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Introduction

We consider the sequence {P n } n≥0 of Padovan numbers defined by P 0 = 0, P 1 = 1, P 2 = 1, and P n+3 = P n+1 + P n for all n ≥ 0. This is sequence A000931 on the Online Encyclopedia of Integer Sequences (OEIS). The first few terms of this sequence are {P n } n≥0 = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . . .

In this paper, we study the Diophantine equation

P n -3 m = c (1)
for a fixed integer c and variable integers n and m. In particular, we are interested in finding those integers c admitting at least two representations as a difference between a Padovan number and a power of 3. This equation is a variation of the Pillai equation

a x -b y = c (2)
where x, y are non-gative integers and a, b, c are fixed positive integers. In the 1930's, Pillai (see [START_REF] Pillai | On a x -b y = c[END_REF][START_REF] Pillai | A correction to the paper On a x -b y = c[END_REF]) conjectured that for any given integer c ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2 to the equation ( 2) is finite. This conjecture is still open for all c = 1. The case c = 1 is Catalan's conjecture which was proved by Mihȃilescu (see [START_REF] Mihȃilescu | Primary cyclotomic units and a proof of Catalan's conjecture[END_REF]). Pillai's work was an extension of the work of Herschfeld (see [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF][START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF]), who had already studied a particular case of the problem with (a, b) = (2, 3). Since then, different variations of the Pillai equation have been studied. Some recent results for the different variations of the Pillai problem involving Fibonacci numbers, Tribonacci numbers, Pell numbers, the k-generalized Fibonacci numbers and other generalized linearly recurrent sequences, with powers of 2, have been completely studied, for example, in [START_REF] Bravo | On Pillai's problem with Tribonacci numbers and powers of 2[END_REF][START_REF] Chim | On a variant of Pillai's problem[END_REF][START_REF] Chim | On a variant of Pillai's problem II[END_REF][START_REF] Ddamulira | On the problem of Pillai with Fibonacci numbers and powers of 3[END_REF][START_REF] Ddamulira | On the problem of Pillai with Tribonacci numbers and powers of 3[END_REF][START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 3[END_REF][START_REF] Ddamulira | On a problem of Pillai with Fibonacci numbers and powers of 2[END_REF][START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF][START_REF] Hernane | On Pillai's problem with Pell numbers and powers of 2[END_REF][START_REF] Hernndez | On Pillais problem with the Fibonacci and Pell sequences Boletín de la Sociedad Matemática Mexicana[END_REF].

Main Result

We discard the situations when n = 1 and n = 2 and just count the solutions for n = 3 since P 1 = P 2 = P 3 = 1. The reason for the above convention is to avoid trivial parametric families such as 1 -3 m = P 1 -3 m = P 2 -3 m = P 3 -3 m . For the same reasons, we discard the situation when n = 4 and just count the solutions for n = 5 since P 4 = P 5 = 2. Thus, we always assume that n ≥ 2 and n = 4. The main aim of this paper is to prove the following result.

Theorem 1. The only integers c having at least two representations of the form P n -3 m are c ∈ {-6, 0, 1, 22, 87}. Furthermore, all the representations of the above integers as P n -3 m with integers n ≥ 3, n = 4 and m ≥ 0 are given by -6 = P 13 -3 3 = P 6 -3 2 ; 0 = P 10 -3 2 = P 6 -3 1 (= P 3 -3 0 ); 1 = P 14 -3 3 = P 7 -3 1 (= P 5 -3 0 ); [START_REF] Bravo | On Pillai's problem with Tribonacci numbers and powers of 2[END_REF] 22 = P 20 -3 5 = P 16 -3 3 ; 87 = P 24 -3 6 = P 17 -3 3 . Furthermore, the Binet formula is given by

Preliminary results

3

P n = aα n + bβ n + cγ n for all n ≥ 0, (4) 
where

a = (1 -β)(1 -γ) (α -β)(α -γ) , b = (1 -α)(1 -γ) (β -α)(β -γ) , c = (1 -α)(1 -β) (γ -α)(γ -β) = b. (5)
Numerically, the following estimates hold:

1.32 < α < 1.33 0.86 < |β| = |γ| = α -1 2 < 0.87 (6) 0.72 < a < 0.73 0.24 < |b| = |c| < 0.25.
By induction, one can easily prove that α n-2 ≤ P n ≤ α n-1 holds for all n ≥ 4. [START_REF] Ddamulira | On the problem of Pillai with Tribonacci numbers and powers of 3[END_REF] Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then [K, Q] = 6. Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by 1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼ = S 3 .

G := Gal(K/Q) ∼ = {(
Thus, we identify the automorphisms of G with the permutations of the roots of the polynomial Ψ. For example, the permutation (αγ) corresponds to the automorphism σ : α → γ, γ → α, β → β.

Linear forms in logarithms.

To prove our main result Theorem 1, we use several times a Baker-type lower bound for a nonzero linear form in logarithms of algebraic numbers. There are many such bounds in the literature like that of Baker and Wüstholz from [START_REF] Baker | Logarithmic forms and Diophantine geometry[END_REF]. In this paper we use the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF], which is one of our main tools. Let γ be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -γ (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of γ. Then the logarithmic height of γ is given by

h(γ) := 1 d log a 0 + d i=1 log max{|γ (i) |, 1} . 
In particular, if γ = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(γ) = log max{|p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ ±1 ) ≤ h(η) + h(γ), (8) 
h(η s ) = |s|h(η) (s ∈ Z).
Theorem 2 (Matveev). Let γ 1 , . . . , γ t be positive real algebraic numbers in a real algebraic number field K of degree D, b 1 , . . . , b t be nonzero integers, and assume that

(9) Λ := γ b1 1 • • • γ bt t -1, is nonzero. Then log |Λ| > -1.4 × 30 t+3 × t 4.5 × D 2 (1 + log D)(1 + log B)A 1 • • • A t , where B ≥ max{|b 1 |, . . . , |b t |}, and 
A i ≥ max{Dh(γ i ), | log γ i |, 0.16}, for all i = 1, . . . , t.
3.3. Baker-Davenport reduction lemma. During the calculations, we get upper bounds on our variables which are too large, thus we need to reduce them. To do so, we use some results from the theory of continued fractions. Specifically, for a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő (see [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a), which is itself a generalization of a result of Baker and Davenport [START_REF] Baker | The equations 3x 2 -2 = y 2 and 8x 2 -7 = z 2[END_REF]. For a real number X, we write ||X|| := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 1 (Dujella, Pethő). Let M be a positive integer, p/q be a convergent of the continued fraction of the irrational number τ such that q > 6M , and A, B, µ be some real numbers with A > 0 and B > 1. Let further ε := ||µq|| -M ||τ q||. If ε > 0, then there is no solution to the inequality

0 < |uτ -v + µ| < AB -w ,
in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε) log B .
Finally, the following lemma is also useful. It is Lemma 7 in [START_REF] Gúzman | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF].

Lemma 2 (Gúzman, Luca). If m 1, Y > (4m 2 ) m and Y > x/(log x) m , then x < 2 m Y (log Y ) m .

Proof of Theorem 1

Assume that there exist positive integers n, m, n 1 , m 1 such that (n, m) = (n 1 , m 1 ), and

P n -3 m = P n1 -3 m1 .
In particular, we can assume that m ≥ m 1 . If m = m 1 , then P n = P n1 , so (n, m) = (n 1 , m 1 ), which gives a contradiction to our assumption. Thus m > m 1 ≥ 0. Since

P n -P n1 = 3 m -3 m1 , (10) 
and the right-hand side is positive, we get that the left-hand side is also positive and so n > n 1 . Thus, n ≥ 5 and n 1 ≥ 3, because n = 4. Using the equation [START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF] and the inequality 7, we get

α n-4 ≤ P n-2 ≤ P n -P n1 = 3 m -3 m1 < 3 m , ( 11 
)
α n-1 ≥ P n ≥ P n -P n1 = 3 m -3 m1 ≥ 3 m-1 , (12) 
from which we get that

1 + log 3 log α (m -1) < n < log 3 log α m + 4. ( 13 
)
If n < 500, then m ≤ 200. We ran a Mathematica program for 2 ≤ n 1 < n ≤ 500 and 0 ≤ m 1 < m ≤ 200 and found only the solutions from the list [START_REF] Bravo | On Pillai's problem with Tribonacci numbers and powers of 2[END_REF]. From now, we assume that n ≥ 500. Note that the inequality (13) implies that 4m < n. Therefore, to solve the Diophatine equation ( 1), it suffices to find an upper bound for n.

4.1.

Bounding n. By using ( 1) and ( 4) and the estimates (6), we get

aα n + bβ n + cγ n -3 m = aα n1 + bβ n1 + cγ n1 -3 m1 |aα n -3 m | = |aα n1 + b(β n1 -β n ) + c(γ n1 -γ n ) -3 m1 | ≤ aα n1 + |b|(|β| n + |β| n1 ) + |c|(|γ| n + |γ| n1 ) + 3 m1 ≤ aα n1 + 2|b|(|β| n + |β| n1 ) + 3 m1 ≤ aα n1 + 4|b||β| n + 3 m1 < α n1 + 3 m1 < 2 max{α n1 , 3 m1 }.
Multiplying through by 3 -m , using the relation [START_REF] Hernane | On Pillai's problem with Pell numbers and powers of 2[END_REF] and using the fact that α < 3, we get

|aα n 3 -m -1| < 2 max α n1 3 m , 3 m1-m < max{α n1-n+5 , 3 m1-m+1 }. ( 14 
)
For the left-hand side, we apply the result of Matveev, Theorem 2 with the following data

t = 3, γ 1 = a, γ 2 = α, γ 3 = 3, b 1 = 1, b 2 = n, b 3 = -m.
Through out we work with the field K := Q(α) with D = 3. Since max{1, n, m} ≤ n, we take B := n. Further,

a = α(α + 1) 3α 2 -1 ,
the minimum polynomial of a is 23x 3 -23x 2 + 6x -1 and has roots a, b, c. Also by ( 6), we have max{|a|, |b|, |c|} < 1. Thus, h(γ 1 ) = h(a) = 1 3 log 23. So we can take A 1 := 3h(γ 1 ) = log 23. We can also take A 2 := 3h(γ 2 ) = log α, A 3 := 3h(γ 3 ) = 3 log 3. We put

Λ = aα n 3 -m -1.
First we check that Λ = 0, if it were, then aα n = 3 m ∈ Z. Conjugating this relation by the automorphism (αβ), we obtain that bβ n = 3 m , which is a contradiction because |bβ n | < 1 while 3 m ≥ 1 for all m ≥ 0. Thus, Λ = 0. Then by Matveev's theorem, the left-hand side of ( 14) is bounded as

log |Λ| > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(log 23)(log α)(3 log 3).
By comparing with ( 14), we get min{(n -n 1 -5) log α, (m -m 1 -1) log 3} < 7.97 × 10 12 (1 + log n), which gives min{(n -n 1 ) log α, (m -m 1 ) log 3} < 7.98 × 10 12 (1 + log n). [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] Now we split the argument into two cases Case 1. min{(n -n 1 ) log α, (m -m 1 ) log 3} = (n -n 1 ) log α. In this case, we rewrite [START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF] as

|aα n -aα n1 -3 m | ≤ |b|(|β| n + |β| n1 ) + |c|(|γ| n + |γ| n1 ) + 3 m1 ≤ 2|b|(|β| n + |β| n1 ) + 3 m1 ≤ 4|b||β| n + 3 m1 < 1 + 3 m1 ≤ 3 m1+1 , which implies a(α n-n1 -1)α n1 3 -m -1 < 3 m1-m+1 . ( 16 
)
We put

Λ 1 = a(α n-n1 -1)α n1 3 -m -1.
As before, we take K = Q(α), so we have D = 3. To see that Λ 1 = 0, for if Λ 1 = 0, then a(α n-n1 -1)α n1 = 3 m . By conjugating the above relation by the Galois automorphism (αβ), we get that b(β n-n1 -1)β n1 = 3 m .

The absolute value of the left-hand side is at most |b(β n-n1 -1)β n1-1 | ≤ |b|(|β n |+|β n1 |) < 2|b||β| n < 1, while the absolute value of the right-hand side is at least 3 m ≥ 1 for all m ≥ 0, which is a contradiction. Thus, Λ 1 = 0. We apply Theorem 2 on the left-hand side of ( 16) with the data 15)

t = 3, γ 1 = a(α n-n1 -1), γ 2 = α, γ 3 = 3, b 1 = 1, b 2 = n 1 , b 3 = -m. Since h(γ 1 ) ≤ h(a) + h(α n-n1 -1) < 1 3 log 23 + 1 3 (n -n 1 ) log α + log 2 < 1 3 (log 8 + log 23) + 1 3 × 7.98 × 10 12 (1 + log n) by (
< 1 3 × 8.00 × 10 12 (1 + log n) (17)
So, we can take A 1 := 8.00 × 10 12 (1 + log n). Furthermore, as before, we take A 2 := log α and A 3 := 3 log 3. Finally, since max{1, n 1 , m} ≤ n, we can take B := n. Then, we get

log |Λ 1 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(8.00 × 10 12 (1 + log n))(log α)(3 log 3). Then, log |Λ 1 | > -6.38 × 10 25 (1 + log n) 2 .
By comparing the above relation with ( 16), we get that (m -m 1 ) log 3 < 6.40

× 10 25 (1 + log n) 2 . ( 18 
)
Case 2. min{(n -n 1 ) log α, (m -m 1 ) log 3} = (m -m 1 ) log 3. In this case, we rewrite [START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF] as

aα n -(3 m-m1 -1) • 3 m1 ≤ aα n1 + |b|(|β| n + |β| n1 ) + |c|(|γ| n + |γ| n1 ) ≤ aα n1 + 4|b||β| n < 1 + 3 4 α n1 < α n1 , which implies that |a(3 m-m1 -1) -1 α n 3 -m1 -1| < α n1 3 m -3 m1 ≤ 3α n1 3 m < 3α n1-n+4 < α n1-n+5 . ( 19 
)
We put

Λ 2 = a(3 m-m1 -1) -1 α n 3 -m1 -1.
Clearly, Λ 2 = 0, for if Λ 2 = 0, then aα n = 3 m -3 m1 , by similar arguments of conjugation and taking absolute values on both sides as before we get a contradiction. We again apply Theorem 2 with the following data

t = 3, γ 1 = a(3 m-m1 -1) -1 , γ 2 = α, γ 3 = α, b 1 = 1, b 2 = n, b 3 = -m 1 .
We note that

h(γ 1 ) = h(a(3 m-m1 -1) -1 ) ≤ h(a) + h(3 m-m1 -1) = 1 3 log 23 + h(3 m-m1 -1) < log(3 m-m1+2 )
= (m -m 1 + 2) log 3 < 8.00 × 10 13 (1 + log n) by [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF].

So, we can take A 1 := 2.40 × 10 13 (1 + log n). Further, as in the previous applications, we take A 2 := log α and A 3 := 3 log 3. Finally, since max{1, n, m 1 } ≤ n, we can take B := n. Then, we get

log |Λ 2 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(2.40 × 10 13 (1 + log n))(log α)(3 log 3). Thus, log |A 2 | > -1.91 × 10 26 (1 + log n) 2 .
Now, by comparing with [START_REF] Pillai | On a x -b y = c[END_REF], we get that

(n -n 1 ) log α < 1.92 × 10 26 (1 + log n) 2 . ( 20 
)
Therefore, in both Case 1 and Case 2, we have

min{(n -n 1 ) log α, (m -m 1 ) log 3} < 7.98 × 10 12 (1 + log n), max{(n -n 1 ) log α, (m -m 1 ) log 3} < 1.92 × 10 26 (1 + log n) 2 . (21)
Finally, we rewrite the equation ( 10) as

|aα n -aα n1 -3 m + 3 m1 | = |bβ n1 + cγ n1 | < 1.
Dividing through by 3 m -3 m1 , we get

a(α n-n1 -1) 3 m-m1 -1 α n1 3 -m1 -1 < 1 3 m -3 m1 ≤ 3 3 m ≤ 3α -(n+n1-4) ≤ α 4-n , ( 22 
)
since 1.32 < α ≤ α n1 . We again apply Theorem 2 on the left-hand side of (22) with the data

t = 3, γ 1 = a(α n-n1 -1) 3 m-m1 -1 , γ 2 = α, γ 3 = 3, b 1 = 1, b 2 = n 1 , b 3 = -m 1 .
By using the algebraic properties of the logarithmic height function, we get

3h(γ 1 ) = 3h a(α n-n1 -1) 3 m-m1 -1 ≤ 3h a(α n-n1 -1) 3 + h(3 m-m1 -1) < log 23 + 3 log 2 + 3(n -n 1 ) log α + 3(m -m 1 ) log 3 < 3.86 × 10 26 (1 + log n) 2 ,
where in the above inequalities, we used the argument from (21). Thus, we can take A 1 := 3.86 × 10 26 (1 + log n), and again as before A 2 := log α and A 3 := 3 log 3. If we put

Λ 3 = a(α n-n1 -1) 3 m-m1 -1 α n1 3 -m1 -1,
we need to show that Λ 3 = 0. If not, Λ 3 = 0 leads to

a(α n -α n1 ) = 3 m -3 m1 .
A contradiction is reached upon a conjuagtion by the automorphism (αβ) in K and by taking absolute values on both sides. Thus, Λ 3 = 0. Applying Theorem 2 gives 

log |Λ 3 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(3.86 × 10 26 (1 + log n) 2 )(log α)(3 log 

4.2.

Reducing the bound for n. We need to reduce the above bound for n and to do so we make use of Lemma 1 several times. To begin, we return to [START_REF] Gúzman | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF] and put Γ := n log α -m log 3 + log a.

For technical reasons we assume that min{n -n 1 , m -m 1 } ≥ 20. We go back to the inequalities for Λ, Λ 1 and Λ 2 , Since we assume that min{n -n 1 , m -m 1 } ≥ 20 we get |e Γ -1| = |Λ| < 1 4 . Hence, |Λ| < 1 2 and since the inequality |y| < 2|e y -1| holds for all y ∈ -1 2 , 1 2 , we get 0 < |Γ| < 2 max{α n1-n+5 , 3 m1-m+1 } ≤ max{α n1-n+6 , 3 m1-m+2 }.

Assume that Γ > 0. We then have the inequality

n log α log 3 -m + log a log 3 < max α 6 (log 3)α n-n1 , 9 (log 3)3 m-m1 . < max{36 • α -(n-n1) , 9 • 3 -(m-m1) }.
We apply Lemma 1 with the data τ = log α log 3 , µ = log a log 3 , (A, B) = (36, α) or [START_REF] Ddamulira | On a problem of Pillai with Fibonacci numbers and powers of 2[END_REF][START_REF] Bravo | On Pillai's problem with Tribonacci numbers and powers of 2[END_REF].

Let τ = [a 0 ; a 1 , a 2 , . . .] = [0; 3, 1,

. . .] be the continued fraction of τ . We choose M := 2 × 10 46 which is the upper bound on n.

By Mathematica, we find out that the convergent p q = p 88 q 88 = 3123049185137266854491675319812527194766363593581 12201370578769620000479260876419428374896683408344 is such that q = q 88 > 6M . Furthermore, it yields ε > 0.394, and therefore either

n -n 1 ≤ log(36q/ε) log α < 416, or m -m 1 ≤ log(9q/ε) log 3 < 105.
In the case Γ < 0, we consider the inequality

m log 3 log α -n + log(1/a) log α < max α 6 log α α -(n-n1) , 9 log α • 3 -(m-m1) < max{64α -(n-n1) , 15 • 3 -(m-m1) }.
We then apply Lemma 1 with the data τ = log 3 log α , µ = log(1/a) log α , (A, B) = (64, α), or [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF][START_REF] Bravo | On Pillai's problem with Tribonacci numbers and powers of 2[END_REF].

Let τ = [a 0 ; a 1 , a 2 , . . .] = [3; 4, 4, 1, 1, 4, 4, 9, 11, 2, 7, 4, 2, 4, 2, 1, 1, 1, 1, 2, 1, 1, 16, 1, . . .] be the continued fraction of τ . Again, we choose M = 3 × 10 46 , and in this case the convergent p/q = p 91 /q 91 is such that q = q 91 > 6M . Further, this yields ε > 0.394, and therefore either

n -n 1 ≤ log(64q/ε) log α < 416 , or m -m 1 ≤ log(15q/ε) log 3 < 105.
These bounds agree with the bounds obtained in the case Γ > 0. As a conclusion, we have that either n -n 1 ≤ 416 or m -m 1 ≤ 105 whenever Γ = 0. Now, we distinguish between the cases n -n 1 ≤ 416 and m -m 1 ≤ 105. First, we assume that n -n 1 ≤ 416. In this case we consider the inequality for Λ 1 , ( 16) and also assume that m -m 1 ≤ 20. We put

Γ 1 = n 1 log α -m log 3 + log a(α n-n1 -1) .
Then inequality [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] implies that

|Γ 1 | < 6 3 m-m1 .
If we further assume that Γ 1 > 0, we then get

0 < n 1 log α log 3 -m + log(a(α n-n1 -1)) log 3 < 6 (log 3)3 m-m1 < 6 3 m-m1 .
Again we apply Lemma 1 with the same τ as in the case Γ > 0. We use the 88-th convergent p/q = p 88 /q 88 of τ as before. But in this case we choose (A, B) := (9, 3) and use Thus, n -n 1 ≤ 416 implies that m -m 1 ≤ 110. A similar conclusion is reached when Γ 1 < 0. Now let us turn to the case m -m 1 ≤ 105 and we consider the inequlity for Λ 2 , (19). We put

Γ 2 = n log α -m 1 log 3 + log(a(3 m-m1 -1)),
and we also assume that n -n 1 ≥ 20. We then have

|Γ 2 | < 2α 6 α n-n1 . We assume that Γ 2 , then we get 0 < n log α log 3 -m 1 + log(a(3 m-m1 -1)) log 3 < 3α 6 (log 3)α n-n1 < 106 α n-n1 .
We apply again Lemma 1 with the same τ, q, M, (A, B) := (106, α) and µ l = log(a(3 l -1)) log 3 for k = 1, 2, . . . , 105.

We get ε > 7.7434 × 10 -11 , therefore n -n 1 < log(106q/ε) log α < 464.

A similar conclusion is reached when Γ 2 < 0. To conclude, we first get that either n -n 1 ≤ 416 or m -m 1 ≤ 105. If n -n 1 ≤ 416, then m -m 1 ≤ 110, and if m -m 1 ≤ 105 then n-n 1 ≤ 464. Thus, we conclude that we always have n-n 1 ≤ 464 and m-m 1 ≤ 110. Finally we go to the inequality of Λ 3 , (22). We put Γ 3 = n 1 log α -m 1 log 3 + log a(α n-n1 -1) 3 m-m1 -1 .

Since n ≥ 500, the inequality (22) implies that

|Γ 3 | < 3 α n-4 = 3α 6 α n .
Assuming that Γ 3 > 0, then 0 < n 1 log α log 3 -m 1 + log(a(α k -1)/(3 l -1) log 3 < 3α 6 (log 3)α n < 116 α n , where (k, l) := (n-n 1 , m-m 1 ). We again apply Lemma 1 with the same τ, q, M, (A, B) := (116, α) and µ k,l = log(a(α k -1)/(3 l -1) log 3 for 1 ≤ k ≤ 464, 1 ≤ l ≤ 110.

For these cases, we get ε > 4.579572 × 10 -10 , so we obtain n ≤ log(116q/ε) log α < 458.

A similar conclusion is reached when Γ 3 < 0. Hence, n < 500. However, this contradicts our working assumption that n ≥ 500. This completes the proof of Theorem 1.
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 1 The Padovan sequence. Here, we recall some important properties of the Padovan sequence {P n } n≥0 . The characteristic equation Ψ(x) := x 3 -x -1 = 0 has roots α, β, γ = β, where

- 4 )

 4 < 3.08 × 10 39 (1 + log n) 3 , or n < 3.10 × 10 39 (1 + log n) 3 . (23) Now by applying Lemma 2 on (23) with the data m = 3, Y = 3.10 × 10 39 and x = n, leads to n < 2 × 10 46 .

3 ,

 3 instead of µ for each possible value of l := n -n 1 ∈ [1, 2, . . . , 416]. For all values of l, we get ε > 9.9954 × 10 -8 . Hence by Lemma 1, we get m -m 1 < log(9q/ε) log 3 < 110.