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Feature and structural learning of memory sequences with recurrent
and gated spiking neural networks using free-energy: application to

speech perception and production II

Alexandre Pitti1∗, Mathias Quoy1, Catherine Lavandier1 and Sofiane Boucenna1

Abstract— We present a framework based on iterative free-
energy optimization with spiking neural network for modeling
the fronto-striatal system (PFC-BG) for the generation and
recall of audio memory sequences. In line with neuroimaging
studies done in the PFC, we propose a genuine coding strategy
using the gain-modulation mechanism to represent abstract
sequences based on the rank and location of items within them
only. Based on this mechanism, we show that we can construct
a repertoire of neurons sensitive to the temporal structure in
sequences from which we can represent any novel sequences.
The free-energy optimization is used then to explore and to
retrieve the missing indices of the items in the correct order for
executive control and compositionality. We show that the gain-
modulation permits the network to be robust to variabilities
and to have long-term dependencies as it implements a gated
recurrent neural network. This model, called Inferno Gate, is
an extension of the neural architecture INFERNO standing
for Iterative Free-Energy Optimization of Recurrent Neural
Networks with Gating or Gain-modulation. In experiments done
with an audio database of ten thousand MFCC vectors, Inferno
Gate is capable to encode efficiently and retrieve chunks of
fifty items length. We discuss then about the potential of our
network to model the features of the working memory in PFC-
BG loop for structural learning, goal-direction and hierarchical
reinforcement learning.

I. INTRODUCTION

During early development, infants are keen on grasping
structure in several core domains [1], [2], infering causal
models and hypothesis as little scientists [3], [4]. They
develop rapidly knowledge about numerosity, space, physics
and psychology but it is only around 8 months that they gain
aptitudes to make complex sequences and to retain structural
information in environment.

In language acquisition, this skill is central for words seg-
mentation and for detecting grammatical and ungrammatical
sentences [5], [6]. For instance, infants are sensitive to the
temporal order of events in spoken words and in music so
that they can be surprised if one syllabe is changed or if one
sound is removed, violating their prior expectation [7].

A. Neural fundations

It is at this period also that the prefrontal cortex (PFC)
develops. The prefrontal circuits describe a working memory
for executive control and planning that evaluates sequences
online based on uncertainty [8] and select/unselect them
according to the current context or create new ones if any
are satisfying [9], [10], [11].
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More than any other brain areas, the PFC can extract
abstract rules and parametric information within structured
data in order to achieve a plan [12], [13], [14]. This aspect
makes it particularly important for problem solving tasks,
language and maths [15], [16], [17], [18].

Experiments done on subjects performing hierarchical
tasks such as drawing a geometrical figure [19], [20] or de-
tecting temporal patterns within action sequences [21], [22]
have permitted to identify some properties of PFC neurons
for features binding and higher-order sequence planning. In
series of observations done on PFC neurons, a critical finding
was that sequences were encoded through a conjunctive
code, which crosses items and serial orders [23]. In similar
experiments done by Inoue and Mikami, some PFC neurons
were found to modulate their amplitude level with respect
to the position of items during sequential presentation of
two visual shape cues [24]. The PFC neurons displayed
graded activity with respect to their ordinal position within
the sequence and to the visual shapes; e.g. first-ranked
items, or second-ranked items. In more complex tasks, PFC
neurons were found to trigger at particular moments within
the sequence [13]; eg the beginning, the middle, the end, or
even during all the evolution of the sequence.

Despite these findings, the precise role played by con-
junctive cells in the PFC and the mechanisms behind are
still under investigations. In constrast, the conjunctive cells
in the Parietal Cortex are more studied and many neuro-
computational models explain how they can serve for spatial
representation [25], [26], for coordinate transformation [27],
[28] and for numerosity capabilities [29]. In most researches,
conjunctive cells or gain-modulation neurons in parieto-
motor neurons are seen as a way to bind different infor-
mations from each other (eg vision and proprioception) for
realizing an action (eg target reaching). In [30], [28], Pouget
proposes that gain-modulated conjunctive cells in the Parietal
Cortex can serve as basis functions for constructing any
spatial metric; eg, a hand-centred relative metric [31], [32], a
head-centred relative metric [25]. Similar to the role played
by conjunctive cells in the the spatial domain in the Parietal
Cortex, we suggest that the conjunctive cells in PFC play a
role of basis functions in the temporal domain to decompose
and code sequences. Gain-modulation in PFC may serve to
extract temporal patterns and to represent them as primitives
for encoding any existing sequences or for generating any
new ones, see Fig. 1 a-b).

This idea is in line with comparative neuroanatomical



studies who attributes to the parietal cortex and to the pre-
frontal cortex similar functions to represent relative metrics
or conjunctive representations [33] such as order with relative
duration, order with relative distance but only the PFC is
in position to generate goal-based on context [34]. It is
also suggested by Botvinick and Watanabe in [35] who
proposed that these cells in PFC describe a compressive
representation of sequences without items. Gain-modulated
conjunctive cells can give an insight how the PFC manages to
plan sequences and encode them [17]. For instance, they may
be seen as a solution to disentangle the features (items) from
the sequence (ordinal information) in planning. Following
this idea, they may gate information at particular moments.
That is, not only predicting which action to perform but
also knowing when within a sequence [36], [37]. Their role
may be in line with other frameworks in which neuronal
“pointers” or “fillers” or “timestamp” neurons are proposed
for binding or gating information with respect to the current
inputs [38], [39], [40], [41].

Furthermore, this mechanism may serve to construct a
basis for composing any sequences, to recombine items in
different order or to generate any novel sequences with
different items, see Fig. 1 b). This capability of combinatorial
re-use is particularly robust and specific to human behaviors,
which corresponds to the capacity of compositionality, hier-
archy and of systematicity found in languages and structured
grammars [42], [43], [44], [45], [46], [47], [17].

B. State of art for prefrontal neural models

In prefrontal models for sentence processing, Dominey
proposed earlier versions of echo-state networks to model the
associative memory in the corticostriatal system for language
processing and sequence learning [48], [49], [50].

These architectures differ from other types of recurrent
neural networks for serial recall and online activation, which
can show nonetheless complex sequences ordering [51] and
error-based predictive coding [41], [52], [53].

Different PFC neural architectures from dynamical sys-
tems theory have been proposed to code and retrieve memory
sequences based on phase synchronisation for feature binding
such as the LISA architecture [54], on chaotic networks as
in [55], [56], [57], or on reservoir computing networks [58].
For instance, echo-state networks have been utilized for
modeling the learning of structure and the acquisition of
a grammar of rules [50], [59], [60], [61]. Despite many
advantages as dynamical systems to embed attractors, the
learning phase is almost done offline with supervised learn-
ing for labelling the patterns. Meanwhile, they have to be
initialized properly to be effective and the way how structural
information (topology) is embedded within these networks
is also not clearly defined as it is often used as a black
box. Furthermore, it is not clear also how they can support
other coding strategies such as the gating mechanism or other
learning mechanisms such as reinforcement learning.

Jun Tani proposed neural architectures to manage dynam-
ics with recurrent neural networks at multiple temporale
scales (MTRNN) or with parametric bias (RNNPB) for

learning the attractors (abstract temporal structures) in se-
quences [43], [62], [46]. In neurorobotic experiments, within
the framework of dynamical systems and chaos theory, he
showed how recurrent neural networks can embed several
dynamics as symbolic units (rhythmical and sequential) for
robot control, imitation and social interaction, giving rise to
compositionality.

In contrast to these algorithms, another family of PFC
models is based on a gating or gain-modulation mechanism.
In the litterature, this corresponds to the Long-Short Term
Memory (LSTM) [63], [64], [14], the gated prefrontal net-
works with stripes by O’Reilly and colleagues [65], [10], the
SPAWN architecture with neuronal pointers by Eliasmith and
colleagues [39], [66], or the prefrontal architectures that use
explicitly gain-modulation as in [35] and in [67].

O’Reilly and colleagues attribute to the PFC neurons the
role of variable binders to identify rules in the sentences
(subjects, verbs, complements) and to process new ones
by filling the holes with current values (eg binding new
words) [11], [68]. Current models of the PFC show the
importance of gating networks [63], [10], [11], [67], [14],
[39]. Gated information is particularly useful to maintain
contextual variables for several cycles in order to reuse it
later or to process new memories from it. For some models
like the long short-term memory (LSTM) networks [63],
these algorithms have proved their robustness in spite of
their lack of accessibility and of biological plausibility. In
literature, the gating mechanism is mostly understood as
an on/off switch for maintaining or shunting memories. In
comparison, the gain-modulation mechanism is very similar
to a gating mechanism expect that it emphasizes more
the binding of the signals from each others. For instance,
this analog gating can serve to bind the relative order of
items within temporal sequences and for retrieving them as
suggested in [22], [35], [17].

In more general frameworks without close bio-inspiration,
we can cite the works by Kemp, Lake and Tenenbaum who
proposed several architectures based on bayesian theory for
probabilistic encoding and compositional capabilities [44],
[4], [69]. Using a bayesian framework for generating prob-
abilistic models, their model could extract primitives from
motor sequences to construct new symbols of the same types,
differently combined.

C. Proposal framework for sequence learning

In this paper, we propose to use the neural architecture
INFERNO standing for Iterative Free-Energy Optimization
in Recurrent Neural Network for the learning of temporal
patterns and the serial recall of sequences. We proposed
originally this neuronal architecture to model the cortico-
basal ganglia loop [70] for retrieving motor and audio
primitives using Spike Timing-dependent Plasticity (STDP)
under the framework of predictive coding and of free-energy
minimization [71], [72], [73]. Here, we propose to implement
a similar free-energy minimization network but this time
in the prefrontal-basal ganglia loop for the serial recall of



memory sequences and for the learning of temporal pattern
primitives, using gain-modulation instead of STDP.

Gain-modulation will serve to model neurons salient to the
temporal order of items and their sequential organization.
As explained previously, PFC units depend crucially on
this type of coding for serial recall. They support a gain-
modulated mechanism to encode jointly items and rank-
order information in a sequence [35]. This mechanism of
gain modulation is also described as a gating or conjunctive
function in other researches [67], emphasizing more the
properties to filter out or to hold on information.

Since the working memory is using gating cells instead
of STDP, we propose to name it Inferno Gate in order to
disambiguate this architecture from our original network. We
will show that Inferno Gate is capable to learn temporal prim-
itives sensitive to the serial order of items within sequences,
to code abstract temporal sequences with information about
items and to retrieve and construct accurately sequences with
items with respect to the given serial order information.

D. Prefrontal structures for model-based reinforcement
learning

We justify our neural architecture from the works done on
several neural structures in PFC identified for serial recall
and the temporal organization of behaviors [74], [33], [50],
[15], [16].

Functional imaging studies suggest the PFC provides top-
down support for organizing the orderly activation of lower
stages of the executive hierarchy in sequences of actions (eg,
goal representations). Koechlin and colleagues propose that
the PFC subserves executive control and decision making in
the service of adaptive behavior [75], [15], [16].

In order to sustain such adaptive behaviors, it has been
proposed that the working memory in PFC has to embed
mechanisms for flexibility [76], [77] for maintaining memory
sequences during long time range in a hierarchical manner
and for exploring new behavioral strategies. Such mecha-
nisms have been proposed typically within the inferential
bayesian theory [9], [8], [78] and within reinforcement
learning framework [74], [79], [15]. Such approach has been
extended to PFC models based on predictive coding and to
free-energy minimization.

In line with these works and the models proposed in [15],
[79], we present a detailed neural architecture in Fig. 2 in
which we identify the Broadman area B45, the lateral PFC
(lPFC), the dorsolateral PFC (dlPFC), the Orbito-Frontal
Cortex (OFC) and the Anterior Cingulate Cortex (ACC)
to participate to a model-based RL system for the active
inference of memory sequences.

In first, we suggest that the group constituted by B45,
lPFC and dlPFC are associated to the representation of the
temporal organization of sequences. In second, we suggest
the group constituted by the dlPFC, ACC and OFC interact
for decision-making, executive control and problem-solving
tasks.

We base our assumptions principally from the review
papers done in [36], [50], [33], [15], [79]. For instance,

in our schema, the rostral lateral PFC in both monkeys
and humans (typically Broadman areas 9/46 in [50], [33])
has been identified for grouping actions from each others,
for episodic or temporal control. We associate therefore
the Broadman area B45 for the chunking of raw memory
sequences coming from parietal and striatal areas.

At the second stage, the lateral PFC (lPFC) appears to
proactively build actor task sets from long-term memory that
match the context in which the individual is acting [36],
[33]. Neurons in lPFC represent the long-term memory of
behavioral sequences and the plans or schemas of action [36].
These actor task sets correspond to us to temporal patterns
or sequence prototypes as presented in Fig. 1.

At the third stage, the dorsal lateral PFC (dlPFC) appears
implicated in the temporal integration of information for the
attainment of prospective behavioral goals [36], [15]. Reports
suggest the involvement of the dlPFC for order memory in
term of choosing the correct sequence among several. In our
schema, the dlPFC combines the temporal primitives of the
lPFC to have an estimation of the most suited sequence.

The group constituted by the dlPFC, ACC and OFC
networks appear involved in a model-based RL working
memory for which the anterior cingulate cortex (ACC) seems
involved in the motivation to perform goal-directed action,
the task context units in dlPFC, whereas the orbitofrontal
cortex in value-based decision-making implicated in novel
choices. According to Fuster, the orbital PFC, which is well
connected with the brainstem and limbic formations, plays
a major role in the control of basic drives [36]. OFC might
realize the downward trend or cascade of the processing of
decided goal-directed actions (concrete sequences) and rep-
resent option-specific state values [33]. OFC might involve
a competition for decision-making among multiple choices.
The ensemble is organized for the serial order encoding
of sequences in dlPFC and the exploration and recall of
sequences in OFC.

The paper is organized as follows. We will explain first
how an analog gating can be done using the rank-order cod-
ing algorithm and how gain-modulated neurons can represent
a compact code for sequences. In comparison to other gain-
modulation architectures that require a one-to-one conversion
matrix necessary for multiplicative binding –, which con-
sumes neurons for this computation,– we discovered that a
rank-order coding algorithm can model gain-modulation in
a more efficient manner with spiking neurons.

We apply this network for the learning of temporal prim-
itives from audio sequences. These primitives are used then
for representing and recalling these audio sequences of one
second length (1000 milliseconds), corresponding to chunks
of 50 items length, despite information about the items
identity (their index) was lost.

We discuss then the originality of our approach and impli-
cations in terms of computation for modeling sequences, ex-
tracting temporal tree structure-like patterns, for compressive
coding of grammar-like models, recursive representation,
compositionallity and transfert learning.



Fig. 1. Gating operation for feature and structural separation in sequence learning. In a), we can discriminate the items’ identity (rank) from their position
(order) to represent one sequence. By separating the two, we can extract the temporal pattern and arrange items in a different order. Hence, the coding of
the temporal pattern can make it robust to variability and can represent many sequences (generalization). This process is operated by a gain-modulation or
gating mechanism explained later. In b), the combination of these temporal patterns can serve to compose any novel temporal pattern in the same fashion
as radial basis functions would do.

Fig. 2. Framework for sequence learning based on iterative optimization in Fronto-Striatal (PFC-BG) loop. Our putative architecture follows the models
proposed by [74], [15]. The Striatum (STR) represents the action/sound units that are assembled into a sequence at the Broadman area B45 in order to form
a chunk. This chunk is read by the lateral PFC layer (lPFC), which learns and recognizes the temporal patterns via a gain-modulation/gating mechanism.
The different temporal patterns in lPFC are assembled in the dorso-lateral PFC layer (dlPFC), whose units represent each the temporal structure within
the sequence at a higher level. Based on the evaluation of the dlPFC, the Orbito-Frontal layer (OFC) and the Anterior Cingulate layer (ACC) generate
and select sequences that follow the temporal patterns in dlPFC in order to retrieve the indices lost of STR units for executive control. This reinforcement
learning stage corresponds to a free-energy minimization process to reduce error prediction. The framework follows the architecture Inferno proposed for
the cortico-basal ganglia (CX-BG) loop.

II. METHODS

We present in section II-A the neural architecture IN-
FERNO Gate used for serial recall in audio sequences
associated with the PFC-Basal Ganglia loop. We describe
then in section II-B the coding mechanism used for learning
the serial order of items within sequences using the rank-

order coding algorithm for modeling the gain-modulation
mechanism with spiking neurons. We define after in sec-
tion II-C the experimental setup and the parameters used for
accurate recall of long-range speech sequence.



A. the network architecture Inferno Gate

The neural architecture Inferno Gate reproduces the main
configuration of the original Inferno network [70] with two
coupled learning systems that minimize their mutual predic-
tion error (the free-energy), see Fig. 2. The two networks
use both spiking neurons and the difference betwen the two
comes from the types of coding employed to represent tem-
poral events. Namely, the original Inferno network employs
the spike timing-dependent plasticity mechanism whereas the
second one uses gain-modulation.

Considering the global architecture in Fig. 2, the two
learning systems (lPFC/dlPFC and dlPFC/OFC) corresponds
to two associative networks of spiking neurons (SNNs)
similar to radial basis functions. Bidirectionally coupled, the
first SNN (lPFC/dlPFC) implements a forward model of the
incoming signals while the second SNN (dlPFC/OFC) imple-
ments an inverse model aimed at retrieving and controlling
those signals. The two learning systems can be viewed as
an inverse-forward controller that can be modeled with the
function Yout = f(I) for the first SNN and with the function
I = g(Yout) for the second one, in which I is the input vector
and Yout are the output dynamics. I is a sequence of Striatal
units over time.

In order to minimize error, the second network
(dlPFC/OFC) generates intrinsic noise Inoise to control the
dynamics of the first one (lPFC/dlPFC) following a rein-
forcement learning (RL) mechanism. In Fig. 2, this role is
devoluted to ACC for error evaluation. The activity level of
one unit in dlPFC, Y = Yout, is compared to its maximum
amplitude level Ymax in order to compute the error E
between Ymax and Yout and the current input I(t) = Inoise
is kept for the next step I(t+1) = I(t)+ Inoise, if and only
if it diminishes the gradient ∆E. Over time, I converges
to Iopt its optimum sequence vector, and Yout converges
to Ymax its maximal value. This scheme is in line with
predictive coding algorithms and its organization is similar
to novel architectures combining two or more competitive
neural networks such as auto-encoders or the generative
adversarial networks.

We showed in [70] that this variational process is similar
to a stochastic descent gradient algorithm performed iter-
atively. We add here a more sophisticated gradient descent
algorithm corresponding to a simulated annealing mechanism
in order to account for the neuromodulators involved in
decision-making in PFC for uncertainty and surprise [8].

As proposed by [74], adding temporal structure to RL
can ease the scaling problem in the exploration process.
In the original version of Inferno, we found that STDP
helped to learn and retrieve temporal chains. Thereinafter,
we will show that the gain-modulation can even go beyond
for abstracting temporal sequences and to be more robust to
variability.

B. Gain-modulation mechanism based on Rank-Order Cod-
ing

The rank-order coding (ROC) algorithm has been proposed
by Thorpe and colleagues to model the information process-

ing done in the Visual Cortex by feedforward integrate-and-
fire neurons [80]. We have expanded their use to recurrent
neural network models in [81], [70] replicating the Spike
Timing-Dependent Plasticity learning mechanism.

The main assumption of the ROC algorithm is that spik-
ing neurons performs a quantization of the inputs variable
occuring in time discretized with respect to their temporal
delays, see Fig. 3 b). The temporal order of the inputs are
transcribed into a rank code that is translated into weights
value and summed at the neuron’s level. The more similar
the temporal order of the incoming signals, the higher the
amplitude level of the ROC neurons. Reversely, the less
similar the sequence order of the incoming signals, the
lower the amplitude level of the ROC neurons. Although this
mechanism can encode discretized temporal sequences as
showed in our previous works, it does not retranscribe a gain-
modulation mechanism, a sensitivity to a rank-order within a
sequence independently to the neurons’ identity. We suggest
here, as a novel coding strategy using gain-modulation, that
we can construct ’compressive codes’ of temporal sequences
by removing the identity of the neurons (their index) within
the temporal sequence and keeping just their ranking order,
see Fig. 3 c).

STDP coding strategy – If the ROC algorithm computes
the neurons activity based on the discretized temporal delays
of incoming events, the coding strategy resembles to the
STDP learning mechanism with ROC neurons becoming
sensitive to the temporal contingency of incoming input; see
Fig. 3 b). In this coding scheme, ROC units are considered
therefore as contingency detectors inducing phase synchro-
nization [82].

Gain-modulation coding strategy – A second coding strat-
egy consists to discretize the serial order of units both in time
and space, see Fig. 3 c). Here, the indices of the neurons (or
their identities) are no more preserved and it is their rank
within the sequence that is taken into account; eg first, second
or n-th in the sequence. This strategy reduces drastically
the amount of information to process, which makes possible
the discovery of an abstract temporal structure disregarding
the units indices; eg the sequence becomes a template. This
coding mechanism is described as compressive representa-
tion by [35]. Hence, since the units identity is not anymore
present in the temporal code, it is sensitive to any novel
sequences that preserve the global temporal structure.

For instance, in Fig. 3, the temporal encoding of two
sequences following the same spatio-temporal pattern is
constructed successively by first dismissing the temporal
information and then the identity information with the rank-
coding algorithm first on the time axis and then on the index
axis.

The problem dimensionality for temporal sequences of
M elements is reduced from a continuous time × space
dimension in IR2M to an intermediate representation of
INM × IRM and then to a compressive representation of
IN2M . Although the reduction of complexity does not appear
important when looking at the dimensionality of the vector
quantization, it permits to represent in a compact way an



infinity of varying spatio-temporal sequences that follow the
same structure, which corresponds well to the variable binder
property found in PFC neurons.

In comparison to other methods used to code the gain-
modulation mechanism as in [35], [53], [83], [84], this one
has the advantage to not project the rank code and the
position code into an intermediate 2D matrix of complexity
O(M2). It does not need also to separate the ranking in-
formation into separate modules or stripe codes as proposed
in [11], [68].

This property of identity masking appears similar to the
idea of variable binding in [68], of timestamp neurons
in [85], [52] or of neuronal pointers in [39] as these neurons
can fill out any new variables in the correct rank in the
sequence. This coding strategy requires therefore two types
of units, one for maintaining the input information (variables
values) and one for recalling the sequential order. Both are
found in the prefrontal cortex for the maintenance of the units
activity and for the learning of a task-related activity. The
ensemble constitutes the behavior of one Working Memory.

One advantage of the gating strategy compared with the
STDP one is that the temporal information is learned sepa-
rately from the inputs, which enables the network to learn
long-range dependencies at an abstract level and to prevent it
to loose information less rapidly within a temporal horizon –,
which corresponds to the so-called vanishing gradient effect
in deep networks. As a remark, feed-forward (deep) net-
works, standard recurrent neural networks (with/out STDP)
or hidden Markov models will easily loose accuracy after
several iterations due to the accumulated errors because any
errors, noise, delays within a sequence and sensitivity to
duration will disrupt the sequence. One explanation why any
error introduced in the network makes conventional neural
networks brittle is that the state and the temporal information
are coded together. This is not the case in neural models
with a gating mechanism like PBWMs [68], SPAWN [39] or
LSTMs because the temporal information of a sequence can
be learned in memory cells separately to the variable values
that can be retrieved online or maintained dynamically during
an indefinite amount of time.

The equations of the rank-order coding algorithm that we
used is as follows. The neurons’ output Y is computed by
doing the dot product between the function rank() sensitive
a specific rank ordering within the input signal vector I and
the synaptic weights w; w ∈ [0, 1]. For a vector signal of
dimension M and for a population of N neurons (M afferent
synapses), we have

Yn =

M∑
m

rank(Im)wnm,∀n ∈ N (1)

We implement the rank function rank() as a power law
of the argsort() function normalized between [0, 1] for
modeling the gain-modulation mechanism applied two times
on the time axis and on the rank axis. This warranties that
the density distribution is borned and that the weight matrix
is sparse, which makes the rank-order coding neurons similar

to radial basis functions. This attribute permits to use them
as receptive fields so that the more distant the input signal
is to the receptive field, the lower is its activity level. The
updating rule of the weights is similar to the winner-takes-all
strategy in Kohonen networks [86] with an adaptive learning
rate αn,∀n ∈ N . For the best neuron Yb, we have:

∆wbm = αb(rank(Im)− wbm),∀m ∈M (2)
αb = 0.9αb (3)

C. Experiment Setup

We give the implementation details about the striatum-
prefrontal working memory modeled by the Inferno Gate
architecture. We ascribe to it the role to learn temporal
patterns and to represent audio memory sequences, see
Fig. 2. The audio database used as input consists on a small
audio dataset of 2 minutes length of a native french woman
speaker repeating three times five sentences. The audio .wav
file is translated into MFCC vectors (dimension 12) sampled
at 25ms each and tested with a stride of 10ms. The whole
sequence represents 14.000 MFCC vectors, the number of
units in the Striatum layer not encoded in the temporal order.

The Inferno Gate architecture is based on the same prin-
ciple of the Inferno architecture –, the use of noise and
reinforcement learning to control a spiking network,– expect
that the coding strategy exploits now compressive ranks
(the unit’s identity is not preserved) and temporal order
(sensitivity to the position in the sequence). Here, the B45
area is modeled as a buffer of 50 units length receiving the
indices ordered in time of the Striatum layer consisting of
14000 units; the number of coded MFCC in STR. Therefore,
each chunk in B45 represents a sequence of 50 MFCCs,
corresponding to a chunk of 1250 ms length.

Then, the lPFC layer encodes the ordinal information from
the B45 buffer. The lPFC layer consists on 5000 units for
which each unit encodes a specific temporal pattern through
gain-modulation. Each lPFC unit learns the temporal pattern
that follows the serial order within the sequence of 50 units
in B45, independent of their true index.

At the next stage, the dlPFC layer combines together the
lPFC units to represent abstract sequences. The dlPFC layer
consists on 300 contextual neurons. Each unit encodes a
compositional representation from the 5000 basis functions
in lPFC. The strong dimensionality reduction in lPFC as
explained in section II-B and in Fig. 3 permits to learn
and generalize rapidly temporal patterns within sequences
in dlPFC and to explore rapidly new sequence solutions at
high speed.

Finally, the dlPFC units are evaluated by the ACC and
a prediction error signal is processed to search and retrieve
the optimal sequence in OFC. The OFC layer consists of
300 vectors of 50 iterations length, one vector for each
unit in dlPFC. Each vector is generated to retrieve back
the corresponding sequence of 50 iterations length with the
retrieved STR index values. The OFC vectors are used for
the executive control on the Striatal units.



Fig. 3. Rank-order algorithm for compressive rank representation. We describe the two steps process done with the rank-order coding algorithm to
model the Spike Timing-dependent Plasticity rule and the Gating mechanism. In a), two sequences in cyan and magenta are represented with different
neurons indices, different timing but with same temporal structure (up-down-up-down). In b), the rank-order coding algorithm is used to quantify any
sequence in the temporal domain with discrete timing; eg first ranked, second ranked. This is a rough approximation of the STDP rule. The indices of the
neurons are kept and only the temporal information is lost. In c), we can use a second time the rank-order coding algorithm to suppress now the neurons
identity (their indices) within the sequence in order to keep only their rank within the sequence. This second process permits to have a temporal pattern, a
compressive representation of the two sequences in which only the rank order is kept. This second process reduces drastically the amount of information
to encode any sequence, irrespective to the neurons’ id and to their precise timing. For any sequence of length M , the problem dimensionality is reduces
to IR2M → IN2M .

III. RESULTS

This section explains the two different experiments done to
model the striatum-prefrontal working memory for learning
abstract temporal patterns and for retrieving audio sequences
through an exploration process.

In the first experiment presented in section III-A, we
explain the control done from the striatum on the prefrontal
layers to learn temporal patterns and to represent abstract se-
quences with information flow STR→B45→lPFC→dlPFC.
In the second experiment presented in section III-B,
we explain the exploration process done to generate
audio memory sequences using evaluation on predic-
tion error from the encoded abstract sequences previ-
ously learned; the information flow goes this time from
dlPFC→OFC→B45→lPFC→dlPFC.

A. Experiment 1 –Learning temporal patterns and encoding
abstract sequences

1) model-based gated control in striatum-prefrontal
loops: Experiment 1 explains the information flow
STR→B45→lPFC→dlPFC in order to learn respectively
the temporal patterns in the lPFC layer and the abstract
sequences in the dlPFC layer.

We present in Fig. 4 a) the dynamics of lPFC and dlPFC
layers during the learning stage. The activity level of each
neuron indicates their sensitivity to the temporal pattern
found in the sequence. The neurons in lPFC present a
compressive code of the B45 input sequences, which are
then combined in the dlPFC layer at a more abstract level.
We plot in Fig. 4 b) in the top chart the snapshot of the
lPFC population activity taken at one time step and sorted
(black line) and in the bottom chart the temporal pattern of
the most active neuron in lPFC (red line) and the rank order
at the population level (blue line).

The activity level of the lPFC units indicate their saliency
to one specific rank order within input sequences. The sorted

activity in black line indicates the coding representation at
the population level is not sparse but many neurons are
necessary to code the sequences. For instance, because each
lPFC unit encodes one temporal pattern at the unit level, the
decomposition of one sequence can only be partial as seen
in Fig. 4 b) bottom chart, whereas at the population level,
the sequence can be represented and discriminated.

2) Analysis of the sequence encoding in the lPFC net-
work: After the learning stage of the lPFC and dlPFC units,
we can analyze how the ranking information is encoded
in the weight matrices. We plot in Fig. 5 a) the weights
of the lPFC units (5000 units in Y axis) reordered with
respect to their sensitivity to specific positions within B45
sequences (50 iterations length in X axis). The amplitude
level of the synaptic weights in the diagonal indicates that
each lPFC neuron is sensitive to different positions within
the sequences. For instance, neurons with high weight values
in the beginning of the sequence will be less sensitive to
forthcoming events occuring within the sequence, they will
serve as a retrospective template. At reverse, neurons with
high weight values in the ending of the sequence will be less
sensitive to the past events in the sequence, they will serve
as a prospective template. This behavior has been observed
in PFC neurons for sequence retrieval [87], [22] as well as in
the prefrontal-hippocampal loop in T-Maze tasks [88], [89].

As an example, we plot in Fig. 5 b) the weights distribution
of two lPFC units. We select them because these two units
have their highest weight value for the position located at
the middle of the sequence (position #24), and the other
weights located at other positions within the sequence have a
lower value. The two circles indicate two positions where the
lPFC units have the same weigths value: at positions #4 and
#24. Based on these weight distributions, we can reconstruct
back the temporal patterns for which the lPFC units are
the most sensitive to as each weight’s value corresponds



a)

b)

Fig. 4. Encoding of temporal patterns in lPFC/dlPFC layers. In a), eahc
lPFC unit encodes a temporal pattern from the incoming sequences in B45
(bottom chart). The decomposition done at the lPFC layer is a representation
of the temporal structure in the sequences that is then learned at the dlPFC
layer (top chart). In b) snapshot of the lPFC layer at one particular timing
(top chart). The black line indicates the sorted activity of the lPFC units. The
red sequence in the bottom chart indicates the temporal pattern for which the
most active lPFC neuron is the most sensitive to. The blue sequence indicates
the temporal pattern coded at the population level (for all lPFC neurons).
This graph indicates that only one unit is not discriminative enough to
represent any input sequence and that the coding at the population level is
more robust and precise.

to one rank within the sequence. We plot in Fig. 5 c) the
two reconstructed temporal patterns. Since the two lPFC
units have the same weights at the circle positions, the
reconstructed sequences code the same neuron’s rank at those
positions within the sequence.

This is how in our framework the lPFC neurons retran-
scribe the gain-modulation mechanism: with respect to the
position of one item within a sequence, the lPFC activity
level will be modulated with respect to a weight’s value
depending where is located the corresponding item (neuron’s
rank) within the sequence.

Depending on the activity level of the different lPFC units
for a specific sequence, a decomposition in the lPFC space
is represented at the dlPFC level, as in see Fig. 1 b). The
decomposition in the lPFC layer permits to represent at a
more abstract level, and in a more compact fashion, the
compressive rank of the sequence at the dlPFC layer.

B. dlPFC-OFC Iterative free-energy exploration-
optimization

1) Retrieving memory sequences from incomplete infor-
mation: We present in this section the iterative optimiza-
tion process done at the dlPFC level for retrieving mem-
ory sequences at the OFC level with the error rate com-
puted at the ACC. The information flow corresponds to
dlPFC→OFC→B45→lPFC→dlPFC, see Fig. 2.

In order to understand better the global process, we display
in Fig. 6 a-c) and in d-f) the iterative optimization process
done during 10.000 iterations for two dlPFC units, the
dynamics of the lPFC layer and of the ACC unit are showed
in a) and d), the final retrieved sequence in OFC with respect
to the one represented by the dlPFC units are displayed in
b) and e), the raster plot of the iterative search of exact
sequences in OFC and B45 are showed resp. c) and f).

In Fig. 6 a) and d) the ACC unit in the top chart represents
the error rate, which is the inverse of the activity level of
the dlPFC units. The raster plot of the lPFC dynamics is
displayed at the bottom chart. The desired sequences we want
to reconstruct in OFC are presented at Fig 6 b) and e) in
the top chart. The raster plot of the reconstructed OFC/B45
dynamics are plotted in Fig 6 c) and f).

The exploration search is performed after the learning
stage done in previous section III-B. Over time, a sequence
in OFC is explored iteratively using noise so that the dlPFC
activity is maximal activity level and that ACC reaches a
minimal value.

We display in Fig 6 b) and e) in red, the retrieved OFC
sequence in the top chart and the serial order for which the
two different dlPFC neurons are the most sensitive to in the
bottom chart.

In the top chart, we can observe that the reconstructed
OFC sequences in red follow a similar pattern to the ones in
blue although the identity of the neurons is not completely
preserved. Nonetheless, we can see that the ordinal infor-
mation in the bottom chart is matched, which means that
the proposed sequence in the top chart follows the temporal
pattern encoded in the lPFC and in the dlPFC layers.

Hence, despite the indices in the sequence have been lost
in the encoding process, the system is capable to retrieve
the memory sequences from incomplete information (due to
compressive rank) with small error.

2) Performance analysis from incomplete information: In
order to analyze the accuracy of the Inferno Gate network,
we plot in Fig 7 the euclidean error normalized between [0, 1]
made by the network during recall with respect to the number
of items given as input vector resp. a) and with respect to the
position within the sequence, resp. b). The exploration stage
was limited to 10.000 iterations for each experiment and we
plot the retrieved sequences from 0 to 40 items given out
of 50 items to retrieve, resp. in Fig. 8 a-e). The grey areas
indicate the part of sequence given to the system to restitute
the missing part.

For 0% of information given, which corresponds to the
previous situation in which the system has to retrieve the



whole sequence from scratch, the root error is 0.08 corre-
sponding to 8% error with large variance, see Fig. 8 a).

For 20% of information given, which corresponds to ten
items given out of fifty as displayed in Fig. 8 b), the accuracy
is not necessarily higher as we would expect and the error
rate reaches 0.07 with a higher variance in comparison with
the previous case. We analyse this result as the difficulty
of the system to go out from local minima with such
small constraints added, which is different from the previous
situation in which Inferno could freely search for solutions.

For 40% of information given, which corresponds to
twenty items given out of fifty as displayed in Fig. 8 c),
we can observe a strong decreasing of both the error rate
around 0.02 and the variance. This means that the network
can retrieve back 60% of the missing information with good
accuracy.

Error rate continues to diminish below 0.01 if we provide
60% of the information (30 units), see Fig. 8 d), and serial
recall is almost error-free if the network has to retrieve the
identity of ten units out of fifty (80% of the information
given). We can observe that the order position to which
the PFC neurons are sensitive to are all retrieved in the
bottom chart although there is some slight errors in the
reconstruction.

From additional studies that we did not present here, we
observed that it was possible to complete the serial recall for
all the cases with an error rate below 0.01 if we continue
the exploration search for 50.000 to 100.000 iterations. These
results indicate the generalization capabilities of Inferno to
separate linearly the input dynamics as we can achieve error-
free retrieval.

IV. DISCUSSION

We have presented a novel neural architecture based
on free-energy minimization using recurrent spiking neural
networks for modeling the fronto-striatal (PFC-BG) loop
and learning temporal sequences. This network extends our
original neural architecture Inferno in [70] aimed at modeling
the cortico-basal ganglia (CX-BG) loop for learning motor
primitives. Here, we have showed its effectiveness in the
more challenging tasks of speech recognition and production.
Although the two networks are similar in their functional
organization, the encoding type is different. The first network
uses the STDP mechanism for learning temporal correlations
between spiking events whereas the second one uses a gating
mechanism for binding the item’s rank and their position
within a sequence.

By discriminating content (which sound) and contextual
information (when to play it in the sequence), we have
showed that the two networks are capable to robustly learn
the temporal structure within sequences and to retrieve the
items identity in the correct order.

In a complementary paper, we have described the ar-
chitecture Inferno for modeling the CX-BG structure for
sound primitives. The BG network explored and retrieved
sound vectors by testing them stochastically through the
CX layer. The more the Striatal units recognize and predict

the CX output, the stronger it reinforces its link with the
sound vectors encoded in the Globus Pallidus layer, which
constitutes at the end of the optimization process one sound
repertoire.

Although a stable activity can be retrieved back in a self-
organized manner within the CX-BG network, the top-down
control of a precise temporal sequence is devoted to another
structure, the PFC-BG loop, which selects and influences
the first system. In order to model the PFC-BG loop, we
reuse the same neural architecture INFERNO but with a
different temporal coding to assess the property of the PFC
neurons. In contrast to STDP, PFC neurons employ a gain-
modulation mechanism to bind multiple information at once;
eg the relative position of an item within a sequence for
instance. We named this neural architecture INFERNO Gate
in consequence.

Gain modulation– gain-modulated units learn the order
and the rank of one item within a sequence so that any mis-
placement of it will reduce its activity level. Furthermore, the
capacity to encode the items’ localization follows a power-
law scale. From a computational viewpoint, this power-
law scale is one important property in order to construct
radial basis functions and to have orthogonal (discriminative)
representations coded at the population level. Such coding is
apparent to a nonlinear gating as their activity is modulated
by the occurence of multiple informations. The population
coding permits in return to have a compressive code that
can help the exploration search in a reinforcement learning
framework.

This property permits to use the lPFC units as ’fillers’
or ’pointers’, which adds some variability in the encoding
but in a structured way. Thus, we think this property of
gain-modulation is interesting in order to learn abstract and
temporal information about structure within sequences such
as AAB or ABA patterns for which infants are sensitive
to very early. Because the activity-level of lPFC units in
our system is modulated by multiple information, the item’s
rank and time order, we suggest that it can be used for
representing other relative metrics as suggested in [22], [33]
and that gain-modulation can be assimilated to the nonlinear-
mixed selectivity mechanism proposed by [90]. For instance,
the conjunctive cells in parietal cortex are found to encode
relative metrics based on multimodal binding to infer non-
trivial information about space and numerosity [91], [35],
[92].

In previous neurorobotic researches, we have modeled
these parietal gain-modulated neurons for visuomotor coor-
dination and for body representation using a more standard
coding strategy based on multiplication [93], [53], [83], [84],
[94]. However, the number of units necessary to process gain-
modulation evolves quadratically with respect to the problem
dimensionality. We think spiking neural networks along with
the gain-modulation learning mechanism have the potential
to represent multimodal information in a compact manner,
perhaps even more efficiently as conventional multi-layer
feedforward networks do as there is no loss of structural
information in the encoding, which is not the case in deep



networks. We can envision some tasks in multimodal inte-
gration, which are still difficult to realize with spiking neural
networks.

Retrospective and prospective encoding – The temporal
coding done in Inferno gate extends the STDP mechanism
with an extra information making it nonlinear and abstract
in the sense that neurons receptive field encode a structural
information about the sequence and not the sequence itself.
In our experiments, lPFC neurons code for a position in
the sequence either in the beginning, middle or end of it.
They are nevertheless sensitive to other positions but with
less strength.

As some lPFC neurons were sensitive to items in the
beginning of a sequence or at the end, this behaviour reflects
well the behaviours in PFC to fire to retrospective or to
anticipatory events. Retrospective neurons are firing depend-
ing on the previous events. Conversely, prospective neurons
fire depending on the future events. This properties were
shown in hippocampal cells of rats in W-shaped tracks with
alternate trajectories [89] or T-Maze with return arms [88].
These results and many others mainly refer to hippocampal
activities. However it has been shown that these activities
may be modulated by prefrontal information [95], [87]. We
make here the prediction that some lPFC neurons exhibit
these kind of activities, and that this information is used as
a global context for driving neuron firing in the hippocampus
[96].

Compositionality– the dlPFC units combine the lPFC
temporal patterns in a similar way than a radial basis function
network: as this layer embeds a variety of temporal primi-
tives, it can encode rapidly any novel sequences. Hence, we
suggest that this mechanism of gain-modulation is potentially
important in infants for fast inference and for learning
abstract patterns with few samples [44], [4]. The learning
and error minimization processing of lPFC/dlPFC temporal
rules may be similar to logical inference, which attempts to
catch up rules in one domain. As these temporal rules are
abstracted (no identity information), they may be applied to
other domains for grasping other observations; for instance,
learning the temporal patterns during motion sequences, like
planning, drawing or solving a task. As a beneficial effect,
learning higher-order hypothesis may accelerate learning
massively in other domains. It may help to learn abstract
or contexual words, which is still unachieved challenge by
AI architectures.

To summarize, we suggest that this system presents some
capabilities suited for learning linguistic systems (eg, a
grammar of rules) and timely ordered behaviors. Since
Inferno gate encodes temporal patterns in an abstract manner,
like AAB or ABA, we may expect that adding another
abstracting layer to the model, presumably the Polar Frontal
Cortex as proposed in [18], it may be possible to create
sequences of sequences, such as ((AAB)BA), mixing two or
more temporal patterns in an iterative manner. In this way,
our network may be extended to fractal-coding to have a
hierarchical represention of sequences at any depth.

Long-term dependencies – In experiment 2 in section III-

B, we have showed that it was possible to retrieve accurately
in the OFC layer the identity of units and their order
in long-range sequences (fifty iterations length) although
this information (the neuron’s identity) was not encoded in
the dlPFC units. With no external information, the system
requires a long period of time above ten thousand iterations
to search for the items’ identity as well as their position. All
generated sentences present the same temporal pattern as the
one we want to retrieve although there is some variability
present in them.

This exploration process may be seen as a babbling period
in infants development. The explorative search is based on a
free-energy minimization process of the OFC vectors based
on the evaluation of the dlPFC units computed at the ACC
level. We have showed that error minimization is fast and
that it requires only several hundred iterations to retrieve the
missing items within the sequence. If items are furnished and
imposed to the sequence to retrieve (a sequence ’a trous’),
the search is even faster and accurate with respect to the
number of items given, below two hundreds iterations.

The generative property of the system show that it incor-
porates computational capabilities of robustness to noise and
to retain long-term dependencies for sequences of fifty iter-
ations length as no information or few is required to retrieve
which item has to be performed and when. This property
is advantageous in comparison to standard recurrent neural
networks. For instance, Inferno Gate behaves differently
from classical recurrent networks, including the gated ones,
which are directed graphes that attempt to predict the next
items depending on the past ones in a Markovian fashion.
Our network may extend the idea of vector codes or of vector
symbolic architectures by [97] or of neural pointers by [39],
[38] or of the “merge” function proposed by Chomsky for
encoding nested structures in language [45], [17]. In future
research, we should test the performances and computational
power of the Inferno Gate network in comparison to other
gated networks such as the popular LSTM.

Developmental learning – Because the data identity has
been removed from the temporal information within the
sequence, Inferno Gate can learn temporal patterns. The
learning and error minimization processing of these rules
may be similar to an inference process that attempts to
capture the rules in one domain. As these temporal rules
are abstracted, they may be applied to other domains as
well or to other modalities. As a beneficial effect, learning
higher-order hypothesis may accelerate learning massively in
other domains, which is still an unachieved challenge by AI
architectures [4], [69].

Moreover, since the PFC is processing a control on other
cortical and sub-cortical structures, it may shape also their
functional organization and bootstraping.

Transfert learning – As the data identity is not encoded
within the PFC neurons, we can expect that they are more
robust to variability within the inputs such as distorted voices
or voices with different tones (high and low pitch). In this
line, we can expect Inferno Gate to find the same temporal
patterns between different modalities, visual and auditory for



instance as during lips reading accentuating the pronounced
sound with the visual input. This gating mechanism may
permit to express another way to solve the binding problem
across modalities and to perform transfert learning. For
instance, some experiments done with babies found how they
bind very early the tactile texture of a protruder and its visual
shape although not seen before [98]. Other experiments
showed such binding effect done between sound and vision
in which babies correlated an ascending sound with a more
intense light following the same temopral pattern.
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lPFC Analysis

a)

b)

c)

Fig. 5. lPFC coding analysis. In a), raster plot of the weights of the lPFC
units (Y axis) reordered with respect to their sensitivity to the location
within the sequence (X axis). Each neuron within the lPFC network has
learned a weights distribution centered at one position within the sequence;
eg the beginning, middle or end of the sequence. Neurons that code well
the beginning of the sequence can help to predict the rest of the sequence
(prospective memory). Neurons that code well the end of the sequence are
salient to the elements during the whole sequence (retrospective memory). In
b), weights distribution for two lPFC units centered at location #24 within
the sequence. The circles indicate the locations where the weights value
overlap. In c), as the weight index indicates the location within the sequence
and the weight value indicates the neuron’s rank at that position, it is possible
to reconstruct the temporal pattern for which the lPFC neurons are the most
sensitive to. The circles indicate weights with same index and same value
encode a temporal pattern with same location and same rank. The two
temporal patterns crosses at these locations.



Reconstructed OFC Dynamics for two dlPFC units

a) d)

b) e)

c) f)

Fig. 6. Free-energy optimization for retrieving sequence in OFC layer. In a), error minimization in ACC unit (top chart) and optimization of dlPFC
activity through exploration in OFC and observed in lPFC layer (bottom chart). In b), the final sequence retrieved in red in the OFC layer with neurons
identity of the STR layer between [0, 14.000] with respect to a goal sequence in blue (top chart). The temporal pattern retrieved in lPFC/dlPFC layers and
the temporal pattern of the goal sequence in blue are displayed in the bottom chart. The OFC layer achieves to retrieve with some uncertainty a temporal
sequence but the global structure of the sequence and the rank orders are mostly respected.
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Fig. 7. Performance analysis of the Inferno gate architecture for retrieving
sequences with respect to the amount of information given. In a), the error
rate computed from goal sequence encoded in lPFC/dlPFC and retrieved
sequences in the OFC layer with respect to the amount of items given from
0 to 80% of the sequence given at the B45 level. The more the number of
units to search are few, the more accurate is the recall. If we provide 40%
of the items of the sequence we want to retrieve, the error on the neurons id
is particularly small and almost error free if 80% of the neurons are given.
In b), distribution of the error rate with respect to the position within the
sequence and the amount of information provided. The error done by the
network to retrieve the sequences is not related to the temporal position
within the sequence but to the amount of information furnished to it. In c),
convergence rate of the network with respect to the amount of information
provided. The explorative search for retrieving the sequences follow a
power-law curve with respect to the amount of information furnished.



Serial Recall in OFC from incomplete information

a) d)

b) e)

c)

Fig. 8. Serial recall in OFC layer from incomplete information. Retrieved goal sequence when 0%, 20%, 40%, 60%, 80% information are furnished to
the system, respectively a-e). In the top charts, the generated sequences in OFC layer with identity fo the STR neurons are displayed in red with the goal
sequences to retrieve in blue. The more information is given to the system, the easier is the explorative search to retrieve the missing units identity. In the
bottom chart, although the rank order in the temporal patterns of the units in lPFC is respected, this does not warranty that the units identity is retrieved
correctly in the OFC sequences.


