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A Proof of the Riemann’s Hypothesis

Charaf ECH-CHATBI *
Tuesday 14 May 2019

Abstract

We present a proof of the Riemann’s Zeta Hypothesis, based on asymp-
totic expansions and operations on series. We use the symmetry property
presented by Riemann’s functional equation to extend the proof to the
whole set of complex numbers C. The advantage of our method is that
it only uses undergraduate maths which makes it accessible to a wider
audience.

Keywords: Riemann Hypothesis; Riemann zeta function; Zeta Zeros;
Asymptotic distribution of the Prime Numbers; Millennium Problems.

1 The Riemann Hypothesis

The prime number theorem determines the average distribution of the
primes. The Riemann hypothesis tells us about the deviation from the
average. Formulated in Riemann’s 1859 paper, it asserts that all the 'non-
obvious’ zeros of the zeta function are complex numbers with real part
1/2.

2 Riemann Zeta Function

For a complex number s, the Zeta function is defined as the following
infinite sum:

ZMs) =30 % if R(s) > 1
C(s) =< 1o L—7%(s), where Z%(s) = 31 (_Q:H if ( R(s) >0,s#1+ li’g), k integer )
35—T
Z21(s)

ifs=1+ likT’“), k nonzero integer

(1)
Riemann extended the domain of definition of the zeta function to the
whole complex domain using the analytical continuation. The Dirichlet

In(2) ?
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eta function n(s) = Z2(s) is convergent when R(s) > 0 and it is used
as the analytical continuation of the zeta function on the domain where
R(s) > 0. When R(s) < 0, the Riemann zeta functional equation is used
as the analytical continuation for the zeta function.

In his famous paper, Riemann[3] has shown that the Zeta has a func-
tional equation ((1 —s) = 2'"*7* cos (%)I'(s)((s). Using this last one,
Riemann has shown that the non trivial zeros of { are located sym-
metrically with respect to the line R(s) = 1/2, inside the critical strip
0 < R(s) < 1. Riemann has stated that all these non trivial zeros are very
likely located on the critical line R(s) = 1/2 itself. In 1896, Hadamard
and De la Vallée Poussin independently proved that {(s) has no zeros of
the form s =1+ it for t € R.

Therefore, to prove this “Riemann Hypothesis” (RH), it is sufficient
to prove that ¢ has no zero on the right hand side 1/2 < R(s) < 1 of the
critical strip.

3 Proof of the Riemann Hypothesis

Let’s take a complex number s such s = ag + ibp. Unless we explicitly
mention otherwise, let’s suppose that ap > 0 and by > 0.

3.1 Case One: % <ap<1

. ) 1)+l
In this case s is a zero of Z%(s) = Zi‘; ( ,25

We are going to develop the sequence Zx(s) = 3
For N >1

N

1 .
ne1 ns as follows:

Zy = Y- (2)

_ Z cos(boIn (n)) — isin(by In (n)) )

neo

_ XN: cos(boln (n) *f sin(bo In (n)) o

na
n=1 n=1



Let’s define the sequences U,, V,, as follows: For n > 1

U, — cos(bgion(n)) )
v, - sin(bzizl(n)) (10)

Let’s define the series A,, B, and Z, as follows:

A, — icos(boln(k)) (11)

kao
k=1
B, = 75“1(1’2(}?(’“)) (12)
k=1
Zy = A,—iB, (13)

When we are dealing with complex numbers, it is always insightful to

work with the norm. So let’s develop further the squared norm of the
serie Z3 as follows:

1Z6|" = A%+ B% (14)
2 2
_ (i cos(b;; In (n ) <i sin( bo In (n ) (15)
n=1 n=1

So

M=

neo

cos(bo In (n)))2 (16)

X

1

3
Il

n—1

N N —
- cos?(bo In (n cos(bo In (k))cos(bo In (n))
- Z n2a0 + 2 Z Z kao nao (17)

n=1 n=1 k=1

N 9 N n—1

cos®(bo In (n)) cos( bo In (n)) cos(bo In (k))

= D g T2 > (18)

n=1 = k=1

N

Il
Mz

MJFQZ OSboln (An Mln())) (19)

n2‘10

3
I
—

n=1

N
_ cos?(bo In (n cos( bo In ( n))An
= Z w2 (20)

And the same calculation for By



Mz

neo

sin(bo In (n)) ) ’

B?V:(

3
Il
-

N N n-—1
_ sin?(bo In (n sin(bo In (k))sin(bo In (n))
- Z n2a0 + 2 Z Z kao naeo

n=1 n=1 k=1
 Ksin®(boIn (n)) ) o boln 2 sin(bo In (k

2

I
Mz

n2ao

3
Il
-

_ sin’(bo In (n sin(bo In (n))Bn
- Z n2a0 Z nao

Hence we have the new expression of square norm of Zx:

N

(21)

(22)

(23)

MH‘Z inftola (o < n—w) (24)

(25)

) 4 cos?(bo In (n))

HZ}VHQ Z cos( boln i sin( boln i sin? (boIn(n

n=1 n=1

which simplies even further to:

N

N
HZNH _2Zcos boln Z sin( boln Bn*E

Let’s now define F,, and G,, as follows:

£, = cos(bo In (n)) A,
neo
G, = sin(bo In (n)) By,
neo
Therefore
2
o 0s(bo In (n))
LI z*
Y. sin%(bo In (n
0
B} = 2ZG Z ks
n=1 n=1

1

n2a0

We will use the formula (13) and write Z3 as the following:

1
Z(s) = Zzlv(s)*zsi_lzlg(s)
. 1 .
= AN*ZBN*F(Aﬂsz%)
1 . 1
= AN 25 1AN —Z(BN—FB%)

= An,N —iBn N

(28)

(29)

n2a0

(26)



N

2. cos(bo In (k)) — 2" ~*cos(bo (In (2k))) al cos(bo In (k))
Ann = o D D € )

k=1 k=841
And

N

2. sin(bo In (k) — 21 ~%0sin(bo (In (2k))) Y sin(bo In (k)
BN,N - Lao + Z T (37)

k=1 k=4 +1

‘We note here that we are using the same partial sum of the Dirichlet se-
n+1
rie n(s) = > ,51 (7135 ™ that is conditionally convergent when R(s) > 0.

We are not changing the partial sum by rearraging the terms of the Dirich-

let serie. The representation Zx(s) = An.n — iBy,n is conserving the
(_1)n+1

same terms of the original partial sum of the Dirichlet serie ZnNzl o
Therefore, Ay v and —Bn, N are the real part and the imaginary part of
the partial sum of the Dirichlet serie. Hence

N (_ 1 )n+1 2
1\}13100 ANn,N —iBn,N = ngﬂoo Z:l e Z"(s) =n(s) (38)
Therefore
Conclusion. s is a zeta zero, ((s) =0, if and only if
lim Ax,y =0and lim Bnny =0 (39)
N—o0 N—oo

Equally, s is a zeta zero, ((s) =0, if and only if

lim Ay =0and lim Bi y =0 (40)
N—o0 N—oo

Remark. The rearragement used in the Riemann rearrangement theorem

to make a conditionally convergent serie converge to any number including

{+00, —o0} is not conserving the same terms of the partial sum of the

original series.

For simplification, let’s define the following sequences: For N > 1:

cos(bg In (n))721_aa0 cos(bg(In (2n))) ifn < N
Un,N =9 costbon (n)) " o (41)
Y T if n > b3
And .
sin(bg In (n))—2"~%0sin(bg (In (2n))) . N
& , ifn< &
Vn,N sin(bg In (n)) o . ]%] (42)
T if n > b3
And
Z: ) cos(bg In (k))—Qlkfanocos(bo In (2k)) ifn < N
— ag ) — 2
5 —217 %0 cos n n cos n .
AN = :, cos(bg In (k)) zkaoo (boln(2k) | Zk:%+1 (b}galo k) it > x
AN, N ifn>N
(43)



And

n  sin(bg In (k))—2'~%0sin(bg In (2k))
D k-1 R0 ;

N
Bn,N = 215:1

Bn,~N

sin(bg In (k))—2' ~?0sin(bg In

k@0

(2k)) + EZ:%H

sin(bg In (k))

k%0

if n <

Let’s develop further the squared norm of the serie Z% as follows:

So

2
AN N

|23 |” = A% + Biw

- (o) +(S)

N N
ZUE,N-FQZ

n=1 n=1

And the same calculation for By, n

2

By~

N

- (&%)
v v
= ) Van+2>
n;l n]\:]l
= Z V71,2,N +2 Z
n;l n;l
n=1 n=1

U’n,N

Vn,N

(An,N - Un,N)

N N
- Z US,N + 2 Z Un,N An,N
n=1 n=1

(Bn,N - Vn,N)

N N
- Z VnZ,N +2 Z Va,N Bn,N
n=1 n=1

(45)

(46)

(47)

(48)

(53)

(54)



Let’s now define the sequences (Fi,n) and (Gr,n) as follows:

Fn,N = Un,NAn,N (59)

Gn,N = Vn,NBn,N (60)

Hence we have the new expression of square norm of Z%:

N

N N
12307 =23 Faw +23 G = S (V2w + V2w (61)
n=1 n=1

n=1

which simplies even further to:

N
Z (Ug,N + VnQ,N) =

n=1 n

Mo
VN
S
4
+
%
4
N—
+
Ve
S
>
+
=
4
N—
>
>

Il
-
3
Il
vz
4
-

(cos(bo I (n)) — 2'~* cos(bo(in (2n)))>2 + (sin(boIn (n)) — 2 ~*sin(bo(In (2n))))2

n2a0

+
M vz

3
Il
-

Bl (1 +2272@0 _ 92790¢0g(by In (n))cos(bo (In (2n))) — 22~ 0sin(bg In (n))sin(bo (In (2n)))
> 5 (66)

N
1
=2 7 (67
n=1 n2 0

¥ 927220 _ 92790 (cog(b In (n))cos(bo (In (2n sin(bg In (n))sin(bo(In (2n
oy (cos(bo1n (n)) (o<n2£0 ))) -+ sin(bo In (n))sin(bo(In (2n))) ) o)

N
N 2 2%72@0 _ 92-a0 (cos(b In (2)))
1 0
(70)

We have 2ao > 1, hence the partial sums 2521 Uth and 2521 vaN
converge absolutely.

We have
N N
ANy = 2 Z Fan — Z Un v (71)
n=1 n=1
N N
Bin = 2) Gun-—)>_ Viy (72)
n=1 n=1



Proof Strategy. The idea is to prove that in the case of a complex s that
is in the right hand side of the critical strip 5 < ao <1 and that is a ¢
zero, that the limit limy,_, o A non =+/—00 OR the limit limy, oo BQ, =
+/—o00. This will create a contradiction. Because if s is a ¢ zero then the
limy 00 Ai,n should be 0 and the lim, .« B'r27,,n should be 0. And therefore
the sequences (Zi:;l F,.N)n>1 and (27]:7:1 Grn,N)N>1 should converge and
their limits should be: lim,_ - 22]:1 Fon = %limN%oo 227:1 U,%’N <
+00 and limy, o0 Zgil Gn,N = %limNﬁoo Zﬁ;l V,iN < +00.
We need the following lemmas during different stages of the proof.

Lemma 3.1. There is exist two constants K1 > 0 and Ko > 0 such that
forn>1and N > 1 we have: |An n| < K1+ K2 nl=e0,

Proof. We will make use of the lemma 3.5 in [1]. Let’s N > 1. Let’s
n>1.

Case: n < %

Ay = Zn: cos(bg In (n)) — 2;:0 cos(bo(In (2n))) (73)

"L (1 — 270 cos(bo In(2))) cos(bo ln_(k)) + (2" sin(bo In(2))) sin(bo In (k))

-3 ) (74)

(12 cos(bo 1n(2)) 3 M @ s () S Sm(bzﬂ (75)
k=1 k=1

(76)

Therefore using the lemma 3.5 in [1]:

|Ann| < |(1 = 2" cos(boIn(2))) | > m(b,:jf(m‘ (77)
k=1
1—a sin(bo In (k
+ |(2 9 sin(bg ln Z a0 ‘ (78)
<|(1- 2179 cos(by In(2)))| <K1 + Kon'™ ao) + (2 2' 7% gin(bg In(2 )| ( 1+ Ko nl_ao) (79)
< (|(1—21 0 cos(bo In(2)))| + (2 2170 sin(by In(2 |)(K1—|—K2n1_a“) (80)
And this prove the case.
Case: n > % We have:
N
"~ cos(boIn(n)) <= cos(boIn(n)) 2 cos(bo In (n)) 81
Z kag - kao - k“O ( )
k=441 k=1 k=1
(82)



vz

_ cos(bo In (n)) — 2170 cos(bo(In (2n))) "L cos(bo In (n))
Ann = 0 o 0 FY e (83)

k=1 N
2 +1

(84)

Therefore using the first case of n < & and the lemma 3.5 in [1]:

N
2 __ol—ag
cos(boln (n)) — 2 cos(bo(In (2n))) < (Kl K (ﬂ)l,ao> (85)
kao 2
k=1
< (Ki+ Kan'™*), as (%)1*“0 <nl7% (86)
And
% %
" cos(bo In (n)) cos(bo In (n)) " cos(bo In (n)) cos(bo In (n))
Z kao n kao S Z kao + kao (87)
k=1 k=1 k=1 k=1
< (E e nl—‘m) 4 (K1 1K, (5)1‘“0) (88)
- 2
T Te l1—ag N 1—ag l1—ag
< K, +K1+(K2+K2)n , as (5) <n (89)
Therefore
|An.n| < K1+ Ky + (K2 + Ka)n' ™% (90)
Which proves our case. O

Lemma 3.2. For a large n, N and Ny such No < n <n+1< % We

can write Ap,n = E1(n) + vn such that limp—4ocvn = 0 and E1(n) =
ntmao (X1 sin (bo In (n)) + X2 cos (bo In (n))) where X1 and X2 two real

constants defined as follows:

(asbo +b3(1 — ao))

R (e EphE “)
X B (ag(]. — ao) — b3b0) 92
S Oy Ea )
az = 1—2""%cos(boIn(2)) (93)
by = 27 “sin(byln(2)) (94)

Proof. We have limn_, 400 An,nv = 0. Let’s € > 0. Let’s Ny be such that
for each N > No: |An,n| < e. Let’s take n, N and Ng such Ny < n <
n+1< % We have |[An n| < e.

Therefore:



We have the notation dd, = (cos(boIn (rn)) — 2'~%° cos(bo(In (2n)))).
We are going to use the lemma 3.2 in [1]. Let’s develop further:

N

2. dd al (bol
Ay = Agy= 3 Wy sn o coslbolnih)
k=n+1 k_g"’l

k+1
g 3o i) 5 /

k=441 k=541

2

ddy,
koo

|
|
[
—
kol
+
=

N
ddy, 2 k1 N cos(bo In (k k“
o3 [Taoar 3 =lin® 5 /

I
Mw\z

N

N N
2. dd 2, [kt al bo In (k k+1
=—BEin+ 1)+ Y o Z/ et)dt+ Y W— 3 /k e(t)dt
:%+

_N
1 k=4 +1

FEV(N) + B(N) ~ B(y +1)

Therefore from the lemma 3.2 in [1]:

N

- ddk k+1
Any = Er(n+ D] < |Awy] +| 30 & Z / (102)

k:n+1 k=n+1

Y. cos(bo In k41
+ Z b}z%ﬂ Z / dt—|—‘E1( )+ E(N)— (%4_1)’(103)

k=N 41 k=% +1

K5(1 1)&(1 1

ap - ao \ ()0  (Nw)

<e+ n%0 (%)ao

) T ’El(N) L E(N) - E(g

+ 1)' (104)

(105)

We have No <n<n+1< So

N
5 -
1

Ks 1 Ki/ 1 1 N

_ < fulalil el _ p(L
[An.y = Er(n+ D < e+ ag (n“o +n“0)+ ag (n“o n“0)+‘E1(N)+E(N) E(2 +1)‘

Ki+Ks 1 N

ao 2

< e+27n70 + ’El(N) +E(N)—E(=+1)

Quick calculation gives us: E1(N)+ E(N)— E(%) = 0. We apply the

lemma 3.8 in [1] to the function E, we have limy 400 E(§ +1)—E(5) =
0. Therefore: limy—, 100 E1(N) + E(N) — E(§) =0.

Ki+Ks 1

ao nao

|[An,n —E1(n+ 1) <e+2

+|Bi(N) + BV - BOY + 1)‘(108)

10

(95)

(96)

(97)

(100)

(101)

(106)

(107)



And this for every € > 0. ap > 0 so we also have the lim,_, +oo n%o =0.
Therefore limy 400 |[An,nv — E1(n + 1)| = 0. Let’s define the sequence v,

as the following: v, = An N — E1(n).

We apply the lemma 3.8 in [1] to the function E1, we have the limn,— o0 E1(n+
1) — E1(n) = 0. Therefore limp— 40 yn = 0.

The expression of E} is also given by the lemma 3.2 in [1]. And this proves
the lemma.

Remark. There is a simple way of proving this lemma. As we have
Ap. N = Anon for n < %, we can redo the steps above with Ay 2n and
develop Ao 2n — An,an. The steps above will be much easier and more
straighforward.

O

Lemma 3.3. Let’s define the functions:

(cos(bo In (t)) — 217 cos(bp In (Zt))) (X1 sin (bo In (¢)) 4 X2 cos (bo In (t)))

es(t) = e (109)

Let’s define the sequence:

n+1
esn = 63(1’L)—/ dtes(t) (110)
(111)

Therefore, the serie Y, esn are converging absolutely and we have
the following inequalities:

N

N
K 1 1

n = t)dt| < 7( _ ) n

k:;»l “ /n+163( ) - 2(1,0 n2ao N?2ao ( )
And if ap > 1

+oo Yoo
K 1
Z €3,n _/ es(t)dt| < -——- (113)
k=n+1 n+1 2ap n2eo

where K > 0 and E3 is the primitive function of es is defined as:

as (2b063 +v3(2 — 2ao)) sin(2bo In (z)) + (53(2 — 2a0) — 2b0’}/3) cos(2bg In (x))\ 1
Es(2) :<2 —2ao (260)2 + (2 — 2a0)? J(@)2e0—2

(114)

Proof. We are going to use the lemmas 3.1 and 3.2 defined in [1]. We will
also use their notations. We can write the functions es(t) as the following:

es(t) (£)207 ! = (cos(bo In (£)) — 2"~ cos(bo In (2t))) (X1 sin (bo In (1)) + X cos (bo In (t))) (115)
= (Z1 sin(bg Int) + Z5 cos(bg In (t))) (X1 sin(bo Int) + X3 cos(bo In (t))) (116)

X117 XoZ X117 XoZ XoZo — X7
_ 11;— 222 | 12;— 21sin(2boln(t))+ 222 1241

cos(2boInt)  (117)

11



Where

7 2179 sin(by In (2)) = bs (118)
Zy = 1—2""%cos(bpIn (2)) = as (119)

Therefore we can write e3(t)

X171+ X7 X125+ X7
141 + 22)+(12+ 241

es(t) (£)207" = ( : . ) sin(2bo In (£))  (120)

+(M) cos(2boInt)  (121)
= a3 + B3sin(2bo In (t)) + y3 cos(2bo Int)  (122)
Where
as = M (123)
By = M (124)
b X . Xi1bs 125)
X, - asbo + bs(1 — ao) (126)

(b0)? + (1 — ao)?
_ a3(1 — ao) — bgbo
X = —(b0)2 (1 —ao)? (127)

And we apply the lemma 3.1 in [1] with o = 2a¢ — 1, 8 = 2bo, a = as,
b= B3 and ¢ = ~s.

as (2b0ﬁ3 +v3(2 — 2a0)) sin(2bg In (z)) + (ﬂg(Q — 2a9) — 2b0'73) cos(2bg In (a:))\ 1
! (2b0)2 + (2 — 2@0)2 }(x)2a072
O

Es(x) :(

2 — 2a0 (128)

Lemma 3.4. If% < aop <1 the sequence (ZN

oy FnN)N>1 diverges.

Proof. We want to prove that:

N
lim Fon = — (129)

N—oo
n=1

Let’s n and N be integers:
Case One: % <n <N We are going to use asymptotic expansions:
We have

cos(bo In (n + 1))

(n+ 1) (130)

An+1,N = An,N

So Fn4+1,~ can be written as follows:

12



cos(boln(n+1))Ann = cos®(boln(n+ 1))
F, = : 131
LN (n + 1)ao0 T T 1 1) (131)

So Fr4+1,~v — Fn ~n can be written as

Foorn — Foy = (cos(bo In(n+1)) cos(boln (n)))AnN cos?(boIn (n + 1))

(n+ 1) B nao (n+ 1)2a0

cos?(boIn (n + 1))

(nt 1)z (159)

Fn+1,N - Fn,N = <Un+1,N - Un,N)An,N +
Let’s do now the asymptotic expansion of Uy, 41,8 — Uy, n. For this we
need the asymptotic expansion of cos(bo In(n + 1)).
1
cos(boIn (n + 1) = cos (bo In (n) + b In (1 + ﬁ))(134)
1 1
= cos (boIn (n)) cos (bo In (1 + g)) —sin (bo In (n)) sin (bo In (1 + E)) (135)

we have the asymptotic expansion of In(1 + %) in order two as follow:

(4 2) = ~+0() (136)

Using the asymptotic expansion of the functions sin and cos that I will
spare you the details here, we have

cos(boln(lJr%)) = 1+0(=) (137)

And

sin (bo In(1 + %)) = %0 + (’)(%) (138)
Hence
cos(boln(n+1)) = cos(boIn(n)) — %Osin (boln(n)) + O(%) (139)

Also the Asymptotic expansion of m:

L - L(emied) o

(1+mn)ao neo n
Hence

cos (boln(n+1))  cos (boln(n)) _ bosin (boIn (n)) + ag cos (bo In (n)) N O(nai_ﬂ)

(1 + n)“o - nao nao+1

And the squared version of the above equation

13

(132)

(141)



cos® (boln(n+1))  cos” (boIn(n)) bo sin (bo In (n)) + ao cos (bo In (n)) 1

(1 + n)an = n2ao — 2cos (bo In (n)) n2ao+1 + O( nao+2 ) (142)
And
bo sin (bo In (n)) + ao cos (bo In (n) 1
Un+1,N - Un,N - — ( 21a0+1 ( ) + (’I'La’0+2) (143)
So the asymptotic expansion of Fy 11,y — Fy N is as follows:
cos?(boln (n+1))  bosin (boln(n)) + ao cos (bo In (n)) 1
Fn+1,N - Fn,N = (n + 1)2a0 — n"'0+1 An,N + O(W) (144)

For the sake of simplifying the notation, let define the sequence Cj N
as follows: For each n > 1 we have:

thn = — (bo sin (bo In (n)) 4 ao cos (bo In (n))) (145)
Con = crhlanN (146)

And
Dn, = 2cn cos (boIn(n)) (147)

The functions © — cos(x) and z — sin(z) are by their nature
bounded so (¢,) and (Dy) are also bounded.

By definition of O, we know that there is exist a bounded sequence
(en) and there is exist a number Ny such that: For each n > Ny we have

cos?’(boIn(n))  Cun Dy N En,N
Frpi,n — Fon = n2a0 naotl T p2aotl T pagt2 (148)
Where
thn = — (bo sin (bo In (n)) 4 ao cos (bo In (n))) (149)
Cn,N = CnAn,N (150)
Dnn = 2cos(boIn(n))cn (151)
Let’s now study the case of when n+1 < %:
Case Two: n+1< %
Fn+1,N - Fn,N = Un+1,NAn+1,N - Un,NAn,N (152)
= (Un+1,N - Un,N)An,N + (Un+1,N)2 (153)

And
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cos (boln (n+1))  cos (boIn(n))

Unt1,v —Un,n = a5 n) — ao (154)
_gl-ap { cos (boIn2(n + 1)) _cos (boIn (2n)) } (155)
(1+mn)ao neo

We develop the cos (boIn2(n + 1)) and cos (bo In2(n)) to get:

SATCTLE CERY) BNV £ CLIC) BT Uy Qs

(14 n)ao nao nootl naeo+2
) sin (bo In (n)) cCn 1
—sinbIn (2){ o ot T O )} (157)
cos (boIn2(n)) ¢, cosboln (2) — cc, sinbo In (2) 1
= ww T et +OGmm)  (159)
Therefore:
cp — 21700 (cn cosbo In (2) — ccp sinbg In (2)) 1
Un+l,N - Un,N = nao+1 + O(na0+2) (159)
And
2 2 ccen ddy, 1
(U"+11N) = (Un,N) +2 n2ao+1 + O(nao+2) (160)
Where
ccep, = cp— 2% (cn cosbo In (2) — ccp, sinbg In (2)) (161)
dd, = cos(boln(n)— 21790 cog (boIn (2n) (162)
D,.n = 2cce,dd, (163)
Cnn = cccnAn,N (164)
And
(cos(bo In (n)) — 2"~ cos(bo(In (2n))))2 Cn.n
Friin —Fan = { a0 oL (165)

Dn,N En,N
+n2a0+1 + na0+2} (166)

With the sequence ¢,y is bounded.

From the lemma 3.2 above we have: An, n = Ei(n) + ¥» such that
limn—>+oo Yn = 0 and E1 (n) = nl—ao (Xl sin (bo In (n))+X2 COs (bo In (n)))
where X; and X5 two real constants. Therefore

15



Cun cee,nt T (X1 sin (bo In (n)) 4+ X2 cos (bo In (n)))

_ CCCnYn
nao+1 - nao+l1 + nao+1 (167)
_ ccen (X1 sin (bo In (n)) + X2 cos (bo In (n))) | ceentn (168)

- n2a0 na0+1

Therefore for n +1 < %:

(cos(boIn (n)) — 2" cos(bo(In (271))))2 + ccen (X1 sin (bo In (n)) + Xz cos (bo In (n)))

’I’LQG‘O

(169)

Fn+1,N _Fn,N - {

CCCnYn Dn N €n,N (170)
na0+1 n2ag+l na0+2

mn /n DTL n
= {eg(n)—l— Cenn | N N }(171)

na0+1 n2ag+1 nao+2

Where

cos(boIn (n)) — 217 cos(bo(In (2n 2 ceen | X1 sin (bo In (n Xocos (bpIn (n
oy 2 (st () =2 (bo(In (2n))))* + ccen (Xusin (b In (n)) + X cos (bo In () ) -

n2a0

Thanks to the limit lim,— oo cccnyn = 0 is zero we are now in a similar
configuration like in chapter one.
We denote ¢,, = ccepyn. We have limy,— 4 o ¢, = 0.

Let’s now study the serie > ., e2(n).

Lemma 3.5. Let’s define the functions:

o) = f(bgsin(boln(t))Jraocos(boln(t))) (173)
celt) = (bocos(boln(t))—aosin(boln(t))) (174)
ceclt) = c(t)—21*“0(c(t)cosb01n(z)—cc(t)sinbom(z)) (175)
ce(t) = ccc(t)(Xlsin(boln(t))+X2cos(boln(t))) (176)

(cos(bo In (£)) — 2~ cos(bo (In (2t))))* + ccc(t) (X1 sin (boIn (£)) + X5 cos (bo In (t)))
es(t) = (177)

t2a0

Let’s define the sequence:
n+1
ean = ea(n)— / dt ea (1) (178)

' (179)

Therefore, the serie Y, €2 are converging absolutely and we have
the following inequalities:

N

k=n+1

S () - / es(t)dt

N K

<
— 2ag

n+1

16
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And

+o0 ERSS

PRAOE / ea(t)dt

k=n+1 ntl

_K 1
— 2ag n?2aeo

(181)

where K > 0 and E3 is the primitive function of es is defined as:

@ (2b0B1 + 71— 2a0)) sin(2bg In (z)) + (,81(1 — 2a9) — 2b0y1) cos(2bo In (:r))\ 1
Ea() :(1 ~2a0 (2b0)% + (1 — 2a0)? J(@)2e01

Where

(182)

o= i (B e - ctoman) <o sy

Proof. We are going to use the lemmas 3.1 and 3.2 defined in [1]. We will
also use their notations. We can write the functions ez (t) and ce(t) as the
following:

es (t) _ a1+ by COS(2b0 In (t)) —C1 Sin(?bo(ln ((t)))) + ce(t)
t2a0

cee(t) = —(asbo + bsao) sin(bo(In ((£)))) + (bsbo — asao) cos(bo In () (185)

(184)

For simplification let’s now denote:
cee(t) = Zy sin(bg Int) 4+ Z2 cos(bo In (t)) (186)
Therefore we can write:
ce(t) = cec(t) (X1 sin (bo In (£)) 4+ X2 cos (bo In (t))) (187)

= (Z1 sin(bo Int) + Z cos(bo In (t))) <X1 sin(bo Int) + X2 cos(bo In (t))) (188)

X714+ XoZs Xi1Zy+ XoZ4 XoZo — X021
- 2 + 2 2

sin(2bo In (¢t)) + cos(2bo In't) (189)

Therefore we can write ea(t)

— cl) sin(2bo In (t)) + (M + b1) cos(2bo Int)

= a1 + B1sin(2bo In (t)) + 71 cos(2bo In't)

X7 +X222) n (X1Z2 + X221

€2 (t) %0 = (al + 2 5

Where

17



X171+ XaZs

m = et (192)
B = X1Zo + XoZn ;XQZl —cl (193)
XoZo — X1 2
o= 242 5 141 +b (194)
Z1 = —(asbo + bsao) (195)
Z2 = bgbo — aszaop (196)
asbg + b3(1 — ao)
X, = 2T 197
S YEEN R (197
a3(1 — ao) — b3b0
Xy, = V50 198
2 S b (—a)? (19%)
a = é + 217200 _ 91790 ¢o5(by In (2)) (199)
b = ; 4217290 ¢og(26p In (2)) — 27 cos(bo In (2))  (200)
c = 27" sin(200 In (2)) 4 2" sin(bo In (2)) (201)
as = 1—2"" cos(byIn (2)) (202)
by = 27 "sin(byln(2)) (203)

And we apply the lemma 3.1 in [1] with « = 2a9, 8 = 2bo, a = a1, b= 1
and ¢ = ;.

o (Qboﬁl + (1 — 2ao)) sin(2bo In (z)) + (51(1 — 2a0) — 2bo'yl) cos(2bg In ()

e2(e) :(1 —2ao (260)2 + (1 — 2a0)?

When we go thru the lengthy calculation something magical will happen.
We found that

(a% + bg) (bg +ao(l — ao)>

X1Zy+ XoZy = — 205

1241 242 50)% + (1 —a0)? (205)

(206)
And something even more magical happens when you calculate oy
X171+ XoZ

ay = ap  214Lt A2Zz + XoZo (207)

2

(a3 + b3> ( + ao(l — ao))
(b0)? + (1 — ao)?
)

(208)

l\JM—‘

<a3+b)<b + ao 1—(10))

1 1-2a 1—a 1
= — 421720 _ gl-ao 1 - 2

5 + cos(bo In (2)) — 5 bo)2 - (1 —ag)? (209)

92—2a0 _ 1 1 (22 2a0 _ 1 4 2a3> (bg + ao(l — ao))
_on ol (210)

2 2 (b ) —ap)?

227200 _ 2a0 (2a0 —1)(1 — ao)
= — 211
( ) 1 — ao) ( )

18



Therefore

(2a0 — 1)(1 — ag) ((21*“0 —-1)*
(bo)* + (1 — a0)? 2

ar = — +2'79 (1 — cos(bo In (2))))(212)
< 0(213)

The magic here is the presence of the terms 2ap — 1 and 1 — ap as global
factor in the formula of «;. O

Let’s N > Np be sufficiently large integer.

As we saw above, for n > % we have the asymptotic expansion:

2
cos’(boIn(n)) Cun Dy N €n,N
n2a0 na0+1 n2ag+l na0+2

Froti,n — Fon = (214)

Hence we have an new expression of F, 41 after a summation from
% + 1 ton:

" cos?(boln (k)
Foiin = F%_H,N-l- Z 7(@2&0

k=841

(215)

n n

n
Cr,~ Dy N Ek,N
ka0+1 k2a0+1 k:a0+2
k=4 +1 k=8 +1 k=4 +1

4 (216)

For n < % we have the following asymptotic expansion:

Fri1,n = Frng,N + Z e2(k) + Z % (217)
k=N k=N

"\ Dpn "\ epn
D tmai T D qacis (218)

k=No k=No

Hence if we do another summation between Ny and N of the equation
above:
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N_q

ZFn+1N— ZFn+1N+FN+1N+ Z Foyin

n=~Ng n=Np n—ﬂ-&-l
N N
J-1 -1 ., -1,
SIS S SPRTNI Sl gl
n=No n=Ng k=Ng n=Ng k=Ng
N N
21 n 21 n
n Z Dy N " Z Z €k, N
k2a0+1 ka0+2
n=Ng k=Ng n=Ng k=Ng

+FN+1N+ Z FN+1N+ Z Z cos” bozlik))

=8 t+1k=4+1

D - n
e + Z > s

n=%+1

n

= Cin -
+ D0 D et E

=Np1e=041 n=%t1k=8+1

n

>

Our sums are finite so we can interchange them:

N

N-1

n=Ng

—_N _N
n=5+1lk=5+1

(219)

(220)

(221)

(222)

(223)

N
X

2

N

N N
> Fapin = (5 = No)Enon + 5 Fy iy v + D ealk) D1

k=

m‘z

+1

N
Ny

k=Np

N-1
cos?(bo In (k))
+ Z { 2a0 +

k=Ng n=k
41 41
Y 3
ka0+l k2a0+1 kao+2
k=Ng n=k
N-1
Ci,N Dy n 4 EEN 1
ka0+1 k2a0+1 ka0+2
n=k

Dy~

Ek,N

N_y
N N S Ck
- (5 — No)Fng, v + ?F%H,N + Z @(k)(; —k)+ Z {k“0+1 +

k=No

k2a0+1

N
A

N-1
cos? bo In (k)) C}C’N Dk,N Ek,N
+ Z { k)2a0 Lao+1 + k2a0+1 + Lao+2 (N —k)
k=% 41
N N N i
(G = No)Evon + 5 Fy v+ 5 — > kea(k)
k=No k=No
N
. Dy N n erN | 223 Ck + €k,N
kao+1 k2a0+1 ka0+2 ey ko k2a0 ka0+1
=INo
N NZ‘I cos’(boln(k)) | Cin  Din ., ek
2 (k)2ag ka0+1 k2a0+1 ka0+2
k=& +1
N-1 9
Z cos®(boln(k))  Crkn . Dgn Ek,N
(k)anfl kao k2a0 ka0+1

20

k=541

(224)

(225)

(226)

(227)

(228)

(229)

(230)

(231)

(232)



And Finally:

1 No 1 13 1
Z Fopin = N (5 = ) NN + 5Fy 0 v+ 5 e2(k) — > kea(k)

n=No

k=Ng k=Np
p D p D
Ck k,N Ek,N 4 Ck k,N Ek,N
+§ {ka0+1 + k2ag+1 + kao+2} N Z kao + k2a0 kao+1}
k=Ng k=Ngo
1 = cos®(boIn(k)) = Crn Dy N Ek,N
+§ Z (k)220 kao+l " E2ap+1 ka0+2
k=541
N-1 2
1 cos®(bo In (k)) Ci,n  Din Ek,N
N Z (k)220—1 ka0 + k2a0 ka0+1
k=% 41
The goal is to prove that limy_ 4o Zf;;,ﬂ Froi1n = —00.

Using Césaro lemma we prove that the limit of the following terms are
Z€10:

N_q
N
Wi > kea(k)=0 (237
k=No
J1
. k,N €k,N | _
NLHEOO N Z {kao k2ao + kao+1 }_ 0 (238)
k=No
1 = cos®(boln (k)) C D €
. 0 kN k,N kN |
Jdmoy 2 { o)y Gy Dex 2 doo
k=4 +1
We have
No 1
Nl_lg_loo N Fny v+ 2FN+1 =0 (240)

One note that Fin,,n is a constant term that actually depends only on
No, so limy_s 4o %FNO,N = 0. For the term %Fgﬂ N» We use the
>+

lemma 3.1, we have two constants K; and K2 such that: ‘AEH,N‘ <
K+ Ko (% + 1)17“07 therefore

cos(bp In (% + 1))A%+1,N‘
(5 +1)
Kl K2
< +
>~ (% + 1)0‘0 (% + 1)2(10—1

Fy iy = (241)

(242)

We have 2ao > 1 therefore the limy_ +o0 Fﬂ+1 N=0
T+1,
Let’s now prove
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(234)

(235)

(236)



N
N

e2(k) (243)

N1
Dy, n €k,N
+ Z {k“0+1 k2ao0+1 + kao+2} (244)
k— 0

N-1
Z {COS boln(k)) + Ck,N + Dk,N + Ek,N }:|<0 (245)
N

20,0 ka0+1 k2a0+1 ka0+2
2 +1

1 1
li —F —
1m 5 No,N + 2

N —+oo

k

We have the sequences (D n)k>1 and (ex,n)k>1 are bounded. Plus
We have ap +2 > 2ap +1 > ao + 1 > 2a¢9 > 1, therefore the serie

2
Zkzl cos ((kb)lear;(k)) + ,5;011 + kaofz is converging absolutely.

Let’s call its partial sum Sy:

N 2
_ cos”(bo In (k)) Dy.n Ek,N
SN = Z{ (k‘)Q“O + k2ag+1 + Lao+2 (246)
k>1
S Sy — al cos? (bo In (k)) Dy N Ek,N 2u7
NTRET Z (k)2a0 + k2a0+1 + kao+2 (247)
k=841
Therefore
. al cos? (bo In (k)) Dy N Ek,N 248
Niriloo Z (k)2ag + k2a0+1 + kao+2 ( )
k=% 41
= lim SN — lim Sﬂ (249)
N—+o0 N—+oo 2
=0 (250)

Let’s study now the convergence of the sum Esz%H kc;giﬁ’l From
the lemma 3.1 we have two constants K7 > 0 and K2 > 0 such that:
|Ap,n| < K1+ Ko k' (251)
and we have from the definition of Cj, n that
c = - (bo sin (bo In (k)) + ao cos (bo In (k))) (252)
Ce,n = ckAgN (253)

We have ap > 0, bgp > 0, Therefore

Cr,N Ki(ao + bo) JREN
kootl| = gaoti T K>(ao + bo) Tao il (254)
Ky (ao + bo)
< IOloo ) | Kofao + bo) o (255)
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We have ap+1 > 2a¢ > 1, therefore the serie 3, -, }faﬁiﬁ is converging
absolutely. Therefore like in the case of Ey, we have

N N !
Jlim D0 = STER - i 30O e
k=4 +1 k=1 k=1
=0 (257)
Let’s call now the remaining term Ry, :
¥y
Ry = lim | Fivo,n + Z ea(k ka0k+1 + ki):ﬂ,fl + :f(;ﬁ }] (258)
k=No

Lemma 3.6. We can choose Ny such that Ry, <0 .

Proof. We studied the serie ) ., ea2(n) in the lemma 3.5. We have:

+o0 400 K
es(n) — Hdt| < ————— 259
PR Jo s 20 < s (259)

Where K > 0 and the primitive function Fs

o1 (Qboﬁl (- an)) sin(2bo In (2)) + (51(1 — 2ag) — 2bo’y1) cos(2bg In (as))\ 1
By () :(1 —2a9 (2b0)? + (1 — 2a0)? Jayzao (260)
With
ar = — ((?723)211()1(1:@:;’2) ((2 02_ 1) 42179 (1 = cos(bo In (2)))) <0 (261)
Therefore
= K
n:;o+1 ealk) + Ba(No + 1)) < W (262)

Let’s now study the term Fn, n. From lemma 3.2 and 3.3 we can
write for N > 2Ny

bo In (No)) — 28~ cos (b In (2N,
o cos(bo In (No)) (No)aocos( o In ( 0))AN07N (263)

~ cos(boIn (No)) — 2"~ cos(bo In (2Np))
- S 2 ) 0

Lemma 3.2

cos(bo In (Ny)) — 2870 cos(bo In (2Np)) -

= e3(No) + (Noy0 No

Lemma 3.3

(265)

(266)
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Where the sequence 7, converge to zero and

as + B3 sin(2bo In (t)) + v3 cos(2bo In t)

es(t) (1)°*7! = (o0 (267)
as = W (268)
B = M (269)
1w = 22k (270)
X, = asbo + b3(1 — ao) (271)

(bo)? + (1 — an)?
a3(1 — ao) — bgbo
Xo = ———F - 272
2 S G (- a)? (272)
Let’s denote

cos(bo In (Np)) — 217 %0 cos(bo In (2No))

On, = —(63(N0 +1)— 63(N0)) +

(No)ao o
The term e3(Ny) and the term E2(No) share the term W. So
we are going to group them in the last inequality:
—+oo
K
es(No+1)+ > ea(k)+ Ea(No+1) —es(No +1)| < m@u)
o(No
n=No+1 e4(No+1)
Where
es(z) = Eqx(z)—es(x) (275)
_ az— a3+ (B2 — B3)sin(2boIn (t)) + (y2 — ¥3) cos(2bo Int)
= Fag—1 (276)

We develop the calculation further and we see that we have as = as.
Therefore

(B2 — B3)sin(2bo In (t)) 4+ (2 — 73) cos(2bo Int)

$2"‘0 —1

es(x) (277)

Therefore we have the asymptotic expansion of es (N0—|—1)—|—Z:L'Z°NO+1 e2(k)
as follows:

—+o0 B 1
es(No +1) + n:%;ﬂ es(k) = —Ea(No+1)+es(No+1)+ O(W)

(B3 — B2) sin(2bg In (No + 1)) + (3 — 72) cos(2bg In (N + 1))

(273)

(No + 1)2e0-1
+ O(ﬁ)

24
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Remark. The remaining terms in the expression of Ry, are all of the or-
der of W and above. we note that 2a0—1 < ag. So the dominant term

— (B3—PB2) sin(2bg In (No+1))+(v3—72) cos(2bg In (No+1))
(No+1)2*0 1 ’
As we will see later that the function es is nonzero function. Therefore this

. . . . N—1
term is the dominant term in the expression of % Zn:NO Frii,n. Hence

based on the sign of es(No+1) we can show that the limit of ' Fi1 N
can be both +o0o0 and —oo.

in the expression Ry, is the term —es(No+1)

Let’s now study the function f:

f(x) = (B2 — B3) sin(2box) + (v2 — v3) cos(2box) (281)

General Case: 3 <ag<1ORag=1,by # li’g) From the lemma
3.7 below we have that the function e4 is a nonzero function. Therefore
the function f is also nonzero function and hence at least f2 — 33 or v2 —73
is different from zero or both of them. So let’s assume that v2 # 3.

The function f is a linear combination of the functions sin and cos. So
the function f is differentiable and bounded. The function f is periodic
of period %.

Let’s calculate the function f values at the following points:

f0) = m2— (282)
f(%o) = f2—fs (283)
f(%) = —72+7s (284)
PG = —Bat By (285)

From the values above we have the following:

o If ('yg - 73) > 0 then f(0) > 0.

o If ('yg — 3 < 0 then f(%) > 0.

In case of 72 — v3 = 0 and we will work with B2 — B3 in such case we
calculate the f values at the points f(5-) and f (237’;) Therefore, in all

case we have either f(0) > 0 or f(3-) > 0. So let’s assume from now on

that f(0) < 0 as the same proof can be done with both values thanks to

lemma 3.3 and lemma 3.4 in [1].

From the lemma 3.3 in [1], there exist N1 > Ny such that |cos(2bg In (N1 + 1)) — 1] <
€ and |sin(2b In (N7 + 1))| < e for any 1 > € > 0.

Let’s define 8o = —f(0). Bo < 0.

Let’s fix € > 0 to be very small such that 0 < ¢ < min (1, % )
Let’s define yo = |82 — B3| + |v2 — 73|

Let’s N1 be such that |cos(2bg In (N1 + 1)) — 1| < €/~0 and also [sin(2bg In (N1 + 1)) — 0] <
€/70. Therefore:

25



£(0) ((52 — fB3) sin(2bg In (N1 + 1)) + (72 — 73) cos(2bo In (N1 + 1)))
ea(N1+1) — (N1 & 1)2a—d < H (N F 1)z (286)
((62 — f33) sin(2b00) + (2 — v3) cos(2b0) )
— 2
(N7 + 1)2a0—1 }l (287)
<|ﬁ2 — B3| |sin(2bo In (N1 + 1))| + |v2 — 3| |cos(2bo In (N1 + 1)) 1|)
= e (288)
<|52 Bs| €/70 + |v2 — sl 6/70)
<
= (N1 + 1)2a0—1 (289)
€
<
Sy 20
Therefore
+o0 ﬁo “+oo
63(N0 + 1) + Z 62(n) — W S { Z 62(7@) —+ 84(N0 -+ 1) (291)
n=Np+1 n=Np+1
—f(0) €
- — <
+ 64(N0 + 1) (NO + 1)2{1.0—1 — (N() + 1)2{10—1 + 2a0(N0)2a0 (292)
Hence
Bo € K
3(No +1) + . %O:_H (No + 1)220—1| = (Np + 1)2a0-1 + 2a0(Np)240 (293)
Therefore
= Bo + € K
<
es(No +1) + ;Hez(n) S N 12Tt Sag (g (294)
n=Np
Therefore
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+oo N
RNO = Z 62(k3)+FN0,N+N£m |:Z
k

Ck Dy N Ek,N
{ka0+l + k2a0+1 + ka0+2 }:|
k=No

Bo + € K N . D .
e + Esp —esNo 1)+ i | 50 by Dy gt }]
N

— (No + 1)2e0—1 * 2g4(Ny)290 N+ kao+1 © L2ao+1 | fagt2

Bo+e K B cos(bo In (Np)) — 2' 7 cos(bo In (2Np))
S Vo + 12501 T Bag(No)2eo +e3(No) —es(No + 1) + (No) YNo

al c D e
. k k,N k,N
+ lim + +
N—+oo kaot+l = L2a0+l © Lao+2
0]

N
Bo + € K . Ck Dy N Ek,N
= (No + 1)2e0—1 * 2a0(Nog)2@0 O + NLHEoo 2 faotl T p2aotl | pao+

=No
We have the sequences (ci), (Di,n)k>1 and (gx,n)k>1 are bounded.
Plus we have ap +2 > 2a0 +1 > ap + 1 > 2a¢ > 1, therefore the series

Dp,N kN .
D k>1 FZaciTs D> qactz are converging absolutely.

Let the positive constant M such that:
For each k > N; and N > 2N; :

lex| < M (300)
|Dr,n| < M (301)
lew,n| < M (302)
Therefore, we have ag > 0:
+o0
Ck Dy, n Ek,N
kao+1 + k2ao0+1 kao+2 (303)
n=Nj;+1
M M M
= + + 304
= ao(Nl)ao 2a0(N1)2a0 (ao + 1)(N1)a0+1 ( )
Therefore
Bo + € K M M o
<
fim = (N1 41)2e0=1 © 2a0(Nyp)2e0 +Om + ao(Ny)@o * 2a0(Ny)2a0 * (ao + 1)(NNy)mo+?
1 K(Ny +1)2e0~1 San 1
<7 _— N 1 0
= (Ny +1)2a0-1 (/30 Te+ 2a0(IV7 )20 + (N1 +1) On, (306)
+M(N1—|—1)2ao—1 M(N1 +1)2ao—1 M(Nl +1)2a0—1 >
ao(N1)“e 2a0(N1)?e0 (ao + 1)(Ny)ao+1

Case One: % < ag <1 Let’s define the sequence (5,):

K(’I’L+ 1)2a071 M(’I’L+ 1)20,071

_ 2ap9—1
On = 2a0(n)%0 +(n+1) On + (nyao (308)
M(n 4+ 1)2*~! M(n 4+ 1)2%0~!
2a0(n)?* (ao + 1)(n)*o+! (309)
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(305)

(307)

(295)

(296)

(297)

(298)

(299)



As we have % < ap < 1, therefore 2a90 — 1 < ap < 2ap < ap + 1
Therefore

K(n+ 1)2(1071 M(n+ 1)20,071

NLHEoo 2a0(n)2e0 (n)ao (310)
2ap9—1 2ap—1

M(n+1) M(n+1) —0 (311)
2a0(m) T (a0 + D(n)eot1

Let’s calculate now the limit of limy,— oo (n + 1)%%071 O,
From the lemma 3.8 in [1] (o = 2a0 and 8 = by) we can write:

2001 ¢08(bo In (n)) — 2"~ cos(bo In (2n))

(TL + 1)2&071071 — (n + 1)2&0*1 (63(77/) — e3(n =+ 1)) + (n —+ 1) %0 Yn (312)
— —a(n4 1) 1 722a0 (4 1y (been(2a0 — 1,b0)2+ cen(2a0 — 1, b)) (313)
n<eo n<eo
an—1c08(bg In (n)) — 217 %cos(bg In (2n
+(n+ 1)2 o—1 ( ( )) s ( ( ))’Yn + O(n2a0 ) (314)
Thanks to 2a0—1 < ap < 2ap < ap+1, we have the limit of every term
in the expression of (n + 1)2“071071 goes to zero, therefore limy,—, oo (n +
1)%%~1 0, = 0.
Therefore the limy,— oo 6n = 0.
So we can choose Ni such that |dn, | < €, i.e on;, < e.
Therefore
1
< 2 1
i, € (s (o +2) <0 @19
Therefore limy— 4 oo Zg:_]i,o Froy1,n = —00.
Case Two: ag =1,by # 12nkTg) In this particular case we have 2ag —
1 =1 = ag. Therefore the terms of the order n%l) in the expression of
0n and O, can become problematic. So instead of using the fact (cx) is
bounded, we will use here the fact that its limit equal zero when n goes
to infinity.
As we have
lim ¢, =0 (316)
n—-+4oo
So we can choose N; such for each n > Ny we have |cx| < e.
For each k > N7 and N > 2N, :
lex| < e (317)
|Di,n| < M (318)
lex,n| < M (319)
Therefore, we have ag > 0:
e D € € M M
k k,N k,N
) ) < 320
D R R T A T A e e AT
n=Ny
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And

Bo+ € K € M M
< 21
RN1 — (N1 + 1)2ao—1 2(10(N1)2a0 + ON1 + ao(N1)a0 + 2(10(N1)2a0 + (GO T 1)(N1)a0+1 (3 )
1 K(Ny +1)%%~! 2a9—1
< — il Sl L e S 0
S 1) Bo+ e+ Sa0 (N1 )0 + (N1 +1) On, (322)
e(Ni+ 1) M(Ni+1)%07"  M(N; 41)%0! (323)
ao(N1)®o 2ao(N1)?0 (a0 + 1)(Np)eo+t
We have ap = 1 therefore:
1 K(N:i +1) 1 M(N:i+1)  M(N:1+1)
< — juinih S A —
RN1 = (Nl+1) (60+25+ 2(N1)2 +(N1+1)ON1 + N1 2(N1)2 2(N1)2 (324)
Because £y < 0 and we have € < 1|05000|0 <1
We have the sequence (,,):
K(n+1) 1 Mnm+1) Mmn+1)
n=——" 1) O, + — 2
9 o2 +(n+1)0n + " + o2 + on? (325)
For the term (n + 1)2%°10,, we have its expression:
(n+1)On = —a(n + 1)%21 — (4 1)t eenl, bo)nf cen(l, bo)) (326)
1) cos(bo In (n)) ;Lcos(bo In (2n))’yn n O(%) (327)

In the expression of (n + 1)2“071071 there is 7, term that can be prob-
lematic because 2ap — 1 = ao. But thanks to the limit lim,,— 4o yn = 0.
We also have limy_, oo (n + 1)2“0_10n =0.

Therefore

lim 6, =0 (328)
n—+oo
So we can choose Ni such that |dn,| < €, i.e dn, <e.
Therefore

Ry, < (/30 + 3e> <0 (329)

1
Ni+1

Therefore imy 4 oo 25;1\1/0 Frp1,n = —00.
O

Remark. Note that one also can prove that the limy 4+ oo Zg:_]\l,o Froyin =
400 by chosing another point xo where f(zo) < 0. The same steps above

apply. And this thanks to the term (22=582)sm(2b 1n<N(°;01J)r)1+)§Zgj?2) cos(2bo In (No+1))

O
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Conclusion. We saw above that the serie Y -, U,iN is converging ab-
solutely thanks to 2ag > 1. We have from the lemma 3.4 that:

N
lim Fo,n = —o0 (330)
N~>oon:1
Therefore
lim Ay = —© (331)
N —oc0

This result is in contradiction with the fact that s is a ( zero therefore
the limit imy 00 An,n = 0 should be zero. Therefore s with % < ag =
R(s) <1 cannot be a zero for the Riemann’s Zeta Function.

Lemma 3.7. Let’s define the function eq:
€4 (t) = E2 (t) — €3 (t) (332)

Where es and E2 are the same functions defined in the lemmas 3.8 and
3.5. Therefore the function es4 is a nonzero function, i.e we don’t have for
each t, e4(t) = 0.

o (2b0ﬁ1 + 71— 2a0)) sin(2bg In (z)) + (ﬂl(l — 2a9) — 2b0'71) cos(2bg In (a:))\ 1
B (x) :(1 ~ 3 (350 + (1~ 2a0)? Jyzeo1(333)

The function E» is the primitive function of the function es(t) where

XoZy — Xn 2y
2

X171+ X7 X125 + X2Z
ez(t)t2a0:(a1+ 1241 + X2 2)+( 1242 + XoZ1

2 5 — cl) sin(2bo In (t)) + (
= a1 + B1sin(2bo In (£)) + 1 cos(2bo Int)

+ b1) cos(2bo Int)

And the function es is defined as

es3(t) ()27 = a3 + B3 sin(2bo In (£)) + 3 cos(2bo Int) (336)
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Where
X171+ XaZs

o = a (337)
po= RBIRA_ (338)
XoZo — X1 Z
o= 242 5 141 +b (339)
Z1 = —(asbo + bsao) (340)
Z2 = bgbo — aszaop (341)
asbo + b3(1 — ao)
X, = BxnrTHoA) 342
SR CHERS I (312
a3(1 — ao) — b3b0
X, = A 807 B 343
S (Y Ea o)
- % 4217200 _ 91700 ¢og(po Tn (2)) (344)
b = % 4217290 ¢og(2bp In (2)) — 27 cos(boIn (2))  (345)
c = 272" sin(200 In (2)) 4 2" sin(bo In (2)) (346)
as = 1—2"""cos(byIn (2)) (347)
by = 27 “sin(byln(2)) (348)
0y = XbstXaas “; Xaas (349)
gy = Zmtiah (350)
3 _ X2a3 g X1b3 (351)

Proof. To prove this lemma we proceed by contradiction. Let’s suppose
that the function e4 = 0. Thererfore for each ¢ # 0, e3(t) = E2(t). Hence
we also have their first derivatives are equals: for each ¢, e2(t) = e5(t).
Therefore the coeffeicients of es and e are equals:

o] = (1 — 2&0)&3 (352)
B1 = Bs(1 — 2a0) — 2boys (353)
71 = (1 —2a0)vys + 2bo B3 (354)

Quick calculation shows that in fact

a1 = (1 —2a0)az = —

@%—nu—%“@“%fmz
(b0)? + (1 — ao)? 2

We develop further the equations (353) and (354) to get the system of
equations of X7 and Xs:

42179 (1 — cos(bo In (2)))) (355)

ﬂXl + aXe = 2c¢ (356)

—aX1 + ﬁXQ = —2b1 (357)

o = a3b0 — bo(l — ao) (358)

8 = —(bobs + as(1 - ao)) (359)
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Therefore

20éb1 —+ 2,361

=" (360)
2&01 — 2,6b1

=T (300

Case One: ag = 1,by # %, knonzero integer In this case we

have from the expression that defines X, we repace ag by its value 1. We
have

a3

X, =2 (362)
bo
b3
Xy=—2 (363)
bo
a = asbo (364)
B = —bobs (365)

Therefore

2b1a3 — 2b301
Xi=—7F7—7-—"7— 366
LT (@3 )b (360

2c1as3 + 2b3by
Xo=—F—->7— 367
*T (ad + )b (367

We write b1 and c¢; in function of az and b3

232
by = % (368)

Cc1 = b3(2 — CL3) (369)
Therefore the equation of X5 gives us the following equality:

_bfg _ 4a3b3 — b3a§ - bg (370)
bo (a3 + b3)bo

After simplification we get asbs = 0. We have by # % therefore b3 # 0.
Therefore ag = 0. But from the expression of ag = 1 — cos(bo In(2)), as
also cannot be zero. Hence the contradiction.

From the equation of X; we get b3 = 0. Therefore b3 = 0. And this is also
a contradiction because by # % Therefore es # E2 and the function ey
is a nonzero function. This prove our case.

Case Two: % < ag < 1,by # 1fﬁJ@nonzero integer In this
general case, the equation of X; gives us the following:

agbo + b3(1 — CLQ) _ 2b10l + 2,361

= 1
b2+ (1—ao)? a? + B2 (371)
(372)
We develop further we have
o 4 B2 = (a§ + bg) (bg (- ao)Q) (373)
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Therefore
. 2b1cv + 2501

1- 4
asbo + bs( ao) 2102 (374)
We inject these expressions in the last equation.
2 bQ
by = % (375)
Cc1 = b3(2 — a3) (376)
After simplification we get
bs (a3b3b0 — 2bobs — 2as(1 — ao)) = 0 (377)
We have by # % therefore b3 # 0. Therefore
a3b3bo — Qbobg — 2(13(1 — ao) = 0 (378)
After simplification of the last equation we get:
b2 " sin(boIn (2)) _ 1 —2'"% cos(bo In (2)) (379)

2(1 — ao) = 1+ 2590 cos(bo In (2))

We have by # %, therefore sin(bo In (2)) # 0
We calculate the limit of the two terms of the equation above when ag
goes to 17. We get

lim bo2' ™0 sin(bp In (2)) ~ lim 1 —2'79% cos(bo In (2))

ag—1- 2(1 — ao) ap—1— 1+ 21790 cos(bo In (2))

1 —cos(bon (2))

" 14 cos(bpIn (2))

Hence the contradiction. Therefore es # F» and the function e4 is a
nonzero function. This prove our case.

(380)

>0 (381)

Case Three: % < ap < 1,by = %,knonzero integer In this
case we have
by = 0 (382)
2
by = % (383)
a = 0 (384)

We replace these values into the equation

agbo + bs(1 — ag) = % (385)

Therefore
asby = « (386)
= asbo — bo(1l — ao) (387)

Therefore
bo(1 — ag) =0 (388)
Therefore by. This is also a contradiction. Therefore es # FE2 and the
function ey is a nonzero function. This prove our case. O
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3.2 Conclusion

We saw that if s is a zeta zero, then real part R(s) can only be % as
all other possibilities can be discarded using the functional equation like
in [1]. Therefore the Riemann hypothesis is true: The nontrivial zeros of
¢(s) have real part equal to % We believe that the same technique applied
here can be applied to resolve the Generalized Riemann hypothesis.
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