGhtmu ` ‘boundary terms’, so the

kinetic energy part of the Hamiltonian density (2.23) can be replaced by 1

2
mGhtmu.
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Figure 2. Sketch of the numerical test case considered in section 3.
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Figure 3. Evolution of a step initial condition under the dynamics of the
regularised Saint-Venant (rSV), NSWE and the Serre equations. The vertical
(gray) dashed line indicates the position of the bottom step.

where we have exploited the self- and skew-adjointness of, respectively, Gh and Gh Bx. It
follows immediately that EhtK u “ ´1

2
u2 ´ 3

2
ǫh2u 2

x and the equation (2.25) is subsequently
obtained at once.

Finally, the (non-canonical) Hamiltonian structure takes the form

Bt

ˆ
h

m

˙
“ ´ J

ˆ
EhtHǫu

EmtHǫu

˙
“ ´

„
0 Bx h

h Bx m Bx ` Bx m

 ˆ
EhtHǫu

EmtHǫu

˙
“

ˆ
´ r h u s

x

ghdx ` ǫgh2
η

x
dxx ´

“
um ` 1

2
gh2 ´ ǫh2

`
2hu 2

x ` ghη
xx

` 1
2
gη 2

x
` gη

x
dx

˘ ‰
x

˙
, (2.29)

yielding the equations (2.12) and (2.20). It should be noted that J being skew-symmetric and
satisfying the Jacobi identity [23], it is a proper Hamiltonian (Lie–Poisson) operator.

TestCaseMoyen.eps
figure2.eps
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Figure 4. Zoom on a portion of the computational domain at the final
simulation time. For the sake of clarity, we report the regularised (rSV) (for
three values of ǫ) and classical (NSWE) shallow water equations only. Note
the exact coincidence of the main shock position around x « 70.

3. Numerical results

In this section, we compare the rSV, NSWE and Serre–Green–Naghdi (SGN) systems for
the formation and propagation of shock waves and their interaction with a variable bathymetry
using high order numerical methods. We include into our comparisons the SGN equations in
order to illustrate the typical behaviour of a fully nonlinear but (weakly) dispersive system
in the same conditions.

We consider a periodic initial value problem (IVP) on the computational domain x P
r´ℓ; ℓs although, due to the symmetry, we shall plot only the sub-domain x P r0; ℓs. The
SGN system is solved numerically using the standard Galerkin/finite-element method with
smooth cubic splines on an uniform grid together with a fourth-order Runge–Kutta method
for the temporal discretisation, as described and analysed in [21] for a flat bottom and in
[22] for varying bottoms. This method can perform really well for smooth solutions due to
its conservative properties. When it comes to describe nearly discontinuous solutions, then
spurious oscillations may appear due to the Gibbs phenomenon. To avoid this phenomenon
one can use artificial diffusion, a method that is commonly used for the numerical solution of
hyperbolic conservation laws. The rSV equations are solved by the same numerical method
which was appropriately adapted to the analogous terms. In all simulations the grid length
for the spatial discretisation is ∆x “ 0.1 and the time step ∆t “ 0.01. The NSWE equations
are solved using a finite volume (FV) method (described in [11]) in the same interval and with
the discretisation parameters used for the numerical solution of the regularised and dispersive
systems. Namely, for the FV method we used the HLL numerical flux function and the second
order UNO2 reconstruction with the minmod limiter [11].

The test case used in the present study is schematically shown in Figure 2, and the values
of various physical parameters are reported in Table 1. Namely, we consider the standard
benchmark of the dam break problem with a variable bathymetry. The bottom (a simple
smooth step) and the initial condition for the free surface are given, respectively, by

dpx, tq “ dL ´ 1
2

pdL ´ dRq r 1 ´ tanhpδpx ´ xbqq s , (3.1)

ηpx, 0q “ η
L

´ 1
2

pη
L

´ η
R

q r 1 ´ tanhpδpx ´ x0qq s . (3.2)

figure3.eps
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Table 1. Various physical parameters used in numerical simulations. See
also Figure 2 for an illustration.

Parameter Value

Gravity acceleration g 1
Computational domain half-length ℓ 200
Still water depth on the left dL 2
Free surface elevation on the left η

L
0.5

Still water depth on the right dR 1
Free surface elevation on the right η

R
0

Initial shock wave position x0 0
Bottom step location xb 40
Final simulation time T 50
Regularisation parameter ε 0.001
Transition length parameter δ 0.5

The velocity field is taken to be initially zero, i.e., upx, 0q “ 0.
The simulation results are shown in Figure 3, where we present the free surface elevation

initially, in the middle of simulation and at the final time t “ T (four snapshots in total).
A zoom of the free surface elevation at the final time is shown in Figure 4. One can see
an excellent agreement between NSWE and rSV systems. In particular, the shock positions
coincide perfectly. This very visible on the zoomed figure 4, where we have also reported
three different values of ǫ. In all cases, the position of the regularised shock (inflexion point
of the free surface) is exactly the same as with the NSWE, as it is the case in constant depth
[6, 24]. The absence of oscillations in the rSV solution confirms the absence of any dispersion,
as it was designed for. In contrast, the weakly dispersive SGN system develops oscillations
in the same experimental conditions.

4. Conclusion and perspectives

In this article, we proposed a new regularisation for the nonlinear shallow water equations
(NSWE) over general uneven bathymetries. The derivation follows a variational procedure de-
scribed in previous works [6, 7]. This method has the advantage of being automatically conser-
vative and the resulting equations are also well-balanced, non-dispersive and non-dissipative.
The regularised Saint-Venant (rSV) equations thus obtained possess several conservation laws.
Moreover, the regularised system possesses also a Hamiltonian formulation, as the original
equations do [15]. Finally, the rSV system was studied numerically with the finite element
method (FEM). The solutions of the rSV system were compared to the classical NSWE (solved
with FV) and the Serre–Green–Naghdi equations (solved with FEM as well). The numerical
results confirmed the absence of dispersive effects in fully nonlinear simulations. An excellent
agreement with NSWE could be noticed as well.

Concerning the perspectives, the generalisation of these results to 3D flows (i.e., two hori-
zontal dimensions) is the next natural step in this research direction.

Acknowledgments. D. Mitsotakis acknowledges the support by the RSL fund of Victoria
University of Wellington and by the University Savoie Mont Blanc, LAMA UMR 5127, for
the hospitality during his stay in March 2019.
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Appendix A. Unbalanced equations

The Euler–Lagrange equations for the functional density (2.9) yield, after some algebra,
the mass conservation ht ` rhus

x
“ 0 and the conservation of momentum

Bt

 
u ´ ǫ h´1

“
h3 ux

‰
x

(
` Bx

 
1
2

u2 ` g η ´ ǫ h´1 u
“

h3 ux

‰
x

´ ǫ h2
`

3
2

u 2
x ` g hxx ´ 1

2
g dxx

˘
´ ǫ g h h 2

x

(
“ 0. (A.1)

For still water — i.e., when u “ η “ 0 and h “ dpxq — the mass conservation is satisfied
identically and the momentum conservation (A.1) becomes, after simplifications,

´1
6

ǫ g
“

d3
‰
xxx

“ 0. (A.2)

Thus, the stil water is solution if ǫ “ 0 (classical shallow water equations) and, when ǫ ą 0, if
d3 is a second-order polynomial in x. For general bottoms, the equations derived from (2.9)
are not well-balanced and, therefore, the Lagrangian density (2.9) does not provide a suitable
regularisation of the classical shallow water equations for uneven bottoms.
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