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Abstract We present an efficient and stable method for sim-
ulating the two-way coupling of incompressible fluids and
deformable bodies. In our method, the fluid is represented by
particles, and simulated using divergence-free Incompress-
ible Smoothed Particle Hydrodynamics (ISPH). The defor-
mable bodies are represented by polygonal meshes, where
the elastic deformations are simulated using a Position Based
Dynamics (PBD) scheme. Our technique enforces incom-
pressibility on the fluid using divergence-free constraints on
the velocity field, while it effectively simulates the physical
features of deformable bodies. Most current ISPH methods
are struggling with the issue of free surface boundary con-
ditions. We handle this problem by introducing a novel free
surface formulation, where our free surface model obviates
the need to identify the surface particles. For the interaction
between the fluid and the deformable solids, we model the
forces that both phases, fluid and solid, exert upon each other.
We demonstrate that our approach effectively handles com-
plex coupling scenarios between fluids and thin deformable
shells or highly deformable solids, and produces plausible
results.
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1 Introduction

Two-way coupling between fluids and deformable bodies
can produce visually and mechanically realistic behaviour,
such as the effect of the object’s elasticity pushing fluid
away, while simultaneously getting deformed under the load
of the fluid. Simulating such complex fluid behaviour in-
volving deformable objects is at the core of numerous ap-
plications in computational physics as well as in computer
animation. In addition, coupled simulation between fluids
and deformable solids is an increasingly demanding topic in
computer graphics, where it has many applications, including
animated feature films, virtual surgery, and movie produc-
tion. However, the interaction between fluids and deformable
solids is complex and difficult, making it computationally
demanding and expensive. Moreover, the repulsive forces be-
tween deformable solid masses and fluid particles frequently
lead to situations where very small time steps are required
to guarantee numerical stability. Although various fluid flow
dynamics in the physical world have been studied exten-
sively [26], methods to capture the complicated interaction
behaviour between elastic objects and fluids have received
less attention in the computer graphics literature [35]. Pre-
vious approaches tried to address the computation and in-
stability issues in these simulations [34, 69]. Nevertheless,
providing efficient and plausible two-way coupling between
particle-based fluids and deformable bodies represented by
meshes requires particular attention and is still a challenging
open problem.

In a two-way coupling scenario, the choice of the ap-
proaches to simulate both the fluid and deformable body
plays an important role. In the case of fluids, particle-based
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Fig. 1 Coupled simulation of a deformable thin shell and a fluid using our method (11K cloth constraints and 27K fluid particles, at 21 fps), where
the cloth deforms under the impact of the fluid, while the fluid splashes around. Top row: Particle representation of the coupled simulation. Bottom
row: Rendering of the reconstructed surface of the coupled simulation.

methods like Smoothed Particle Hydrodynamics (SPH) have
some advantages over mesh-based approaches, particularly
in their ability to handle interfaces with other materials. Stan-
dard SPH is suitable for the simulation of compressible flu-
ids. However, most fluids we encounter in nature feature
incompressible behavior, which means that enforcing incom-
pressibility is essential to produce realistic animations. We
employ Incompressible SPH (ISPH) for simulating these
fluids, which is a variant of SPH that is suitable for this pur-
pose [20]. Numerical approximation issues with the standard
SPH method are rectified by incompressible SPH. Further-
more, the recent work by Chow et al. [17] promises much
faster Poisson solvers on GPUs than previously achieved in
incompressible SPH simulations. Since the pressure equation
in incompressible SPH is essentially the Poisson equation dis-
cretized as a sparse system of linear equations, the increased
interest in solving linear systems makes incompressible SPH
very promising and much more attractive than conventional
weakly compressible SPH.

Although SPH is able to simulate complicated free bound-
aries such as splashes and droplets [66] when ghost particles
are seeded, incompressible SPH suffers from a long-standing
problem in handling free surfaces [11]: The pressure equation
that is solved to obtain the pressure field requires a constant
pressure boundary condition (BC) at the free surface, which
is often applied by ad-hoc identification of particles, and this
leads to inaccurate computation of the pressure forces at the
interface. To simulate deformable objects, several approaches
can be used, from efficient methods such as mass-spring sys-
tems to more accurate methods like Finite Element Meth-
ods (FEMs). We decide to employ Position Based Dynamics
(PBD) [53] to handle deformable bodies at high frame rates.
Thus, the choice of solvers for the liquid and solid domains

are deliberate, considering both the computing cost and the
accuracy that translates to visually plausible physics.
Contributions: We propose a practical and efficient method
for simulating two-way coupling between a divergence-free
incompressible SPH fluid and a deformable solid simulated
by PBD. To tackle the free surface issues in incompress-
ible SPH, we propose a novel free surface formulation that
handles the air-liquid interface. This is done by imposing a
Dirichlet boundary condition for pressure at the free surface
through modifying the leading diagonal terms of the coeffi-
cient matrix of the linear system obtained from discretizing
the Pressure Poisson Equation (PPE). This enables an accu-
rate computation of pressures for the particles at the interface,
and these pressures are used to determine the forces exerted
in the coupling. We couple the fluids and deformable solids
by modelling the interaction of the forces that both exert upon
each other. Employing PBD for simulating the elasticity of
deformable bodies provides controllable dynamic behaviour,
and guarantees stability over the deformable solids. However,
our two-way coupling works with any deformation technique,
as long as the deformable body is represented by a polygonal
mesh. Our interaction model can achieve interactive-rates,
and can take care of a highly dynamic coupled system like
a water balloon, where small changes in the state of the de-
formable body cause almost instantaneous changes in the
fluid, and vice versa (Fig. 7). A highlight of our coupling
method is the ability to handle thin deformable shells and to
avoid leakage, which is a rather complex problem in the case
of two-way coupling (Fig. 1 and Fig. 14).

2 Related work

In this section, we review literature with a focus on the
interaction between fluids and deformable solids. For a
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Fig. 2 An elastic flower pot filled with liquid falls on the ground (21K PBD constraints and 27K fluid particles, at 28 fps), deforms as it hits the
ground, bounces, and squirts the liquid out.

more thorough treatment on deformable bodies and fluid
simulation, we refer the reader to the excellent references
[12, 13, 34, 37, 57].

Eulerian methods have been used in computer graphics for
simulating water [16], soft objects, melting effects [6, 61],
and fluids in general [25]. The simulation of different ma-
terials by treating solids as highly viscous or visco-elastic
Eulerian fluids was first presented by Goktekin et al. [30].
Carlson et al. [14] proposed a two-way coupling between a
fluid and a rigid body, where they used a splitting operator
that constrains the fluid velocities within the solids to behave
rigidly at the end of each time step. However, this method
uses a two-step projection approach that leads to visual arti-
facts and fluid loss. Chentanez et al. [15] avoided some of
these artifacts by enforcing coupling and incompressibility
constraints, while combining both the pressure projection
and implicit integration steps into one set of simultaneous
equations. Guendelman et al. [31] proposed to handle thin
deformable and rigid shells coupled with fluids by using a
ray casting technique, which increases the number of interpo-
lations and prevents fluid from leaking through a triangulated
surface. Later, Batty et al. introduced a variational approach,
which provides a robust solution on relatively coarse Carte-
sian grids [5], allowing faster coupling between fluid and an
arbitrary solid. The possibility of simulating hyper-elastic
solids within an Eulerian framework allows to explore the
two-way coupling between deformable bodies and fluid in a
fully Eulerian fashion [24,42]. These methods enable the sim-
ulation of deformable solids within an Eulerian framework,
as was done by Robinson-Mosher et al. [62, 63], where they
used sophisticated geometric operations inside the coupling
scenario. Recently, Teng et al. [70] presented a solver that
couples an incompressible fluid to multiple deformable ob-
jects undergoing frictional contact. By using an implicit time
integration scheme, their method is able to resolve complex
contact scenarios and can handle large time steps. Another
two-way coupled simulation has been achieved by coupling
incompressible fluids to reduced deformable bodies, using
the method proposed by Lu et al. [45].

Zarifi and Batty [73] presented an Eulerian approach that
simulates the coupling between fluids and deformable bodies.

It uses a tetrahedral Lagrangian representation for the solid,
where the solid should have a certain lower bound on the
thickness, thus it cannot handle thin shells. Moreover, Akbay
et al. [1] introduced an extended partitioned method (XPM)
for two-way solid-fluid coupling of incompressible fluids to
rigid and deformable solids and shells, where reduced models
are employed to stabilize the convergence of the coupling,
while using a partitioned approach.

Although Eulerian methods have as advantages less
computation time and an easy management of topological
changes, fluid properties such as pressure and velocity fields
are limited by the grid resolution. Therefore, for very rapid
and detailed flows, tracking changes as they occur at a fixed
point in space appears unrealistic. In addition, grid-based
techniques often suffer from mass loss at interfaces, and have
dissipation no matter how formally accurate they are.

On the other hand, recent Eulerian-based methods such
as Fluid Implicit Particle methods (FLIPs) are widely used
to simulate special effects from splashes to flooding. Such
methods are suitable for fluids with low viscosity and are
therefore very well-suited for water effects. However, it
results in unwanted visible noise on the surface in case of
high viscosity. Furthermore, FLIP methods require a dense
sampling of the fluid domain with particles, thus yielding
expensive simulation. They are potential to mass gain due to
a reseeding of FLIP particles [29]. Level set methods can
indeed handle domain fragmentation, however the smallest
fragments possible are of the order of a few grid cells [44].
Hence situations like breaking waves and sprays are not
visually accurately captured by the method efficiently. Also,
level set methods with high density ratio are still a problem,
which is being researched widely. These two issues are
tackled by SPH—sprays are resolved up to the particle
dimensions and the density ratio for free surface flows is
infinite, closely resembling an air-water system.

Lagrangian methods have the ability to solve the fluid equa-
tions of motion directly on the fluid particles. Also, they triv-
ially guarantee mass conservation and provide a conceptually
simple simulation framework. In Lagrangian methods such
as Smoothed Particle Hydrodynamics (SPH), fluid properties
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Fig. 3 System overview. Top row: The deformable body dynamics mechanism, where the deformable solid is represented by a mesh. Bottom row:
The fluid simulation, in which the fluid positions, velocities and internal forces are carried by the particles (fluid forces include external, viscous,
and pressure forces). During the simulation, the deformable solid and fluid exert forces on each other. Both pressure force (ISPH) and constraint
projection (PBD) operations are iterated within each time step (where an iteration is depicted by the blue and yellow interconnecting arrows), until a
convergence criterion is achieved, which is checked by verifying whether the velocity attribute of the fluid matches the velocity of the deformable
solid.

like mass, density, and velocity are carried by moving vir-
tual particles, which are tracked during the simulation [18].
Desbrun and Cani [22] were among the first to introduce
smoothed particle systems to the Computer Graphics com-
munity, where they used smoothed particles for simulating
highly deformable objects. Later, Müller et al. [52] have pop-
ularized particle-based methods for simulating fluids and the
interaction between fluids and deformable bodies at interac-
tive rates [54]. Premože et al. [60] also obtained a realistic
looking fluid simulation by solving the Navier-Stokes equa-
tions based on the Moving Particle Semi-Implicit (MPS)
method proposed by Koshizuka and Oka [40]. An interesting
unified particle-based coupling of a fluid and thin deformable
shells has been presented by Lenaerts and Dutré [41], in
which SPH is used to simulate fluids, deformable volumes,
and rigid volumes. However, they do not simulate incom-
pressible SPH. The simulation of incompressible fluids by
means of the traditional SPH method is limited by small
time steps determined by the speed of sound in the near-
incompressible liquid. Many works have successfully ad-
dressed this practical limitation of standard SPH implementa-
tions. One approach is to use prediction-correction schemes
for the correct approximation of the pressure forces [10, 68].
Other works suggested implicit formulations when solving
the Pressure Poisson Equation (PPE) [3, 19, 33] or iterative
schemes to compute the density of the fluid [47]. Recent
works proposed stable methods which inherently maintain
both a divergence-free velocity field as well as constant den-
sity [9, 23, 38]. The interaction between a fluid and a de-
formable object within the SPH framework occurs at the inter-
face, where the fluid exerts pressure forces at the deformable
object while the deformable object imposes boundary fluxes
on the fluid. Génevaux et al. [28] studied coupling of flu-
ids and elastic bodies represented by particles and springs,

respectively. Harada et al. [32] also proposed a simulation
method for the coupling of cloth and fluids computed by
using SPH. However, their algorithm is intricate and compu-
tationally complex. More recently, Koschier and Bender [39]
couples solids and fluids, where they use pre-processed den-
sity maps to handle non-penetration constraints. Although,
this method robustly handles rigid dynamic boundaries, it
can not handle deformable bodies.

Akinci et al. [2] presented a simulation of coupled phe-
nomena emphasizing an SPH unified approach and implicit
treatment of coupling forces. Their approach combines SPH
forces with the explicit collision handling scheme of Bell et
al. [8] and applies position correction to prevent leakage in
case of large deformations. Their method requires sampling
the boundary of a triangle mesh with particles to prevent
undesired fluid leakage. Macklin et al. [47, 49] proposed to
handle fluid coupling with rigid and deformable bodies in
real-time. In their unified framework, enforcing incompress-
ibility depends on solving an iterative scheme to compute
the density of the fluid. This scheme formulates an artificial
pressure term, and is sensitive to the number of iterations,
which needs to be carefully set up to avoid clustering of the
particles. Most recently, Peer et al. [59] presented a two-way
fluid-solid coupling that uses the implicit SPH approach [33]
to simulate both the deformable solid and fluid. Their method
can allow large time steps, although the current formulation
of their method has difficulties with achieving an interactive
rate.

In contrast to the methods mentioned above, we employ
incompressible SPH for simulating fluids, while using Posi-
tion Based Dynamics (PBD) to simulate the deformation of
soft objects. Our method uses divergence-free incompress-
ible SPH with a novel free surface formulation. We use PBD
for simulating deformable bodies, which provides more con-
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trollability over the final deformation. We efficiently model
the interaction between the fluid and the deformable body by
the forces that both phases exert upon each other. The works
of Akinci et al. [2] and Macklin et al. [49] are both closely
related to our method, and we provide a detailed comparison
with their techniques in Sec. 9.

3 Overview

We present ISPH-PBD: a two-way interaction model between
particle-based fluids and mesh-based deformable bodies. The
inputs of our method are surface meshes representing the
deformable solids, and a state list of the Incompressible
Smoothed Particle Hydrodynamics (ISPH) particles repre-
senting the fluids. At the interface, the mesh nodes of the
deformable solids function as boundary particles for the ISPH
solver.

In the initialization phase, for the deformable solid we
generate a volumetric tetrahedral mesh according to the input
surface mesh using the method presented by Si [67]. Then,
the vertices of the original deformable mesh are mapped
to tetrahedral elements, and the tetrahedral elements (or tri-
angles, in the case of thin shells) are used for defining the
geometric constraints within the Position Based Dynamics
(PBD) framework. These geometric constraints are used for
emulating elastic behaviour, and provide the permissible vol-
umetric strain in order to mimic the bulk elastic response of
the 3D deformable models. This initial step of generating the
tetrahedral mesh is not required if we are only simulating
thin shells.

For the fluid, we initialize the particle distribution, par-
ticle mass, and other parameters, and we simulate the fluid
using divergence-free ISPH. One of the problems in ISPH
methods is the handling of free surface boundary conditions.
To tackle this issue, we propose a novel free surface model in
Sec. 5, which efficiently handles free surfaces representing
the air-liquid interface. Our semi-analytic pressure boundary
condition at the free surface enables accurate computation
of the pressures at the interface, which is later used in the
computation of the pressure forces for the coupling model.
To the best of our knowledge, we couple ISPH and PBD suc-
cessfully for the first time. Fig. 3 provides a visual overview
of our algorithm for a single time step, and the pseudocode
is detailed in Algorithm 1. During the simulation, at the be-
ginning of each time step, the deformable bodies and fluids
are propagated separately. We then exchange momentum
between the deformable solid and fluid by transferring the
forces and velocities at the interfaces, thereby enforcing kine-
matic boundary conditions (Sec. 6). PBD is a position-based
deformable solver, where the vertices represent mass points
and edges represent constraints [36, 53]. Thus, the boundary
condition forces are formulated from the PBD constraints.
Both the pressure and constraint projection processes are

iterated within each time step (where an iteration is depicted
by the blue and yellow interconnecting arrows in Fig. 3) until
a convergence criterion is achieved. The latter is checked
by verifying whether the velocity of the fluid matches the
velocity of the deformable solid. This convergence criterion
has to satisfy a certain threshold, which we discuss in Sec. 8.

4 Technical Background

Our method has as main components two basic and separate
approaches: the deformable bodies are simulated by Posi-
tion Based Dynamics (PBD), and the fluids are simulated
using the Incompressible Smoothed Particle Hydrodynamics
(ISPH) approach. We first briefly summarize the core ideas of
the two methods, and the way they are used in our approach.

4.1 Deformable bodies simulation

In PBD, the physical system is modelled through equations
governing external and internal forces that are applied to
deformable solids, but these equations are formulated as a
set of constraints [53, 64, 65]. PBD avoids the use of internal
forces, and the positions are updated such that the angular
and the linear momenta are implicitly conserved [48]. In this
way, the process is not affected by the typical instabilities of
interactive physics-based methods. The deformable bodies in
PBD are modelled as a set of n PBD-particles1 whose motion
is governed by a set of m non-linear geometric constraints.
Each PBD-particle pi corresponds to a vertex in the input
mesh, and a functional relationship C j between PBD-particles
is applied as a geometric constraint. The set of constraints is
composed of non-linear equalities and inequalities such that:

Ci(p)� 0, i = 1, . . .m, (1)

where the symbol � stands for either = or ≥, p =[
pT

1 , . . . ,p
T
n
]T is the vector of PBD-particle positions, n is the

number of PBD-particles and m is the number of constraints.
The set of constraints must always be satisfied, or at least,

the error should be as small as possible. The constraints can
be solved sequentially through Gauss-Seidel iterations. For
an extensive treatment on how the constraints are solved
within PBD, please refer to the excellent survey by Bender
et al. [36].

Solving each constraint using Gauss-Seidel in a serial
way is efficient when the number of constraints is relatively
small. In our implementation, the constraints are solved in
parallel using a graph coloring algorithm. Parallelizing the
computation of the PBD constraints yields a fast performance
even in case of a fairly high number of constraints [27].

1 We use the term PBD-particle to distingish explicitly from the
particles used by SPH.
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4.2 Fluid simulation

In SPH methods, the fluid domain is discretized into par-
ticles of constant mass, which are treated as interpolation
points. The discrete attributes at the interpolation points are
smoothed to obtain a continuous field. The interpolation func-
tion A(x) is defined as

A(xa) =
∫

A(xb)W (xa−xb,h) dxb, (2)

where W is the normalized radially symmetric smoothing
kernel, h is the smoothing length of the kernel, and xa is
the position of the particle a where the property A is to be
evaluated. Furthermore, W acts as the weighting factor for
the contributions from the neighborhood interpolation points
denoted by xb, where dxb is the differential volume repre-
sented at xb. The above interpolant in SPH is approximated
by a summation over the surrounding particles, in which the
integral operator is replaced by a summation operator, and the
differential volume element dxb is replaced by the volume
Vb = mb/ρb. Thus,

A(xa)≈∑
b

A(xb)W (xa−xb,h)
mb

ρb
, (3)

where the properties at discrete points given by the subscript
b (such as the mass mb, density ρb, and position xb within
a finite neighborhood of the point xa) are used for the
discretization. Spatial derivatives of the attribute to any order
can be defined using the discrete smoothing operator given
by Eq. (3) [50].

Governing equations. The momentum conservation equa-
tions for a Newtonian fluid are solved using the SPH method
in the Lagrangian framework. Therefore, the Navier-Stokes
equations governing the momentum conservation of incom-
pressible isothermal flow is given by the following equation:

du
dt

=
1
ρ

(
−∇p+∇ · (2µD)+ fB) , (4)

where u is the velocity, p is the pressure, ρ is the density, µ

is the coefficient of viscosity of the fluid, D = (∇u+∇uT )/2
is the deformation rate tensor, fB is the body force per unit
mass on the fluid element, and t is the time. In the Lagrangian
formulation, d/dt is the material derivative following a fluid
element. The mass conservation equation is defined by:

1
ρ

dρ

dt
+∇ ·u = 0. (5)

In the case of incompressible flows, the material derivative
of the density is zero, therefore, the condition for incom-
pressibility is given by ∇ ·u = 0.

SPH formulation. The SPH discretization of the governing
equation Eq. (4) can be solved using a projection method [20],
in which the pressure needed to enforce incompressibility is
found by projecting an estimate of the velocity field onto a
divergence-free space. Such discretization is approximated
as follows:

du
dt

∣∣∣∣
a
=∑

b

[(
pa

ρ2
a
+

pb

ρ2
b

)
∇aWab

+
µ

ρa
Fab

uab

ρb

]
mb + fB

a ,

(6)

where ∇Wab is the gradient of the kernel function for the dis-
placement xab = xa−xb between two particles a and b, and
Fab = (xab ·∇aWab)/(x2

ab + ε2) is the radial derivative of the
kernel, where ε is a parameter to avoid division by zero when
two particles come very close to each other. The first term on
the right hand side approximates the pressure gradient and is
a symmetric formulation that conserves momentum [50]. The
second term on the right hand side approximates the viscous
force [51] and the third term on the right is the body force
term.
To ensure incompressible flows, pressure cannot be related
to density by an equation of state, hence the pressure serves
merely to maintain zero divergence of velocity throughout the
simulation domain. This hydrodynamic pressure is obtained
by solving the following Pressure Poisson equation (PPE)
[20] implicitly (in time) on the SPH domain:

∇ · ∇p
ρ

=
∇ ·u
∆ t

, (7)

where ∆ t is the time step as a result of temporal discretization.
The discretization of the right hand side is given as:

∇ ·u
∆ t

∣∣∣∣
a
≈− 1

ρa∆ t ∑
b

mb(ua−ub)∇aWab. (8)

5 Free Surface Boundary Conditions

In this section, we present our novel analytical solution that
effectively handles free surfaces. In incompressible SPH
methods, when applying the pressure Poisson equation (PPE)
to free surface flows, we need to impose a Dirichlet boundary
condition for pressure at the free surface. One way to do this
is by explicitly identifying the particles at the free surface,
based on the change in the density or an ambient pressure
value (usually zero). Such a treatment is known to affect
the accuracy of the pressure computation, which we use for
modelling the interaction of forces between the fluid and
deformable solids. Our solution is rather to impose a constant
pressure boundary condition on free surfaces by analytically
computing the kernel contribution of the region that is falling
outside of the free surface. Thus, the zero pressure Dirichlet
condition can be applied accurately. In this case, the zero



ISPH-PBD: Coupled Simulation of Incompressible Fluids and Deformable Bodies 7

pressure is applied right outside the free surface by identify-
ing kernel deficiency of particles near the free surface, rather
than at the particles on the surface. This is achieved by a
modification of the leading diagonal terms of the coefficient
matrix of the linear system obtained by discretizing the PPE
as explained below.

The second order derivative approximation based on the
finite difference is used for approximating the Laplacian
terms in the PPE Eq. (7). Therefore, the second derivative
approximation for the PPE in incompressible SPH is given
by [20]:

∇ ·
(

∇p
ρ

)
a
= ∑

b

mb

ρb

4
ρa +ρb

(pa− pb)Fab, (9)

where Fab is the radial derivative of the kernel smoothing
function W , and p is the pressure.

Let R represent all particles in the full kernel of a surface
particle a. Let Ri and Ro be the regions inside the fluid and
outside the fluid respectively, that fall within the kernel of
a particle, as illustrated in Fig. 4, so that R = Ri ∪Ro. Let
pa represent the pressure corresponding to the particles in
region Ri and let po represent the pressure corresponding to
the (implicit) particles in region Ro.

R

a

R

o

i

R

aa

R

ooo

i

free surface

Fig. 4 Illustration of our free surface approach. The symbol Ri repre-
sents the region within the fluid, while Ro represents the region outside
the fluid. Both Ri and Ro are overlapping within the kernel region of the
particle a near the interface (the highlighted circle), in which free sur-
face flow is simulated as discussed above. The grey particles represent
the air, which are implicitly modeled in the simulation process.

For a full kernel of a particle near the interface, with the
kernel deficiency complemented with implicit particles of
zero pressure, we have:

∇ ·
(

∇p
ρ

)
a
=∑

b

mb

ρb

4
ρa +ρb

paFab−∑
bi

mb

ρb

4
ρa +ρb

pbFab−

∑
bo

mb

ρb

4
ρa +ρb

poFab,

(10)

∇ ·
(

∇p
ρ

)
a
= (pa− po)K−∑

bi

mb

ρb

4
ρa +ρb

pbFab+

∑
bi

mb

ρb

4
ρa +ρb

poFab,

(11)

where

K = ∑
b

mb

ρb

4
ρa +ρb

Fab. (12)

The value of K is found for any interior particle in the
initial regular configuration of particles when errors are
expected to be minimal. In the coefficient matrix for the PPE,
K appears in the leading diagonal position corresponding
to every particle. This imposes the zero Dirichlet condition
implicitly by choosing po = 0. We easily implement this
by making a simple modification to the coefficient matrix
of the PPE. This analytical solution allows the Dirichlet
condition to be applied accurately, which is important to
avoid incorrect pressure values in incompressible SPH. This
effects the computation of the pressure force, which is used
for the coupling with the deformable solids.

K is an approximation for the term:∫
Ω

2
ρ

dW
dx

dV, (13)

where Ω is the domain volume V within the cut-off radius of
a given particle position x, when the kernel is fully supported.
It remains approximately constant throughout a simulation
where incompressibility is ensured. Please note that this
stems from the fact that the number of neighbors of a particle
in an incompressible simulation (with given discretization
parameters) remains approximately constant throughout the
simulation.

In this free surface formulation, if only bi particles are
included and if no diagonal correction is made, then this
would amount to a truncated kernel for all particles near
the free surface and hence is approximately equivalent to
a homogeneous Neumann boundary condition for pressure.
This means that such a formulation might result in artifacts.
In reality, the free surface is a Dirichlet boundary condition,
which is imposed by the diagonal correction.

6 Two-way coupling of fluid and deformable bodies

In this section, we introduce our interaction simulation be-
tween fluids and deformable bodies. For incompressible SPH,
pressure is used to enforce incompressibility, which we also
employ in the coupling between fluid and deformable solids.
In ISPH, a reasonable boundary condition implementation
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is to use static boundary particles for the deformable bodies.
When a difference approximation is used for divergence com-
putations, these particles at the interface of the deformable
body implicitly impose a Neumann boundary condition [31].
In this configuration, the deformable bodies within the PBD
framework consists of particles and a set of constraints, where
each PBD-particle has mass, position and velocity. We en-
force fluid pressure to exert forces on PBD particles in contact
with the fluid, by formulating the pressure projection in order
to map the pressure to a net force on the deformable body.
The net force in this case is defined as:

Fpressure =−
1
ρ

∇p, (14)

where ρ is the density and ∇p is the pressure gradient.

Fig. 5 Illustration of the coupling situation between fluids and de-
formable solids. Left: 2D cut through a 3D mesh with both free surface
interface and liquid-deformable solid interactions. Right: Depiction of
the relevant interaction components: p is the fluid pressure, n is the
outward normal on the solid, and u is fluid velocity.

On the basis of Newton’s third law of motion, the sym-
metric interaction force applied by a fluid particle pi on its
adjacent triangle vertices is Fsolid← f luid = Fpressure and
Fsolid← f luid =−Fsolid→ f luid . However, fluid penetration thro-
ugh the boundary occurs when u ·n < 0, where u the velocity
corresponding to a fluid particle at the boundary and n is
the outward normal of the solid into the fluid as shown (Fig.
5), assuming a boundary that is not moving. In the case of
deformable solid where the boundary is moving, this gener-
alizes to the constraint u ·n > v ·n, where v is the velocity
vector of the boundary. We might also want to enforce the
no-slip condition, which means that the fluid particles at the
boundary do not freely slip or slide over the surface. Below
we describe how to address the non-penetration and no-slip
conditions at the boundary.

In each time step, the new positions and velocities are
updated based on the results of the previous time step. To
prohibit penetration of the fluid particles into the deformable
body boundary, we detect collisions based on the updated
positions of PBD particles and fluid particles. Then, we for-
mulate non-penetration constraints between the fluid and
deformable body. In order to detect collisions, we employ a
two-grid cell-based spatial hashing procedure with temporal

marks based on [71]. The two-grid cell-based spatial hash-
ing data structure (which is two-layer grids) requires more
construction time than the original spatial hash. However, it
performs 20% better during the simulation.

To ensure satisfied bound-
ary conditions, we formu-
late non-penetration constraints
once a collision is detected. To
enforce such non-penetration
constraints between the fluid
and deformable solid, a fluid
particle pi should stay a certain
distance away from all the trian-
gles, which is at least equal to
its radius r. Let di j be the dis-
tance between particle pi and
triangle j. When penetration oc-
curs, the fluid particle moves a distance of at least di j − r
towards the triangle (where di j− r is the distance from the
particle along the normal n in the direction dir of the trian-
gle). Therefore, the correction is done by projecting the fluid
particles position to ‖r−di j‖n, in which we take the position
of the penetrating particle and move the particle back along
the normal to a point at a distance of di j− r from the triangle.
When a particle collides with multiple triangles with different
normals, we compute the direction dir by taking into account
the average of normals of the collided triangles. Furthermore,
to prevent penetration artifacts during the deformation of
the deformable solid, we define non-penetration constraints
within the PBD framework. For a fluid particle pi and its
adjacent triangle (p1, p2, p3) of the object surface mesh, we
define a position constraint as:

Cpenetration(pi,p1,p2,p3)

=∓ (xi−x1)

· (x2−x1)× (x3−x1)

|(x2−x1)|× |(x3−x1)|
−Z0,

(15)

where Z0 = d0 + r, and where d0 is the rest distance of the
fluid particles (i.e., the distance by which a fluid particle
should be removed from the solid boundary, in addition to
its radius), r is the fluid particle radius, and xi,x1,x2,x3 are
the fluid particle position and the triangle vertex positions
respectively. If the fluid particle pi penetrates the triangle (p1,
p2, p3) from below with respect to the triangle’s normal, the
first term of the right hand side of Eq. (15) picks the minus.
Conversely, the first term picks the plus. According to the
PBD method, the position change for a fluid particle and the
triangle vertices is calculated as:

∆pc = λi∇pcCpenetration, (16)

where c ∈ [i,1,2,3], and λi is a scalar value computed by the
PBD method.
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In case the no-slip condition is required, it is imposed by
the constraint u ·τ = v ·τ , where u the velocity corresponding
to a fluid particle at the boundary, v the velocity of the solid
boundary and τ is the tangent at the boundary. To address
this condition, we add a tangential friction term for each
particle which collides against a triangle (u · kτ , where k is
a coefficient of friction and it is a positive constant). This
friction force is opposed to the current velocity of the particle,
simulating the loss of energy when the two (fluid particle and
triangle) interact. This no-slip law is phenomenologically
reasonable and moreover has some justification in kinetic
theory [46].

7 ISPH-PBD Simulation

At a given time step t, the vector of all fluid particle positions
is xt , the vector of all fluid particle velocities is ut , and simi-
larly the PBD particle positions and velocities are pt and vt
respectively. The ISPH-PBD simulation works as described
in Algorithm 1. In line 1, FTotal

f corresponds to fB in Eq. 4,
and in line 5, FTotal

s is the external force, mainly gravity. In
lines 10-15, the pressure is computed by solving the linear
system that is described by the PPE. Lines 25-28 refer to
the PBD iterative solver that manipulates position estimates
such that they satisfy the constraints as described in Sec.
4.1, where Iterations refers to a parameter specified by the
user, indicating the number of PBD constraint solver itera-
tions to be run. Another point within the outer loop where
an iterative algorithm may be used is at lines 10-15: in the
case of our simulations below, we approximate Fpressure using
BiCGSTAB, which runs for a number of iterations such that
a certain bound on the volume loss is guaranteed (see the
next section for more details). Hence, two iterative solvers
are invoked at each iteration of the outer loop at line 9.

8 Results

In this section, we demonstrate the capability of our method
using different scenarios, where our choice of the ISPH pa-
rameters is described as follows: The smoothing radius r is
set to 0.05, ∆x is the initial particle spacing, and is set to
0.005, h is the smoothing length, and is set to 0.015, and the
density ρ is set to 1000. We employ the Wendland Quintic
kernel, also called the Wendland C2 kernel [21], where the
results show that a good compromise between accuracy and
time computation cost is reached by the use of the Wend-
land kernel. This kernel also has interesting properties, in
particular it maintains a highly ordered particle distribution
in dynamical simulations and it does not fall prey to the pair-
ing instability. A graph plotting the accuracy of the pressure
gradient estimation (as expressed in the first term of the sum-
mation in Eq. (6)) can be seen in Fig. 6, where the figure

Algorithm 1 ISPH-PBD Simulation
1: compute forces FTotal

f . (FTotal
f ) forces acting on the fluid

2: x′ ← xt +∆ tut
3: u∗← ut +∆ t(vut +FTotal

f )
4:
5: compute forces FTotal

s . (FTotal
s ) forces acting on the solid

6: v′ ← vt +∆ tFTotal
s

7: p′ ← pt +∆ tv′

8:
9: repeat

10: approximate Fpressure according to Eq. 14, where:
11: for each fluid particle p do
12: if p on the surface then
13: solve pressure p← with Eq. 11
14: else
15: solve pressure p← SPH approximation to Eq. 7
16:
17: u← u∗+∆ tFpressure

18: x← x′ +∆ t(u∗+u)/2
19:
20: for each fluid particle j do
21: let i1, . . . , ik be the PBD particles in contact with j
22: add force (Fpressure) j/k to (FTotal

s )i1 , . . . ,(F
Total
s )ik .

23: v← v′ +∆ tFTotal
s

24: p← p′ +∆ tv
25:
26: generate non-penetration constraints with Eq. 15
27: for Iterations do . the constraints solver
28: pro jectConstraints(Cm)

29: update velocities u and v from the positions . based on the
solver outcome

30:
31: until convergence . this criterion is discussed in Sec. 8
32:
33: update the fluid velocities ut+1← u and positions xt+1← x
34: update the solid velocities vt+1← v and positions pt+1← p

shows a comparison of three different kernels; Wendland C2,
cubic spline, and quartic spline kernels over different choices
of the smoothing parameter. Indeed, the Wendland C2 comes
with good results, and continuously improves the gradient
estimate as the value of the smoothing parameter increases.

8.1 Timings

In order to enforce incompressibility, we solve the PPE
equations by a Krylov subspace method, in particular
the Biconjugate Gradient Stabilized (BiCGSTAB) solver
using the LIS linear solver library [58]. In Ihmsen et.
al. [33], the Krylov subspace method used is the Conjugate
Gradient method which is originally restricted to symmetric
matrices. In our work, we use BiCGSTAB, a variant of
CG specifically suited for asymmetric matrices. In our
experience, BiCGSTAB solver tends to provide a solution
even when multiple solutions are present (for example, when
the matrix A is singular and when b, the RHS vector, is in
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Table 1 Various timing and constraint statistics of our simulations. The column names mean the following. #S: number of stretch constraints, #T:
number of cloth balloon constraints, #B: number of bend constraints, #V: number of volume constraints, #PBD: total number of PBD constraints,
#ISPH: number of particles used during the simulation, #ISPH iterations: Avg. number of ISPH iterations per time step when 0.025% error is
tolerated, # Avg. iterations: average number of iterations in order to meet the convergence criterion, #CT: average computation time during a 1
second simulation.

Scene name #S #T #B #V #PBD #ISPH #PBD iterations #ISPH iterations # Avg. iterations time step CTtotal [ms]
Water balloon 9K 1 - - 9K 22K 25 21.3 2.1 0.001 32.5
Double elastic clothes 12K - 9K - 21K 95K 12 30.4 2.5 0.005 81.6
Thin shell in glass basin 7K - 4K - 11K 27K 8 32.2 1.4 0.005 45.7
Shower on cloth 13K - 9K - 22K 75K 12 43.1 2.4 0.005 77.1
Deformable bodies 15K 1 - 20K 35K 45K 36 40.2 2.7 0.001 87.3
Flower pot 9K - - 12K 21K 27K 20 20.3 1.6 0.001 35.2

Fig. 6 Accuracy of pressure gradient estimates for three different ker-
nels: cubic spline, quartic spline and Wendland C2 kernels obtained
from particles that are placed in a simple cubic lattice. The particles
have identical masses, are uniformly spaced, and the pressure increases
linearly with the three axes, so that the true pressure gradient is constant.
The error is measured as (|ĝ−g|)/|g| where g denotes the true pressure
gradient and ĝ denotes the gradient as estimated by the SPH method
under the respective kernel (in a single coordinate). We observe that the
Wendland kernel performs particularly well in its gradient estimation
ability, and improves the gradient estimate as the value of the smooth-
ing parameter S increases. The smoothing parameter S determines the
smoothing length h as h = SVb, where Vb is the particle volume. The
dips in the graph are caused by the use of the log-scale and the fact that
we compare absolute values in our error measure (the difference ĝ−g
crosses 0 at these points.

the range of A), without the need to pin a point in the domain
to a fixed value. Such situations arise when a fluid/fluid-solid
domain is completely bounded by a solid boundary. Also
BiCGSTAB is stable even for high condition numbers.
Hence BiCGSTAB has been robust for our applications.

Table 1 summarizes our testing scenarios and run-times,
where the tolerated error is set to 0.025% overall volume
change of the fluid. All experiments described in this section
have been performed on a MacBook Pro equipped with a
2,8 GHz quad-core i7 Intel and 16 GB of RAM. During the
simulations, we iterate to verify whether the velocity of the
fluid matches the velocity of the deformable solid in which an

error with a threshold of 0.5×10−3 has to be satisfied as the
convergence criterion. The reported times do not include ren-
dering. In terms of computation time, the ISPH-component
of the algorithm is the most expensive by an order of magni-
tude, when compared to the PBD-component. Note that we
currently rely on very modest computer hardware, and we are
using a CPU-implementation that is multi-threaded. Clearly,
a GPU implementation would allow much larger scenarios
and better performance.

8.2 Visual Results

Enforcing incompressibility. Fig. 7 shows the stability of our
interaction model, where a two-way coupling simulation of
an elastic balloon (modelled as a thin shell) is provided. The
simulation consists of 9K geometric PBD constraints, and
the balloon is filled with 22K ISPH particles. The PBD solver
iteration count is set to 25 iterations. We employ a fixed time
step of 0.001. The balloon bounces upon impact with the
ground, expanding and deforming due to the fluid load. In
contrast, the elastic behaviour of the balloon causes the water
to flow inside and form waves, while enforcing a boundary
condition on the fluid flow.

Fig. 7 Top row: Our method simulating a water balloon upon impact
with the ground. Bottom row: The same simulation but with fluid particle
pressures that are color-coded and proportional to their red saturation,
where red indicates high pressure values (9K PBD constraints and 22K
fluid particles, at 30 fps).

Fig. 8 shows the adaptability of our method: it allows
for tuning the elasticity of the deformable body. This is
done by changing the stiffness of the constraints inside the
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PBD method, so that we can reduce or increase the elastic-
ity of the final deformation until the desired effect is reached.

Fig. 8 Comparison of the water balloon simulation with varying elas-
ticity settings. These deformations are obtained by setting the stiffness
to 0.9 (left) and to 0.75 (right).

Fig. 9 shows the ability of our method to preserve fluid vol-
ume, in comparison to the standard weakly compressible
SPH method presented by Becker and Teschner based on the
Tait equation [7], where the stiffness values in both are set
to be 0.80. The volume loss resulting from using the weakly
compressible SPH can be less if a larger stiffness value is
used. In this case, the time step size for weakly compressible
SPH must be decreased, which makes the simulation slow.
In Table 2, we report the computation time comparison of
WCSPH and ISPH for three different scenarios.

Fig. 9 Left: Simulation of a water balloon upon its impact with the
ground using weakly compressible SPH, which suffers from fluid loss.
Right: The same scene simulated using our method, which preserves
the fluid volume during the simulation. The PBD-stiffness value of the
elastic balloon in both simulations is set to 0.80 and stiffness value of
WCSPH is 6.0×103.

Fig. 10 shows the error in the pressure for the water
balloon scenario performed by weakly compressible SPH
and ISPH over different numbers of particles. In order to
compute this error, we employed high-order kernel support
(e.g. 5th order B-spline kernel [43], which is well-known
in the physics community for its ability to obtain minimum
distortion error and well-maintain particle spacing) to get
what we call the optimum pressure p̂. Thus, the error is
evaluated through the subtraction between p̂ and the pressure
obtained from the WCSPH and ISPH. Furthermore, in order
to evaluate the volume preservation quality of our method,
we simulate a fluid pillar of 5 meters that consists of 30k
particles, where we show the error in the pressure distribution
at different times (Fig.11). In this simulation, we measured
the volume loss at the end of the simulation t = 350 to be
1.19×10−3.

Fig. 10 Shows the error in the pressure over different numbers of
particles between WCSPH and ISPH for the water balloon scenario,
where the PBD-stiffness value of the elastic balloon in both simulations
is set to 0.80.

Fig. 11 A fluid pillar simulation of 5 meters height with 30k particles
at different times, where the errors are color coded with red. The error is
evaluated through the analytical solution p = ρ ·gravity ·height and the
pressure as estimated during the simulation. Note that at time t = 250
the oscillations have become visible due to errors. However, the particle
arrangement at earlier times is stable.

Table 2 A computation time comparison of WCSPH and ISPH for three
different scenarios, where the time step size is 0.001 and CTtotal [ms] is
the total computation time for the whole motion.

Scene name WCSPH CTtotal [ms] ISPH CTtotal [ms]
Water balloon 77.9 42.1
Deformable bodies 123.7 95.5
Flower pot 94.4 39.18

Interaction with thin shells and avoiding leakage. Fig. 13
shows the interaction between elastic cloth and fluid, where
the simulation consists of 21K cloth constraints and 95K
fluid particles. The PBD solver iteration count is set to 12
iterations, where we employ a fixed time step of 0.005. The
elastic cloth stretches under the water load, while it prevents
water from leaking through the cloth. This simulation proves
the capability of our approach to interact with elastic thin
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shells, while avoiding the leakage of fluid through the bound-
aries.

Fig. 12 A scenario where a large amount of water is sprayed on a thin
shell in a glass basin, with varying elastic deformations. These defor-
mations are obtained by setting the stiffness of the stretch constraints of
the thin shell to 0.9 (left) and 0.6 (right).

Fig. 12 shows a simulation of a stream of fluid being
propelled at high speed onto a piece of elastic thin shell,
into a transparent basin. This simulation shows that our
method enables tuning the elasticity of the thin shell. This
simulation has 11K cloth constraints, and has 27K fluid
particles. The PBD solver iteration count is set to 8 iterations,
where we employ a fixed time step of 0.005. Fig. 14 shows a
simulation of a stream of fluid being poured at high speed
onto an elastic thin shell. This simulation shows the ability
of our method to avoid leaking under large deformation
and fast motion. In this simulation there are 22K cloth
constraints, and 75K fluid particles, where we employ a
fixed time step of 0.005. The PBD solver iteration count is
set to 12 iterations.

Handling two-way elastic-fluid coupling. Fig. 15
shows the flexibility of our explained elastic-fluid coupling
technique, where an elastic flower pot consisting of 21K
PBD constraints is filled with a 27K ISPH particles. The
elastic flower pot deforms as it hits the ground, bounces,
and squirts the liquid out. In this simulation, the PBD solver
iteration is set to 20 iterations. We employ a fixed time step
of 0.001. Also, Fig. 16 shows the flexibility of our explained
elastic-fluid coupling technique, where a lifebuoy and a ball
consisting of 35K PBD constraints are floating on 45K ISPH
particles. The PBD solver iteration is set to 32 iterations We
employ a fixed time step of 0.001.

In Fig. 17, we illustrate that our method is able to couple
fluid and deformable bodies with different densities, where
we show an experiment that simulates floating and sinking.
In addition, we demonstrate in Fig. 18 the capabilities of
our method to emulate the free-slip and no-slip boundary
conditions described in Sec.6. Please note that the coefficient
of friction k in the no-slip simulation is set to 0.4.

9 Discussion

In this section, we discuss methods that address the two-way
coupling between fluids and deformable bodies/ thin shells
at interactive rate. We compare our method to the closest
methods available, and we discuss the advantages and limita-
tions of our method. Akinci et al. [2] and Macklin et al. [49]
presented a two-way coupling simulation between fluids and
deformable solids, including thin shells, which bears some
similarities to our approach. The technique proposed by Ak-
inci et al. [2] is a pressure-based coupling method, which
employs boundary particles to represent deformable solids
and effectively avoids the problem of leakage due to the high
pressure ratios that these boundary particles cause. How-
ever, the method heavily relies on pre-sampling the solids
and is very hard to generalize in order to handle solids with
large deformations. In order to avoid leaking through bound-
aries when a large deformation occurs, their method tends
to oversample the deformable meshes in a uniform fash-
ion. In contrast, our method does not sample the boundaries
with particles, and therefore simplifies the interaction model,
avoids oversampling, and prevents leakage, although a fine
triangulation is required in the case of thin shells.

The method presented by Macklin et al. [49] employs
Position Based Fluid (PBF) [47] to simulate fluid, where
enforcing incompressibility is not derived from the continuity
equation, but from constraint dynamics. Therefore, the
density constraints are enforced through the use of Lagrange
multipliers and not by employing SPH formulations for
pressure and pressure force. Although their method generates
appealing simulation results at real-time, we observe the
following: 1) The soft volumetric bodies are obtained
by using a voxelized version of the original mesh, with
a shape matching constraint, which de facto limits the
deformation modes of the deformable body. The liquid
particles unnaturally cluster in a shell when particles are
in contact with a solid. This clustering issue cannot be
eliminated even by reducing the viscosity coefficient and
cohesion coefficient. In contrast, our method is based
on an ISPH formulation that generates a more plausible
fluid simulation, in which we avoid particle clumping. 2)
Significant contact offset is used in [49], which sometimes
causes a visible space between a liquid and a shell that are in
contact with each other. In their method, this is necessary in
order to prevent leakage through the thin shell. We are able
to use a lower contact offset when handling contact, while
still preventing leakage through thin shells (Fig. 19).

While we find our method practical, it comes with
three main limitations. First, we are currently using PBD
to simulate deformable bodies due to its stability and
efficiency. However, PBD is rather sensitive to parameter
tuning, and the parameters need to be tuned carefully to
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Fig. 13 Simulation of a large quantity of fluid being propelled at high speed onto two pieces of thin shell, where the elastic thin shells deform under
the impact of the fluid, stretching and expanding, while the water splashes around and runs down off the cloth’s sides (21K cloth constraints and
95K fluid particles, at 12.2 fps).

Fig. 14 A stream of liquid pours into an elastic sheet of thin shell. The elastic thin shell deforms under the impact of the water, stretching and
expanding. This simulation shows that our method prevents leakage even in the case of rapid motion and large deformations (22K cloth constraints
and 75K fluid particles, at 12.8 fps).

Fig. 15 An elastic flower pot filled with fluid, where the pot bounces
on the floor and squirts the liquid out. Note that the pot is a deformable
body (i.e., it is not a thin shell), as can be seen by the transparency of
the pot in the picture.

achieve plausible deformations of the deformable solids.
To avoid this problem, while still using PBD, an extended
version of PBD (XPBD) has been proposed by Macklin et
al. [48]. Secondly, our method relies on various parameters
of the particle-based domain of SPH and the mesh-based
domain of PBD, we argue that special attention is required
while setting up the simulation and parameters, such as the
smoothing radius and smoothing length for SPH, and the
elasticity and stiffness for PBD. For instance, using a coarse
triangulation for the deformable thin shell in a relatively

small scale simulation leads to undesired results such as
leaking. To address such issues, in future work we plan to
investigate the possible use of adaptive SPH proposed by
Winchenbach et al. [72]: The use of continuously adjusted
particle masses and sizes with restricted spatial variation
generates a very high degree of adaptivity. This can enable us
to properly handle the continuous exchange of forces at the
interface between the deformable bodies and fluids, while
capturing small-scale phenomena, such as splashing and
droplet formation. Moreover, it will be interesting as a future
direction to investigate the possibility of employing the
methods presented in [4, 9] to simulate the incompressible
fluids in our framework. We would like to study the use
of these approaches to maintain larger time steps, while
achieving interactive rate performance.

The third limitation is as follows. The incompressible
SPH formulation presented in Section 4.2 solves for ∇ ·u= 0,
but in the presence of discrete time stepping this does not also
guarantee ρ to be constant. While density invariance or den-
sity invariance together with null divergence have both been
used in incompressible SPH, the resulting system is known
to have high pressure fluctuations. The volume error due to
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Fig. 16 A shower of fluids, which consists of 45K ISPH particles together with a lifebuoy and a ball of 35K PBD constraints. The lifebuoy and ball
have different masses, and the lifebuoy is a bit heavier than the ball. While the fluid is filling a block volume, the ball floats, and the lifebuoy slowly
rises to buoyancy.

Fig. 17 To demonstrate buoyancy using our method, we drop three spheres with decreasing densities from left to right into a tank of liquid, where
spheres are negatively, neutrally, and positively buoyant respectively.

Fig. 18 A fluid pouring on a solid bunny, where we demonstrate a comparison between no-slip and free-slip boundaries. Top row: We imposed a
no-slip condition on the boundary, where the simulated fluid tend to stall over a relatively rough surface. Bottom row: A free-slip boundary condition,
in which the fluid smoothly flows over the bunny.

discretization can be rectified by using a deformation gradi-
ent approach as in [55, 56] or by using predictor-corrector
time stepping, as presented in [56].

10 Conclusion

We have presented a novel method for simulating two-way in-
teractions between particle-based fluids and deformable bod-
ies represented by polygonal meshes. The deformation model
of deformable solids is based on the Position Based Dynam-
ics (PBD) scheme, which allows us to generate simulations
that feature large deformations and handle contact, while
remaining stable. Fluid is simulated using divergence-free

Incompressible Smoothed Particle Hydrodynamics (ISPH).
Incompressible SPH methods with free surfaces suffer from
noisy pressures. An incompressible noise-free method for
arbitrary free surface flows is essential for many problems
which involve both fluid and solid interaction and multi-phase
fluid simulations. In this paper, we presented a novel semi-
analytic model to simulate free surface flow that does not
require explicit identification of surface particles, and allows
accurate pressure computation. At the deformable solid and
fluid interaction interface, we generate forces and solve for
the interaction. Our approach can handle complex coupling
scenarios between fluids and thin deformable shells or mem-
branes, where small changes in the state of the fluid cause
tremendous changes in the membranes and vice versa. The
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Fig. 19 Visual comparison between our method and the method pre-
sented by Macklin et al. [49] for a cloth-fluid coupling scenario with
32K fluid particles. Left: Our method employs less contact offset (top)
and avoids particle clumping (bottom). Right: The method presented
by Macklin et al. [49], where they use a visibly larger contact offset
when handling contact (top), and the liquid particles tend to unnaturally
cluster (bottom).

described method also prevents the leaking of fluid through
the thin shell boundaries in the case of large deformations,
which is done by enforcing an appropriate set of constraints
at the interface between the two materials.

We currently employ a parallel implementation on the
CPU. To further improve the performance of our method,
developing an efficient GPU implementation is one of our
future directions. The recent work by Chow et al. [17]
promises much faster Poisson solvers on GPUs than pre-
viously achieved in incompressible SPH simulations. Since
the pressure equation in incompressible SPH is essentially
the Poisson equation discretized as a sparse system of linear
equations, the increased interest in solving linear systems
makes incompressible SPH very promising and much more
attractive than conventional weakly compressible SPH. We
believe that in the near future, using the incompressible SPH
formulation on a GPU will become increasingly more viable
than using conventional SPH. This path certainly offers a rich
set of opportunities for future research with applications not
only in movies and surgery simulation, but also in computer
games.
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