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Colonel Blotto and Hide-and-Seek Games as Path Planning Problems with Side Observations

Resource allocation games such as the famous Colonel Blotto (CB) and Hide-and-Seek (HS) games are often used to model a large variety of practical problems, but only in their one-shot versions. Indeed, due to their extremely large strategy space, it remains an open question how one can efficiently learn in these games. In this work, we show that the online CB and HS games can be cast as path planning problems with side-observations (SOPPP): at each stage, a learner chooses a path on a directed acyclic graph and suffers the sum of losses that are adversarially assigned to the corresponding edges; and she then receives semi-bandit feedback with side-observations (i.e., she observes the losses on the chosen edges plus some others). Then, we propose a novel algorithm, EXP3-OE, the first-of-its-kind with guaranteed efficient running time for SOPPP without requiring any auxiliary oracle. We provide an expected-regret bound of EXP3-OE in SOPPP matching the order of the best benchmark in the literature. Moreover, we introduce additional assumptions on the observability model under which we can further improve the regret bounds of EXP3-OE. We illustrate the benefit of using EXP3-OE in SOPPP by applying it to the online CB and HS games.

Introduction

Resource allocation games have been studied profoundly in the literature and showed to be very useful to model many practical situations, including online decision problems, see e.g. [START_REF] Blocki | Audit games[END_REF][START_REF] Joseph | From resource allocation to strategy[END_REF][START_REF] Korzhyk | Complexity of computing optimal stackelberg strategies in security resource allocation games[END_REF][START_REF] Zhang | A multi-agent learning approach to online distributed resource allocation[END_REF]. In particular, two of the most renowned are the Colonel Blotto game (henceforth, CB game) and the Hide-and-Seek game (henceforth, HS game). In the (one-shot) CB game, two players, each with a fixed amount of budget, simultaneously allocate their (indivisible) resources on n ∈ N battlefields, each player's payoff is the aggregate of the values of battlefields where she has a higher allocation. The scope of applications of the CB games includes a variety of problems; for instance, in security (e.g., [START_REF] Hui | Colonel Blotto in web security[END_REF][START_REF] Schwartz | The heterogeneous Colonel Blotto game[END_REF]) where resources correspond to security forces, in politics (e.g., [START_REF] Kovenock | Coalitional Colonel Blotto games with application to the economics of alliances[END_REF][START_REF] Roberson | The Colonel Blotto game[END_REF]) for allocating budget to attract voters, and in advertisement (e.g., [START_REF] Maria | Strategic resource allocation for competitive influence in social networks[END_REF][START_REF] Maria | Defensive resource allocation in social networks[END_REF]) for distributing the broadcasting time. On the other hand, in the (one-shot) HS game, a seeker chooses n among k locations (n < k) to search for a hider, who randomly chooses to hide in one of the k locations. The seeker's payoff is the probability that she finds the hider and the hider's payoff is the probability that she successfully escape the seeker's pursuit. Several variants of the HS games are used to model surveillance situations [START_REF] Bhattacharya | Surveillance for security as a pursuit-evasion game[END_REF][START_REF] Bhattacharya | On the existence of nash equilibrium for a two player pursuit-evasion game with visibility constraints[END_REF], anti-jamming problems in telecommunications [START_REF] Vishnu Navda | Using channel hopping to increase 802.11 resilience to jamming attacks[END_REF][START_REF] Wang | Learning in hide-and-seek[END_REF][START_REF] Xu | The feasibility of launching and detecting jamming attacks in wireless networks[END_REF], vehicles control [START_REF] Chung | Search and pursuit-evasion in mobile robotics[END_REF][START_REF] Vidal | Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation[END_REF], etc.

Both the CB games and the HS games have a long-standing history (originated in 1921 [START_REF] Borel | La théorie du jeu et les équations intégrales à noyau symétrique[END_REF] and to their one-shot and full-information version (see e.g., [START_REF] Behnezhad | Faster and simpler algorithm for optimal strategies of Blotto game[END_REF][START_REF] Gross | A continuous Colonel Blotto game[END_REF][START_REF] Roberson | The Colonel Blotto game[END_REF][START_REF] Schwartz | The heterogeneous Colonel Blotto game[END_REF][START_REF] Vu | Efficient computation of approximate equilibria in discrete Colonel Blotto games[END_REF] for CB games and [START_REF] Jd Grote | The theory and application of differential games[END_REF][START_REF] Hespanha | Probabilistic pursuit-evasion games: A one-step nash approach[END_REF][START_REF] Yavin | Pursuit-evasion differential games with deception or interrupted observation[END_REF] for HS games). On the contrary, in most of the applications (e.g., web security, advertising, telecommunications), a more natural setting is to consider the case where the game is played repeatedly and players have access only to incomplete information at each stage. In this setting, players are often required to sequentially learn the game on-the-fly and adjust the trade-off between exploiting known information and exploring to gain new information. Thus, this work focuses on the following sequential learning problem: at each stage, a learner plays a CB game (resp. HS game); at the end of the stage, she receives limited feedback that is the gain she obtains from each battlefield (resp. the hider's escape probability corresponding to the chosen locations); and her objective is to maximize her cumulative payoffs. A formal definition of these problems is given in Section 4; hereinafter, we reuse the term CB game and HS game to refer to this sequential learning version of the games. The main challenge in those games is that their strategy space is exponential in the natural parameters (e.g., number of troops and battlefields in the CB game, number of locations in the HS game); hence how to efficiently learn in these games is an open question.

Our first contribution towards solving this open question is to show that the CB and HS games can be cast as Path Planning Problems (henceforth, PPP), one of the most well-studied instances of the Online Combinatorial Optimization framework (henceforth, OCOMB; see [START_REF] Chen | Combinatorial multi-armed bandit: General framework and applications[END_REF] for a survey). In PPPs, given a graph with E edges, at each stage, a learner chooses a path; then a loss in [0, 1] is adversarially chosen for each edge and the learner suffers the aggregate of edges' losses belonging to her chosen path. The learner's goal is to minimize regret. 1 The information that the learner receives in the CB and HS games as described above straightforwardly corresponds to the so-called semi-bandit feedback setting of PPPs, i.e., at the end of each stage, the learner observes the edges' losses belonging to her chosen path. However, the specific structure of the considered games also allows the learner to deduce (without any extra cost) from the semi-bandit feedback the losses of some of the other edges that may not belong to the chosen path; these are called side-observations. Henceforth, we will use the term SOPPP to refer to this PPP under semi-bandit feedback with side-observations. SOPPP is a special case of OCOMB with side-observations (henceforth, SOCOMB) studied by [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF] and, following their approach, we will use observation graphs2 (defined in Section 2) to capture the learner's observability. In [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF], the authors focus on the class of Follow-the-Perturbed-Leader (FPL) algorithms (originated from [START_REF] Kalai | Efficient algorithms for online decision problems[END_REF]) and propose an algorithm named FPL-IX for SOCOMB, which could be applied directly to SOPPP. However, this faces two main problems: (i) the efficiency of FPL-IX is only guaranteed with high-probability (as it depends on the geometric sampling technique) and (ii) it requires that there exists an efficient oracle that solves an optimization problem at each stage-both of which are incompatible with our goal of learning in the CB and HS games.

In this paper, we focus instead on another prominent class of OCOMB algorithms, called EXP3 [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF][START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF]. Then, our second contribution is to propose an algorithm for SOPPP that solves both of the aforementioned issues and provides good regret guarantees. In more details, this contribution is three-fold: (i) We propose a novel algorithm, EXP3-OE, that is applicable to any instance of SOPPP. Importantly, EXP3-OE is always guaranteed to run efficiently (i.e., in polynomial time in terms of the number of edges of the graph in SOPPP) without the need of any auxiliary oracle; (ii) We prove that EXP3-OE guarantees an upper-bound on the expected regret matching in order with the best benchmark in the literature (the FPL-IX algorithm). We also prove further improvements under additional assumptions on the observation graphs that have been so-far ignored in the literature; (iii) We demonstrate the benefit of using the EXP3-OE algorithm in the CB and HS games.

Our EXP3-OE algorithm is based on the EXP3-IX algorithm [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF]. However, EXP3-IX has a very inefficient running time in SOCOMB (and particularly in SOPPP) and thus, it is only analyzed by [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF] in the trivial cases of SOCOMB involving only actions with L1-norm that equals to 1 (corresponding to SOPPP with graphs where all paths have length 1)-the existence of an efficient implementation of EXP3-type algorithms in SOCOMB is left as an open question in [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF]. We address this question in the particular case of SOPPP as follows. We introduce two main major updates in EXP3-OE. First, unlike EXP3-IX that uses adaptive implicit exploration scheme, we assume that the time horizon is known 3 in advance and fix an implicit exploration parameter in the loss estimator of EXP3-OE. This change reduces the computations and leads to a different parameters tuning scheme with improved regret bounds compared to EXP3-IX. Second (and the main reason that makes EXP3-OE significantly more efficient than EXP3-IX), we use a novel loss estimator, which enables us to efficiently compute it based on a dynamic-programming technique, called weight pushing. Note that while weight pushing has been used for efficiently sampling paths from exponentially-updated weights in several variants of EXP3 (e.g., [START_REF] György | The on-line shortest path problem under partial monitoring[END_REF][START_REF] Sakaue | Efficient bandit combinatorial optimization algorithm with zero-suppressed binary decision diagrams[END_REF][START_REF] Takimoto | Path kernels and multiplicative updates[END_REF]), the way we apply it to compute the loss estimator is novel and non-trivial. Finally, note that the SOPPP model (and thus, our proposed EXP3-OE algorithm) can be applied into many problems beyond the considered games, e.g., auctions, recommendation systems.

Throughout the paper, we use bold symbols to denote vectors, e.g., x ∈ R n , and x(i) to denote the i-th element. For any m ≥ 1, the set {1, 2, . . . , m} is denoted by [m] and the indicator function of a set A is denoted by I A . For graphs, we write either e ∈ p or p e to refer that an edge e belongs to a path p. For the sake of conciseness, we present first our second contribution on the SOPPP in general and we then return in Section 4 to our first contribution relating to the CB and HS games.

Path Planning Problems with Side-Observations (SOPPP) Formulation

As discussed in Section 1, motivated by the CB and HS games, we focus on the path planning problem with semi-bandit and side-observations feedback (SOPPP) and design an EXP3-type algorithm that always runs efficiently in SOPPP. To do this, we first formally define the SOPPP model as follows.

SOPPP model. Consider a directed acyclic graph (henceforth, DAG), denoted by G, whose set of vertices and set of edges are respectively denoted by V and E. Let V := |V| ≥ 2 and E := |E| ≥ 1; there are two special vertices, a source and a destination, that are respectively called s and d. We denote by P the set of all paths starting from s and ending at d. Each path p ∈ P corresponds to a vector in {0, 1} E (thus, P ⊂ {0, 1} E ) where p(e) = 1 if and only if edge e ∈ E belongs to p. Let n be the length of the longest path in P, that is p 1 ≤ n, ∀p ∈ P. Given a time horizon T ∈ N, at each (discrete) stage t ∈ [T ], a learner chooses a path pt ∈ P. Then, a loss vector t ∈ [0, 1] E is secretly and adversarially chosen (oblivious from the learner's decisions). Each element t (e) corresponds to the scalar loss embedded on the edge e ∈ E. The learner's incurred loss is L t (p t ) = (p t ) t = e∈p t t (e), i.e., the sum of the losses from all the edges belonging to pt . The learner's feedback at stage t after choosing pt is presented as follows. First, she receives a semi-bandit feedback, that is, she observes all the edges' losses t (e), for any e belonging to the chosen path pt . Additionally, each edge e ∈ pt may reveal the losses on several other edges. To represent these side-observations at time t, we consider a graph, denoted G O t , containing E vertices. Each vertex v e of G O t corresponds to an edge e ∈ E of the graph G. There exists a directed edge from a vertex v e to a vertex v e in G O t if, by observing the edge loss t (e), the learner can also deduce the edge loss t (e ) (we also denote this by e → e and say that the edge e reveals the edge e ). The objective of the learner is to minimize the cumulative expected regret, defined as

R T := E t∈[T ] L (p t ) -min p * ∈P t∈[T ] L (p * ).
Hereinafter, in places where there is no ambiguity, we use the term path to refer to a path in P and the term observation graphs to refer to G O t . In general, these observation graphs can depend on the decisions of both the learner and the adversary. Apart from the results for general observation graphs, in this work, we additionally present several results under two particular assumptions, satisfied by some instances in practice (e.g., the CB and HS games), that provide more refined regret bounds compared to cases that were considered in [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF]: (i) symmetric observation graphs where for each edge from v e to v e , there also exists an edge from v e to v e (i.e., if e → e then e → e); i.e., G O t is an undirected graph; (ii) observation graphs under the following assumption (A0) that requires that if two edges belong to a path in G, then they cannot simultaneously reveal the loss of another edge. Assumption (A0): For any e ∈ E, if e → e and e → e, then p ∈ P : p e , p e .

EXP3-OE -An Efficient Algorithm for the SOPPP

In this section, we present a new algorithm for SOPPP, called EXP3-OE (OE stands for Observable Edges), whose pseudo-code is given by Algorithm 1. The guarantees on the expected regret of EXP3-OE in SOPPP is analyzed in Section 3.2. More importantly, EXP3-OE always runs efficiently in polynomial time in terms of the number of edges of G; this is discussed in Section 3.1.

As an EXP3-type algorithm, EXP3-OE relies on the average weights sampling where at stage t we update the weight w t (e) on each edge e by the exponential rule (line 9). For each path p, we denote the path weight w t (p) := e∈p w t (e) and define the following normalized terms, according to which a path pt is sampled at each stage t (see line 5) of the EXP3-OE algorithm:

d t (p) := e∈p w t (e)
p ∈P e ∈p w t (e ) = w t (p) p ∈P w t (p ), ∀p ∈ P.

(

) 1 
Compared to other instances of the EXP3-type algorithms, EXP3-OE has two major differences. First, at each stage t, the loss of each edge e is estimated by ˆ t (e) (line 8) based on the term q t (e) and a parameter β. Intuitively, q t (e) is the probability that the loss on the edge e is revealed from playing the chosen path at t. On the other hand, the implicit exploration parameter β added to the denominator allows us to "pretend to explore" in EXP3-OE without knowing the observation graph G O t before making the decision at stage t (the uninformed setting). Unlike the standard EXP3 algorithm, the loss estimator used in EXP3-OE is biased, that is Algorithm 1 EXP3-OE Algorithm for SOPPP. Here, E t denotes the expectation w.r.t. the randomness of choosing a path at stage t. Second, unlike standard EXP3 algorithms that keep track and update on the weight of each path, the weight pushing technique is applied at line 5 (via Algorithm 4 in Appendix A) and line 8 (via Algorithm 2 in Section 3.1) where we work with edges weights instead of paths weights (recall that E |P|).

Running Time Efficiency of the EXP3-OE Algorithm

We recall that in order to efficiently sample a path according to d t (p), p ∈ P, following the literature, it is useful to compute the terms H t (s, u) := p∈Ps,u e∈p w t (e) and H t (u, d) := p∈P u,d e∈p w t (e) for any vertex u in G. Intuitively, H t (u, v) is the aggregate weight of all paths from vertex u to vertex v at stage t. Then, a path in G is sampled sequentially edge-byedge based on these terms H t . The collection of the computations described above is often referred to as weight pushing, that can be done in O(E) by exploiting the structure of the graph. We rewrite this step formally in Appendix A.

The final non-trivial step to efficiently implement EXP3-OE is to compute q t (e), the probability that an edge e is revealed at stage t, needed in line 8. We note that q t (e) is the sum of |O t (e)| = O(|P|) terms; therefore, a direct computation is inefficient while a naive application of the weight pushing technique can easily lead to errors. To compute q t (e), we propose Algorithm 2, a non-straightforward application of weight pushing, in which we consecutively consider all the edges e ∈ R t (e) := {e ∈ E : e → e}.

Then, we take the sum of the terms d t (p) of the paths p going through e by the weight pushing technique while making sure that each of these terms d t (p) is only included one time, even if p has more than one edge revealing e (this is a non-trivial step). In Algorithm 2, we denote by C(u) the set of the direct successors of any vertex u ∈ V. A proof that Algorithm 2 outputs exactly q t (e) as defined in line 8 of Algorithm 1 can be found in Appendix B. Algorithm 2 runs in O (|R t (e)|E) time; therefore, line 8 of Algorithm 1 can be done in at most O E 3 time. In conclusion, the EXP3-OE algorithm runs in at most O(E 3 T ) time, this guarantee works even for the worst-case scenario. For comparison, the running time of FPL-IX proposed by [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF] is O(E|V| 2 T ) in expectation if we choose Dijkstra's algorithm to be the optimization oracle at each stage. On the other hand, with the chosen parameters in [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF], we can deduce that FPL-IX achieves the running time in4 Õ(n 1/2 E 3/2 ln(E/δ)T 3/2 ) with a probability at least 1 -δ for an arbitrary δ > 0. That is, FPL-IX is not guaranteed to have efficient running time in all cases.

Algorithm 2 Compute q t (e) of an edge e at stage t. 

K(e ) := H(s, u e )•w(e )•H(v e , d)
where edge e goes from u e to v e ∈ C(u e ).

7:

q t (e) := q t (e) + K(e )/H * (s, d).

8:

Update w(e ) = 0. 9: end for 10: Output: q t (e).

Performance of the EXP3-OE Algorithm

In this section, we present an upper-bound of the expected regret achieved by the EXP3-OE algorithm in the SOPPP. For the sake of brevity, with d t (p) defined in (1), for any t ∈ [T ] and e ∈ E, we denote:

r t (e) := p e d t (p) and Q t := e∈E r t (e) (q t (e) + β). (3) 
Intuitively, r t (e) is the probability that the chosen path at stage t contains an edge e and Q t is the summation over all the edges of the ratio of this quantity and the probability that the loss of an edge is revealed (plus β). We can bound the expected regret with this key term Q t . Theorem 3.1. The expected regret of the EXP3-OE algorithm in the SOPPP satisfies:

R T ≤ ln(|P|) η + β + (n • η) 2 • t∈[T ] Q t . (4) 
The proof of Theorem 3.1 is given in Appendix C and has an approach similar to [START_REF] Noga Alon | From bandits to experts: A tale of domination and independence[END_REF][START_REF] Cesa | Combinatorial bandits[END_REF] with several necessary adjustments to handle the new biased loss estimator in EXP3-OE. To see the relationship between the structure of the side-observations of the learner and the bound of the expected regret, we look for the upper-bounds of Q t in terms of the observation graphs' parameters. Let α t be the independence number 5 

SATISFIES (A0) NOT SATISFIES (A0) SYMMETRIC αt nαt NON-SYMMETRIC 1+2αtNt 2n (1+αtKt)
A proof of this theorem is given in Appendix E. The main idea of this proof is based on several graph theoretical lemmas that are extracted from [START_REF] Noga Alon | From bandits to experts: A tale of domination and independence[END_REF][START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF][START_REF] Mannor | From bandits to experts: On the value of side-observations[END_REF]. These lemmas establish the relationship between the independence number of a graph and the ratios of the weights on the graph's vertices that have similar forms to the key-term Q t . The case where observation graphs are non-symmetric and do not satisfy assumption (A0) is the most general setting. Moreover, as showed in Theorem 3.2, the bounds of Q t are improved if the observation graphs satisfy either the symmetry condition or assumption (A0). Intuitively, given the same independence numbers, a symmetric observation graph gives the learner more information than a non-symmetric one; thus, it may yield a better bound on Q t and the expected regret. On the other hand, assumption (A0) is a technical assumption that allows the use of different techniques in the proofs to obtain better bounds. These cases have not been analyzed in the literature while they are satisfied by several practical situations, including the CB and HS games (see Section 4).

Finally, we give results on the order of the upper-bounds of the expected regret, obtained by the EXP3-OE algorithm, presented as a corollary of Theorems 3.1 and 3.2. Corollary 3.3. In SOPPP, let α be an upper bound of α t , ∀t ∈ [T ]. With appropriate choices of the parameters η and β, the expected regret of the EXP3-OE algorithm is:

(i) R T ≤ Õ(n T α ln(|P|)) in the general cases. (ii) R T ≤ Õ( nT α ln(|P|) if assumption (A0) is satisfied by the observation graphs G O t , ∀t ∈ [T ].
The choices of the parameters β and η (which are non-trivial in the cases where the observation graphs are non-symmetric) that yield these results will be given in Appendix F. We also note that a trivial upper-bound of α t is the number of vertices of the graph G O t which is E (the number of edges in G). In general, the more connected G O t is, the smaller α may be chosen; and thus the better upper-bound of the expected regret. In the (classical) semi-bandit setting, α t = E, ∀t ∈ [T ] and in the full-information setting, α t = 1, ∀t ∈ [T ]. Finally, we also note that, if |P| = O(exp(n)) (this is typical in practice, including the CB and HS games), the bound in Corollary 3.3-(i) matches in order with the bounds (ignoring the logarithmic factors) given by the FPL-IX algorithm (see [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF]). On the other hand, the form of the regret bound provided by the EXP3-IX algorithm (see [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF]) does not allow us to compare directly with the bound of EXP3-OE in the general SOPPP. In [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF], EXP3-IX is only analyzed when n = 1, i.e., |P| = E; in this case, we observe that the bound given by our EXP3-OE algorithm is better than that of EXP3-IX (by some multiplicative constants).

Colonel Blotto Games and Hide-and-Seek Games as SOPPP

Given the regret analysis of EXP3-OE in SOPPP, we now return to to our main motivation, the Colonel Blotto and the Hide-and-Seek games, and discuss how to apply our findings to these games. To address this, we define formally the online version of the games and show how these problems can be formulated as SOPPP in Sections 4.1 and 4.2, then we demonstrate the benefit of using the EXP3-OE algorithm for learning in these games (Section 4.3).

Colonel Blotto Games as an SOPPP

The online Colonel Blotto game. This is a game between a learner and an adversary over n ≥ 2 battlefields within a time horizon T > 0. Each battlefield i ∈ [n] has a value b t (i) > 0 (unknown to the learner) at stage t such that n i=1 b t (i) = 1. At stage t, the learner needs to distribute k troops (k ≥ 1 is fixed) towards the battlefields while the adversary simultaneously allocate hers. The learner's strategy set is S k,n := {x ∈ N n : n i=1 x(i) = k}. At stage t and battlefield i ∈ [n], if the adversary's allocation is strictly larger than the learner's allocation, the learner loses this battlefield and she suffers the loss b t (i); if they have tie allocations, she suffers the loss b t (i)/2; otherwise, she wins and suffers no loss. At the end of stage t, the learner observes the loss from each battlefield (and which battlefield she wins, ties, or loses) but not the adversary's allocations. The learner's loss at each time is the sum of the losses from all the battlefields. The objective of the learner is then to minimize her loss over a finite period of time.

While this problem can be formulated as a standard OCOMB, it is difficult to derive an efficient learning algorithm under that formulation, due to the learner's exponentially large set of strategies that she can choose from per stage. Instead, we show that by reformulating the problem as an SOPPP, we will be able to exploit the advantages of the EXP3-OE algorithm to solve it. To do so, first note that the learner can deduce several side-observations as follows: (i) if she allocates x t (i) troops to battlefield i and wins, she knows that if she had allocated more than x t (i) troops to i, she would also have won; (ii) if she knows the allocations are tie at battlefield i, she knows exactly the adversary's allocation to this battlefield and deduce all the losses she might have suffered if she had allocated differently to battlefield i; (iii) if she allocates x t (i) troops to battlefield i and loses, she knows that if she had allocated less than x t (i) to battlefield i, she would also have lost. Now, to cast the CB game as SOPPP, for each instance of the parameters k and n, we create a DAG G := G k,n such that the strategy set S k,n has a one-to-one correspondence to the paths set P of G k,n . The formal definition of G k,n will be given in Appendix G; due to the lack of space, we only present here an example illustrating the graph of an instance of the CB game in Figure 1-(a). The graph

G k,n has E = O(k 2 n) edges and |P| = |S k,n | = Ω 2 min{n-1,
k} paths while the length of every path is n. Each edge in G k,n corresponds to allocating a certain amount of troops to a battlefield. Therefore, the CB game model is equivalent to a PPP where at each stage the learner chooses a path in G k,n and the loss on each edge is generated from the allocations of the adversary and the learner (corresponding to that edge) according to the rules of the game. At stage t, the (semi-bandit) feedback and the side-observations6 deduced by the learner as described above infers an observation graph G O t . This formulation indeed transforms any CB game into an SOPPP.

Note that since there are edges in G m,n that refer to the same allocation (e.g., the edges 5, 9, 12, and 14 in G 3,3 all refer to allocating 0 troops to battlefield 2), in the observation graphs, the vertices corresponding to these edges are always connected. Therefore, an upper bound of the independence number α t of G O t in the CB game is α CB = n(k + 1) = O(nk). Moreover, we can verify that the observation graph G O t of the CB game satisfies assumption (A0) for any t and it is non-symmetric.

Battlefield 1

Battlefield 2

Battlefield n = 3 

Hide-and-Seek Games as an SOPPP

The online Hide-and-Seek game. This is a repeated game (within the time horizon T > 0) between a hider and a seeker. In this work, we consider that the learner plays the role of the seeker and the hider is the adversary. There are k locations, indexed from 1 to k. At each stage t, the learner sequentially chooses n locations, called an n-search, to seek for the hider, that is, she chooses an x t ∈ [k] n (if x t (i) = j, we say that location j is her i-th move). The hider maliciously assigns losses on all k locations (intuitively, these losses can be the wasted time supervising a mismatch location or the probability that the hider does not hide there, etc.). In this work, we consider the following condition on how the hider/adversary assigns the losses on the locations.

(C1) At stage t, the adversary secretly assigns a loss b t (j) to each location j ∈ [k] (unknown to the learner). These losses are fixed throughout the n-search of the learner.

The learner's loss at stage t is the sum of the losses from her chosen locations in the n-search at stage t, that is i∈[n],j∈[k] I {xt(i)=j} b t (j). Moreover, often in practice the n-search of the learner needs to satisfy some constraints. In this work, as an example, we use the following constraint:

|x t (i) -x t (i + 1)| ≤ κ, ∀i ∈ [n] for a fixed κ ∈ [0, k -1]
(called the coherence constraint), i.e., the seeker cannot search too far away from her previously chosen location. 7 At the end of stage t, the learner only observes the losses from the locations she chose among her n-search, and her objective is to minimize her total loss over T .

Similar to the case of the CB game, tackling the HS game as a standard OCOMB is computationally involved. As such, we follow the SOPPP formulation instead. In particular, knowing that the adversary follows condition (C1), the learner can deduce the following side-observations: within a stage, the loss at each location remains the same no matter when it is chosen among the n-search; that is, knowing the loss of choosing location j as her i-th move, the learner knows all the loss if she chooses location j as her i -th move for any i = i. Given this, we create a DAG G := G k,n,κ whose paths set has a one-to-one correspondence to the set containing all feasible n-search of the learner in the HS game with k locations under κ-coherent constraint. A formal definition of G k,n,κ is given in Appendix G. The HS game is equivalent to the PPP where the learner chooses a path in G k,n,κ and edges' losses are generated by the adversary at each stage (note that to ensure all paths end at d, there are n auxiliary edges in G k,n,κ that are always embedded with 0 losses). Figure 1-(b) illustrates the corresponding graph of an instance of the HS game. We note that there are E = O(k 2 n) edges and |P| = Ω(κ n-1 ) paths in G k,n,κ .

The semi-bandit feedback and side-observations as described above generate an observation graph G O t at time t (e.g., in Figure 1-(b), the edges 1, 4, 6, 11, and 13 represent that location 1 is chosen; thus, they mutually reveal each other). The independence number of G O t is α HS = k for any t. We note that the observation graphs of the HS game are symmetric and do not satisfy assumption (A0). Finally, we consider a relaxation of condition (C1):

(C2) At stage t, the adversary assigns a loss b t (j) on each location j ∈ [k]. For i = 2, . . . , n, after the learner chooses, say location j i , as her i-th move, the adversary can observe that and change the losses b t (j) for any location that has not been searched before by the learner,8 i.e., she can change the losses b t (j), ∀j / ∈ {j 1 , . . . , j i }.

By replacing condition (C1) with condition (C2), we can limit the side-observations of the learner: she can only deduce that if i 1 < i 2 , the edges in G k,n,κ representing choosing a location as the i 1 -th move reveals the edges representing choosing that same location as the i 2 -th move; but not vice versa.

In this case, the observation graph G O t only contains directed edges; however, its independence number is still α HS = k as in the HS games with condition (C1).

Performance of EXP3-OE in the Colonel Blotto and Hide-and-Seek Games

Having formulated the CB game and the HS game as SOPPPs, we can use the EXP3-OE algorithm to achieve the following results (deduced directly from Corollary 3.3). At a high-level, given the same scale on their inputs, the independence numbers of the observation graphs in HS games are smaller than in CB games (by a multiplicative factor of n). However, since assumption (A0) is satisfied by the observation graphs of the CB games and not by the HS games, the expected regret bounds of the EXP3-OE algorithm in these games have the same order of magnitude. From Corollary 4.1, we note that in the CB games, the order of the regret bounds given by EXP3-OE is better than that of the FLP-IX algorithm (thanks to the fact that (A0) is satisfied). On the other hand, in the HS games with condition (C1) involving symmetric observation graphs, the regret bounds of the EXP3-OE algorithm improves the bound of FPL-IX but they are still in the same order of the games' parameters (ignoring the logarithmic factors). Finally, we compare the regret guarantees given by our EXP3-OE algorithm and by the Online Stochastic Mirror Descent algorithm (henceforth, OSMD; see [START_REF] Audibert | Regret in online combinatorial optimization[END_REF])-the benchmark algorithm for OCOMB with semi-bandit feedback (although OSMD does not run efficiently in general). Applying OSMD to the CB and HS games (as SOPPP), the side-observations are ignored and the expected regret bound guaranteed by OSMD is in O( 

√ T nE) = O( √ T n 2 k 2 ).

Conclusion

In this work, we introduce the EXP3-OE algorithm for the path planning problem with semi-bandit feedback and side-observations. EXP3-OE is always efficiently implementable. Moreover, it matches the regret guarantees compared to that of the FPL-IX algorithm. We apply our findings to derive the first solutions to the online version of the Colonel Blotto and Hide-and-Seek games. This work also extends the scope of application of the PPP model in practice, even for large instances.

A Weight Pushing for Path Sampling

We re-visit some useful results in the literature. In this section, we consider a DAG G with parameters as introduced in Section 2. For simplicity, we assume that each edge in E belongs to at least one path in P. Let us respectively denote by C(u) and F (u) the set of the direct successors and the set of the direct predecessors of any vertex u ∈ V. Moreover, let e [u,v] and P u,v respectively denote the edge and the set of all paths from vertex u to vertex v. Let us consider a weight w(e) > 0 for each edge e ∈ E. It is needed in the EXP3-OE algorithm to sample a path p ∈ P with the probability:

d(p) := e∈p w(e) p∈P e∈p
w(e) .

A direct computation and sampling from d t (p), ∀p ∈ P takes O(|P|) time which is very inefficient.

To efficiently sample the path, we first label the vertices set by V = {s = u 0 , u 1 , . . . , d = u K } such that if there exists an edge connecting u i to u j then i < j. We then define the following terms for each vertex u ∈ V: Intuitively, H(u, v) is the aggregate weight of all paths from vertex u to vertex v and H(s, d) is exactly the denominator in [START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF]. These terms H(s, u) and H(u, d), ∀u ∈ V can be recursively computed by Algorithm 3 that runs in O(E) time, through dynamic programming. This technique is called weight pushing and can be found in [START_REF] György | The on-line shortest path problem under partial monitoring[END_REF][START_REF] Sakaue | Efficient bandit combinatorial optimization algorithm with zero-suppressed binary decision diagrams[END_REF][START_REF] Takimoto | Path kernels and multiplicative updates[END_REF].

H(
Algorithm 3 Weight Pushing.

1: Input: Graph G, set of weights {w(e), e ∈ E}.

2: Initialization H(s, u 0 ) := H(u K , d) := 1. 3: for k = 1 to K do 4: H(u K-k , d) := v∈C(u K-k ) w(e [u K-k ,v] )H(v, d).
5:

H(s, u k ) := v∈F (u k )
w(e [v,u k ] )H(s, v). Proof. Fixing an edge e ∈ E, we prove that when Algorithm 2 takes the edges weights {w t (e), e ∈ E} as the input, it outputs exactly q t = p∈Ot(e) d t (p). We note that if e ∈ R t (e) := {e : e → e}, then {p ∈ P : p e } ⊂ O t (e).

We denote |R t (e)| = ρ e and label the edges in the set R t (e) by {e 1 , e 2 , . . . , e ρe }. We let the for-loop in lines 3-8 of Algorithm 2 consecutively run with the edges in R t (e) as follows:

(i) After the for-loop runs for e 1 , we have K(e 1 ) := p e1 ē∈p w(ē) = p e1 w t (p); therefore, q t (e) = p e1 d t (p) since H(s, d) = p∈P w t (p) computed from the original weights w t (ē), ē ∈ E. Due to line 8 that sets w(e 1 ) := 0, henceforth in Algorithm 2, the weight w(p) := e∈p w(e) of any path p that contains e 1 is set to 0.

(ii) Let the for-loop run for e 2 , we have K(e 2 ) := p e2 w(p) = {p e2}\{p e1} w t (p) because any path p e 1 has the weight w(p) = 0. Therefore, q t (e) = p e1 d t (p) + {p e2}\{p e1} d t (p).

(iii) Similarly, after the for-loop runs for e i (where i ∈ {3, . . . , ρ e }), we have:

q t (e) = i k=1     {p e k }\ j<k {p ej } d t (p)     .
(iv) Therefore, after the for-loop finishes running for every edge in R t (e); we have q t := p∈Ot(e) d t (p) where each term d t (p) was only counted once even if p contains more than one edge that reveals the edge e.

C Proof of Theorem 3.1

Theorem 3.1. The expected regret of the EXP3-OE algorithm in the SOPPP satisfies:

R T ≤ ln(|P|) η + β + (n • η) 2 • t∈[T ] Q t . (4) 
Proof. We first denote9 W t := p∈P w t (p), ∀t ∈ [T ]. From line 9 of Algorithm 1, we trivially have:

w t+1 (p) = w t (p) • exp(-η Lt (p)), ∀p ∈ P, ∀t ∈ [T -1]. (6) 
Here, we recall Lt (p) := e∈p ˆ t (e), then from (2), we have:

E t Lt (p) ≤ L t (p) := e∈p t (e), ∀p ∈ P. (7) 
Under the condition that 0 < η, we obtain:

W t+1 W t = p∈P w t+1 (p) W t = p∈P w t (p) • exp(-η Lt (p)) W t = p∈P d t (p) • exp(-η Lt (p))) ≤ p∈P d t (p) 1 -η Lt (p) + η 2 2 ( Lt (p)) 2 = 1 - p∈P d t (p) η Lt (p) - η 2 2 ( Lt (p)) 2 . (8) 
Here, the second equality comes from (6) and the inequality comes from the fact that exp(-x) ≤ 1 -x + x 2 /2 for x := η Lt (p) ≥ 0. From (8) and the inequality ln(1 -y) ≤ -y for any y < 1, we have the following inequality:10 

ln W T +1 W 1 = T t=1 ln W t+1 W t ≤ T t=1   -η p∈P d t (p) Lt (p)+ η 2 2 p∈P d t (p)( Lt (p)) 2   . (9) 
On the other hand, let us fix a path p * ∈ P, then

ln W T +1 W 1 ≥ ln w T +1 (p * ) W 1 = ln w T (p * ) exp(-η LT (p * )) |P| = ln w T-1 (p * ) exp(-η LT (p * )-η LT -1 (p * )) |P| = -η T t=1 Lt (p * ) -ln(|P|). (10) 
In the arguments leading to [START_REF] Blocki | Audit games[END_REF], we again use [START_REF] Behnezhad | Faster and simpler algorithm for optimal strategies of Blotto game[END_REF] and the fact that w 1 (p) = 1, ∀p ∈ P, including w 1 (p * ). Therefore, combining ( 9) and ( 10) then dividing both sides by η, we have that

T t=1 p∈P d t (p) Lt (p) ≤ ln(|P|) η + T t=1 Lt (p * ) + η 2 T t=1 p∈P d t (p)( Lt (p)) 2 . (11) 
Now, we take the expectation E t w.r.t. to the randomness in choosing pt on ( 11), then we apply [START_REF] Besson | What doubling tricks can and can't do for multi-armed bandits[END_REF] to obtain:

T t=1 p∈P d t (p)E t [ Lt (p)] ≤ ln(|P|) η + T t=1 L t (p * ) + η 2 T t=1 p∈P d t (p)E t [ Lt (p) 2 ]. (12) 
Now, we look for a lower bound of p∈P d t (p)E t Lt (p) . For any fixed p ∈ P, we consider:

E t e∈p ˆ t (e) = p∈P d t (p) e∈p t (e) q t (e)+β I {e∈Ot(p)} = e∈p p∈O(e)
d t (p) t (e) q t (e) + β = e∈p q t (e) t (e) q t (e) + β .

On the other hand, applying [START_REF] Cesa | Combinatorial bandits[END_REF] and recalling that t (e) ≤ 1, ∀e ∈ E, we have:

p∈P d t (p)E t Lt (p) - p∈P d t (p)L t (p) = p∈P d t (p) e∈p q t (e) t (e) q t (e) + β - p∈P d t (p) e∈p t (e) = p∈P d t (p) e∈p t (e) q t (e) q t (e) + β -1 ≥ - p∈P d t (p) e∈p β q t (e) + β = -β e∈E p e d t (p) q t (e) + β = -βQ t . (14) 
Now, we look for an upper bound of p∈P d t (p)E t Lt (p) 2 . To do this, we fix p ∈ P and consider

E t Lt (p) 2 = E t e∈p ˆ t (e) 2 ≤n • E t e∈p ˆ t (e) 2 =n • p∈P d t (p) e∈p t (e) q t (e) + β I {e∈Ot(p)} 2 13 ≤n • e∈p p∈Ot(e) d t (p) 1 (q t (e) + β) 2 =n • e∈p q t (e) 1 (q t (e) + β) 2 ≤n • e∈p 1 q t (e) + β . (15) 
The first inequality comes from applying Cauchy-Schwarz inequality. The second inequality comes from the fact that t (e) ≤ 1 and the last inequality comes from q t (e) ≤ q t (e) + β since β > 0.

Now, applying [START_REF] Hui | Colonel Blotto in web security[END_REF], we can bound

p∈P d t (p)E t Lt (p) 2 ≤n • p∈P d t (p) e∈p 1 q t (e) + β =n • e∈E p e d t (p) 1 q t (e) + β =n • e∈E r t (e) q t (e) + β = n • Q t . (16) 
Here, we recall the notation r t (e) and Q t defined in (3). Replacing ( 14) and ( 16) into ( 12), we have that the following inequality holds for any p * ∈ P.

T t=1 p∈P d t (p)L t (p) - T t=1 βQ t - T t=1 L t (p * ) ≤ ln(|P|) η + η 2 T t=1 nQ t ⇒R T ≤ ln(|P|) η + T t=1 Q t n η 2 +β .

D Lemmas on Graphs' Independence Numbers

In this section, we present some lemmas in graph theory that will be used in the next section to prove Theorem 3.2. Consider a graph G whose vertices set and edges set are respectively denoted by Ṽ and Ẽ. Let α be its independence number.

Lemma D.1. Let G be an directed graph and I v be the in-degree of the vertex v ∈ Ṽ,

then v∈ Ṽ [1/(1 + I v )] ≤ 2α ln 1 + | Ṽ|/α .
A proof of this lemma can be found in Lemma 10 of [START_REF] Noga Alon | From bandits to experts: A tale of domination and independence[END_REF].

Lemma D.2. Let G be a directed graph with self-loops and consider the numbers k(v) ∈ [0, 1], ∀v ∈ Ṽ such that there exists γ > 0 and v∈ Ṽ k(v) ≤ γ. For any c > 0, we have

v∈ Ṽ k(v) 1 γ v →v k(v )+c ≤ 2γ α ln 1+ γ | Ṽ| 2 /c + | Ṽ| α +2γ.
A proof of this lemma can be found in Lemma 1 of [START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF].

Lemma D.3. Let G be an undirected graph with self-loops and consider the numbers k(v) ≥ 0, v ∈ Ṽ. We have

v∈ Ṽ k(v) v →v k(v ) ≤ α.
This lemma is extracted from Lemma 3 of [START_REF] Mannor | From bandits to experts: On the value of side-observations[END_REF]. Let us denote the discretized version of r t (e) by rt (e) := p e dt (p). We deduce that r t (e) ≤ rt (e) and We obtain the bound: We now consider the following inequality: If a, b ≥ 0 and a + b ≥ B > A > 0, then

Q t = e∈E r t (e)
a a + b -A ≤ a a + b + A B -A . (20) 
A proof of this inequality can be found in Lemma 12 of [START_REF] Noga Alon | From bandits to experts: A tale of domination and independence[END_REF]. Applying (20) 12 

The last inequality comes from the fact that We observe that the independence number α t of G O t is equal to the independence number of G * t . Moreover, the in-degree of each vertex k ∈ (e) in the graph G * t is: 

E M β-E ≤ E 2E 2 -E ≤ 1 2E-1 ≤ 1 E ,
I * k = M rt (e)-1+
Let us denote V * t the set of all vertices in G * t , then we have: 12 Trivially, we can verify that a + b ≥ B and B > A comes from the fact that β

≥ β 1 E > E 2E 2 /β .
Case 1: Non-symmetric (i.e. directed) observation graphs that do not satisfy assumption (A0).

We find the parameters β and η such that R t ≤ Õ n √ T α . We note that α t ≥ 1, ∀t ∈ [T ]; therefore, recalling that α is an upper bound of α t , from Theorem 3.1 and 3.2, we have:

R T ≤ ln(|P|) η + T t=1 n η 2 +β 2n 1+α t ln 1+ nM +E α t ≤ ln(|P|) η +T n η 2 +β 2n [1 + α ln (α+nM +E)] = ln(|P|) η + ηT n 2 [1 + α ln (α + nM + E)] + 2βT n [1 + α ln (α + nM + E)] . (24) 
Recalling that M := 2E 2 /β , by choosing any

β ≤ 1/ T n[1 + α ln(α + n E 2 /β + E)], (25) 
and

η = ln |P|/ n 2 T [1 + α ln (α + n E 2 /β + E)],
we obtain the bound:

R T ≤2n T ln |P| • [1 + α ln(α + nM + E)] + 2 T n[α + α ln(α + nM + E)] (26) 
≤ Õ n T α ln(|P|) .

In practice, as long as it satisfies [START_REF] Kovenock | Coalitional Colonel Blotto games with application to the economics of alliances[END_REF], the larger β is, the better upper-bounds that EXP3-OE gives. Finally, as an example that ( 25) always has at least one solution, we now prove that it holds with

β * = -T n 2 E 2 + (T n 2 E 2 ) 2 +4T n(1+α ln α+E +n) 2T n(1+α ln α+E +n) . (27) 
Indeed, β * > 0 and it satisfies:

β * 2 • T n(1 + α ln α + E + n) + β * T n 2 E 2 = 1. ⇒β * 2 • T n(1 + α ln α + E) + β * 2 T n 2 E 2 β * + 1 = 1 ⇒β * 2 • T n(1 + α ln α + E) + β * 2 T n 2 E 2 β * ≤ 1 ⇒β * ≤ 1 T n (1 + α ln α + E + nM ) .
On the other hand, applying the inequality ln(1 + x) ≤ x, ∀x ≥ 0, we have:

nM + E α ≥ ln 1 + nM + E α ⇒ nM + E α + ln α ≥ ln(α + nM + E) ⇒nM + E + α ln α + 1 ≥ α ln(α + nM + E) + 1 ⇒ 1 T n (1+αln α+nM +E) ≤ 1 
T n (αln (α+nM +E)+1) .

Therefore, β * satisfies (25).

Case 2: non-symmetric observation graphs G O t satisfying assumption (A0), ∀t. We will prove that R T ≤ Õ nT α ln(|P|) for any

β ≤ 1/ T α[1 + 2 ln (1 + E 2 /β + E)], (28) 
η = 2 ln |P|/ T nα [1 + 2 ln (α + M + E)]. (29) 
Indeed, from Theorem 3.1 and 3.2, we have:

R T ≤ ln(|P|) η + T t=1 n η 2 +β 1+2α t ln 1+ M +E α t ≤ ln(|P|) η + T t=1 n η 2 +β [α + 2α ln (1 + M + E)] = ln(|P|) η + ηT α n 2 [1 + 2 ln (1 + M + E)] + βT α [1 + 2 ln (1 + M + E)] . (30) 
We replace ( 28) and ( 29) into ( 30) and obtain:

R T ≤ 3 2 T nα [1 + 2 ln (1 + M + E)] • ln |P| + T α [1 + 2 ln (1 + M + E)]. (31) 
≤ Õ nαT ln(|P|) .

A choice for β that satisfies (28) is

β * := -T αE 2 + (T αE 2 ) 2 +T α(3 + 2E) T α(3 + 2E) . ( 32 
)
Case 3: symmetric observation graphs that do not satisfy (A0). Trivially, we have that if

β := 1/ √ nαT and η = 2 ln |P|/ √ n 2 αT , then R T ≤ ln |P| η + n η 2 + β nαT = 1 2 n αT ln |P| + n αT ln |P| + √ nαT (33) 
≤ Õ n αT ln(|P|) . (ii) There are directed edges from vertex (0, 0) to every vertex in Layer 1 and edges from every vertex in Layer n -1 to vertex (n, k). For i ∈ {1, 2, . . . , n -2}, there exists an edge connecting vertex (i, j 1 ) (of Layer i) to vertex

(i + 1, j 2 ) (of Layer (i + 1)) if k ≥ j 2 ≥ j 1 ≥ 0. Particularly, G k,n has E = (k + 1) [4+(n-2)(k+2)]/2 = O(nk 2 ) edges and |P| = n+k-1 n-1
= O(2 min{n-1,k} ) paths going from vertex s := (0, 0) to vertex d := (k, n). The edge connecting vertex (i, j 1 ) to vertex (i + 1, j 2 ) for any i ∈ {0, 1, . . . , n -1} represents allocating (j 2 -j 1 ) troops to battlefield i + 1. Moreover, each path from s to d represents a strategy in S k,n . This is formally stated in Proposition G.2. Proposition G.2. Given k and n, there is a one-to-one mapping between the action set S k,n of the learner in the CB game (with k troops and n battlefields) and the set of all paths from vertex s to vertex d of the graph G k,n .

The proof of this proposition is trivial and can be intuitively seen in Figure 1-(a). We note that a similar graph can be found in [START_REF] Behnezhad | Faster and simpler algorithm for optimal strategies of Blotto game[END_REF]; however, it is used for a completely different purpose and it also contains more edges and paths than G k,n (that are not useful in this work).

G.2 The Actions Set of the Hide-and-Seek game

We give a description of the graph corresponding to the actions set of the learner in the HS games with the n-search among k locations and coherence constraints |x t (i) -x t (i + 1)| ≤ κ, ∀i ∈ [n] for a fixed κ ∈ [0, k -1]. Definition G.3 (HS Graph). The graph G k,κ,n is a DAG that contains:

(i) N := 2 + kn vertices arranged into n + 2 layers. Layer 0 and Layer (n + 1), each contains only one vertex, respectively labeled s-the source vertex and d-the destination vertex. Each Layer i ∈ {1, . . . , n} contains k vertices whose labels are ordered from left to right by (i, 1), (i, 2), . . . , (i, k).

(ii) There are directed edges from vertex s to every vertex in Layer 1 and edges from every vertex in Layer n to vertex d. For i ∈ {1, 2, . . . , n -1}, there exists an edge connecting vertex (i, j 1 ) to vertex

(i + 1, j 2 ) if |j 1 -j 2 | ≤ κ.
The graph G k,κ,n has E = 2k+(n-1) [k+κ(2k-κ-1)] = O(nk 2 ) edges and at least Ω(κ n-1 ) paths from s to d. The edges ending at vertex d are the auxiliary edges that are added just to guarantee that all paths end at d; these edges do not represent any intuitive quantity related to the game. For the remaining edges, any edge that ends at the vertex (i, j) represents choosing the location j as the i-th move. In other words, a path starting from s, passing by vertices (1, j 1 ), (2, j 2 ), . . . , (n, j n ) and ending at d represents the n-search that chooses location j 1 , then moves to location j 2 , then moves to location j 3 , and so on. Proposition G.4. Given k, κ and n, there is a one-to-one mapping between the action set S k,κ,n of the learner in the HS game (with n-search among k locations and coherence constraints with parameter κ) and the set of all paths from vertex s to vertex d of the graph G k,κ,n .

H EXP3-OE Algorithm versus OSMD Algorithm in the CB and HS Games T nE). From [START_REF] Sakaue | Efficient bandit combinatorial optimization algorithm with zero-suppressed binary decision diagrams[END_REF], the expected regret of EXP3-OE in this case is bounded by O T n(α CB ) ln M ln |P| (recall that α CB = kn is an upper bound of independence numbers of the observation graphs in the CB games). Therefore, to guarantee that this bound is better than the bound of the OSMD algorithm (that is √ 2T nE), the following inequality needs to hold: (iii) Finally, the observation graphs in the HS games with condition (C2) are non-symmetric and do not satisfy assumption (A0). Therefore, if we choose β = β * as in [START_REF] Maria | Strategic resource allocation for competitive influence in social networks[END_REF], then β satisfies [START_REF] Kovenock | Coalitional Colonel Blotto games with application to the economics of alliances[END_REF]. In this case, β = O(1/ √ T nE) and M = O(E 2 √ T nE). Therefore, from [START_REF] Mannor | From bandits to experts: On the value of side-observations[END_REF], in this case, R T is bounded by O(n T α HS ln α HS ln(nM ). Therefore, to guarantee that this bound is better than the bound of OSMD (that is,

O (α CB • ln M ln |P|) ≤ E ⇒O nk • ln (E 2 √ T nE) ln(2 n ) ≤ nk 2 ⇒O ln (E 2 √ T nE) ln(2 n ) ≤ k ⇒O n ln (n 3 k 5 √ T ) ≤ k.

√

2T nE), the following inequality needs to hold:

O (α HS • n ln nM ln |P|) ≤ E ⇒O nk ln (κ n ) ln(nE 2 √ T nE) ≤ nk 2
⇒O n ln κ ln (n 4 k 5 √ T ) ≤ k.

  (a) The graph G3,3 corresponding to the CB game with k = n = 3. E.g., the bold-blue path represents the strategy (0, 0, 3) while the dash-red path represents the strategy (2, 0, 1). 1st-move 2nd move n-th move Auxiliary edges (b) The graph G3,3,1 corresponding to the HS game with k = n = 3 and κ = 1. E.g., the blue-bold path represents the (1, 1, 1) search and the red-dashed path represents the (2, 3, 2) search.

Figure 1 :

 1 Figure 1: Examples of the graphs corresponding to the CB game and the HS game.
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 41 The expected regret of the EXP3-OE algorithm satisfies:(i) R T ≤ Õ( nT α CB ln(|P|)) = Õ( √ T n 3 k) inthe CB games with k troops and n battlefields. (ii) R T ≤ Õ(n T α HS ln(|P|)) = Õ( √ T n 3 k) in the HS games with k locations and n-search.

  Using the parameters β and η chosen for Corollary 3.3 and 4.1 (see Appendix F) in the corresponding cases of the observation graphs, the EXP3-OE algorithm provides a better upper-bound of the expected regret than OSMD in the CB games if O n • ln (n 3 k 5 √ T ) ≤ k; in the HS games with condition (C1) if O(n ln κ) ≤ k; and in the HS games with condition (C2) if n • ln κ ln (n 4 k 5 √ T ) ≤ O(k). A proof of this statement is given in Appendix H.

  s, u) := p∈Ps,u e∈p w(e) and H(u, d) := p∈P u,d e∈p w(e).

6: end for 7 :Algorithm 4 1 : 4 : while u = d do 5 :

 74145 Output: H(s, u), H(u, d), ∀u ∈ V.Based on Algorithm 3, we construct Algorithm 4 that uses the weights w(e), e ∈ E as inputs and randomly outputs a path in P. Intuitively, starting from the root vertex s = u 0 , Algorithm 4 sequentially samples vertices by vertices based on the terms H(u, v) computed by Algorithm 3. It is noteworthy that Algorithm 4 also runs in O(E) time and it is trivial to prove that the probability that a path p is sampled from Algorithm 4 matches exactly d(p). Path-sampling Algorithm. Input: Graph G, set of weights {w(e), e ∈ E}. 2: H(u, d), ∀u ∈ V are computed by Algorithm 3. 3: Initialize Q := {s}, vertex u := s. Sample a vertex v from C(u) with probability w(e [u,v] )H(v, d) H(u, d).

6 :

 6 Add v to the set Q and update u := v. 7: end while 8: Output: p ∈ P going through all the vertices in Q B Proof of Algorithm 2's Output

  that these numbers satisfy e∈E rt(e) = e∈E p e dt(p) = p∈P e∈p dt(p) ≤ p∈P ndt(p) = n.

  with a = rt (e), b = e →e,e =e rt (e ) + β, A = E/M , and B = β to (19), we have

e

  →e,e =e M rt (e ) = e →e M rt (e )-1.

Case 4 :

 4 all observation graphs are symmetric and satisfy (A0). From Theorem 3.1 and 3.2, we trivially have that if β := 1/ √ αT and η = 2 ln |P|/ √ nαT , then R T ≤ Õ nαT ln(|P|) .G Graphical Representation of the Games' Actions Sets G.1 The Actions Set of the Colonel Blotto GamesWe give a description of the graph corresponding to the actions set of the learner in the CB game who distributes k troops to n battlefields. Definition G.1 (CB Graph). The graph G k,n is a DAG that contains:(i) N := 2 + (k + 1)(n-1) vertices arranged into n + 1 layers. Layer 0 and Layer n, each contains only one vertex, respectively labeled s := (0, 0)-the source vertex and d := (n, k)-the destination vertex. Each Layer i ∈ [n -1] contains k + 1 vertices whose labels are ordered from left to right by (i, 0), (i, 1), . . . , (i, k).

( i )

 i As stated in Section 4, the observation graphs in the CB games are non-symmetric and they satisfy assumption (A0). If we choose β = β * as in[START_REF] Schwartz | The heterogeneous Colonel Blotto game[END_REF], then β satisfies[START_REF] Maria | Defensive resource allocation in social networks[END_REF]. Moreover,β = O(1/ √ T nE); thus, M = O(E 2 √

( ii )

 ii As stated in Section 4, the observation graphs in the HS games with condition (C1) are symmetric and do not satisfy assumption (A0). If we choose β = 1/ √ nαT then by[START_REF] Takimoto | Path kernels and multiplicative updates[END_REF], we have that R T is bounded by O n α HS T ln |P| (recall that α HS = k is an upper bound of the independence numbers of the observation graphs in the HS games). Therefore, to guarantee that this bound is better than the bound of the OSMD algorithm in HS games, the following inequality needs to hold:O (α HS • n ln |P|) ≤ E ⇒O (k • n ln |P|) ≤ nk 2 ⇒O (ln |P|) ≤ k ⇒O (n ln κ) ≤ k.

  On the other hand, let us introduce two new notations: O t (e) := {p ∈ P : ∃e ∈ p, e → e} , ∀e ∈ E and O t (p) := {e ∈ E : ∃e ∈ p, e → e} , ∀p ∈ P. Intuitively, O t (e) is the set of all paths that, if chosen, reveal the loss on the edge e and O t (p) is the set of all edges whose losses are revealed if the path p is chosen. Trivially, p ∈ O(e) ⇔ e ∈ O(p). Moreover, due to the semi-bandit feedback, if p * e * , then p * ∈ O t (e * ) and e * ∈ O t (p * ).

	On the other hand, all vertices in G O t always have t , t ∈ [T ] contains any other edge than these self-loops, self-loops. In the case where none among G O
	no side-observation is allowed and the problem is reduced to the classical semi-bandit setting. If all
	G O t , t ∈ [T ] are complete graphs, SOPPP corresponds to the full-information PPPs. In this work, we focus on considering the uninformed setting, i.e., the learner observes G O t only after making a decision at time t.

  Suffer the loss L t (p t ) = e∈p t t (e).

	1: Input: T , η, β > 0, graph G.
	2: Initialize w 1 (e) := 1, ∀e ∈ E.
	3: for t = 1 to T do
	4:	Loss vector t is chosen adversarially (unobserved).
	5:	Sample a path pt according to d t (p t ) by Algo-
		rithm 4 (Appendix A).
	6:	
	7:	Observation graph G O

t is generated and t (e), ∀e ∈ O t (p t ) are observed. 8: ˆ t (e) := t(e) qt(e)+β I {e∈Ot(p t )} , ∀e ∈ E, where q t (e) := p∈Ot(e) d t (p) is computed by Algorithm 2. 9: Update weights w t+1 (e) := w t (e) • exp(-η ˆ t (e)). 10: end for E t ˆ t (e) = p∈P d t (p) t (e) q t (e)+β I {e∈Ot(p)} = p∈Ot(e) d t (p) t (e) p∈Ot(e) d t (p)+β ≤ t (e), ∀e ∈ E. (2)

  of G O t , we have the following statement. Theorem 3.2. Let us denote M := 2E 2 /β , N t := ln 1+ M+E

	αt	and K t := ln 1+ nM+E αt	, Upper-
	bounds of Q		

t in different cases of G O t are given in the following table:

  E Proof of Theorem 3.2 Theorem 3.2. Let us denote M := 2E 2 /β , N t := ln 1+ M+E Fixing an edge e, due to the fact that n is the length of the longest paths in P, we have If G O t is a non-symmetric (i.e., directed) graph, we apply Lemma D.2 with γ = n, c = β on the graph G = G O t (whose vertices set Ṽ corresponds to the edges set E of G) and the numbers 11 k(v e ) = r t (e), ∀v e ∈ Ṽ (i.e., ∀e ∈ E). We obtain the following inequality: If G O t is a symmetric (i.e. undirected) graph, we apply Lemma D.3 with the graph G = G O t (whose vertices set Ṽ corresponds to the edges set E of the graph G) and the numbers k(v e ) = r t (e), ∀v e ∈ Ṽ (i.e., ∀e ∈ E) to obtain: Under this assumption, q t (e) = e →e r t (e ) due to the definition of O t (e). Therefore, Q t = e∈E r t (e) ( e →e r t (e ) + β) . If G O t is a non-symmetric (i.e., directed) graph. We consider a discretized version of d t (p) for any path p ∈ P that is dt (p) := k/M where k is the unique integer such that (k -1)/M ≤ d t (p) ≤ k/M ; thus, dt (p) -1/M ≤ d t (p) ≤ dt (p).

										αt	and K t := ln 1+ nM+E αt	, Upper-
	bounds of Q t in different cases of G O t are given in the following table:
								SATISFIES (A0) NOT SATISFIES (A0)
	SYMMETRIC				αt	nαt
	NON-SYMMETRIC	1+2αtNt	2n (1+αtKt)
	Case 1: G O t does not satisfy assumption (A0). nq t (e) = n d t (p) ≥	d t (p)=	r t (e )	(17)
						p∈Ot(e)			e →e p e	e →e
		⇒ Q t =	e∈E	r t (e) q t (e)+β	≤	e∈E	1 n	r t (e) e →e r t (e )+β	.	(18)
	Case 1.1: e∈E	1 n	r t (e) e →e r t (e )+β	≤ 2nα t ln 1+	n E 2 /β +E α t	+ 2n.
	Case 1.2: e∈E	1 n	r t (e) e →e r t (e )+β	≤ n	e∈E	e →e r t (e) r t (e )	≤ nα t .
	Case 2: G O t satisfies assumption (A0). Case 2.1:		

  ∀E ≥ 1. Finally, we create an auxiliary graph G * t such that: (i) Corresponding to each edge e in G (i.e., each vertex v e in G O t ), there is a clique, called C(e), in the auxiliary graph G * t with M rt (e) ∈ N vertices. (ii) In each clique C(e) of G * t , all vertices are pairwise connected with length-two cycles. That is, for any k, k ∈ C(e), there is an edge from k to k and there is an edge from k to k in G * t . (iii) If e → e , i.e., there is an edge in G O t connecting v e and v e ; then in G * t , all vertices in the clique C(e) are connected to all vertices in C(e ).

  Here, the second equality comes from the fact that |C(e)| = M rt (e) and[START_REF] Kalai | Efficient algorithms for online decision problems[END_REF]. The inequality is obtained by applying Lemma D.1 to the graph G * t and the fact that|V * t | = e∈E M rt (e) ≤ M e∈E (r t (e)+1/M ) ≤ E +M . In conclusion, combining[START_REF] Hespanha | Probabilistic pursuit-evasion games: A one-step nash approach[END_REF] and[START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF], we obtain the regret-upper bound as given in Theorem 3.2 for this case of the observation graph. and the numbers k(v e ) = r t (e) to obtain thatQ t ≤ e∈E r t (e)e →e r t (e ) ≤ α t .In this section, we suggest a choice of β and η that guarantees the expected regret given in Corollary 3.3. Corollary 3.3. In SOPPP, let α be an upper bound of α

						1	
						I * k +1	
	=	t k∈V *	1 Ĩk + 1	≤ 2α t ln 1 +	M + E α t	.	(23)
	Case 2.2: Finally, if G O t ply Lemma D.3 to the graph G = G O is a symmetric (i.e., undirected) graph, we again ap-t
	F Parameters Tuning for EXP3-OE: Proof of Corollary 3.3	

t , ∀t ∈ [T ]. With appropriate choices of the parameters η and β, the expected regret of the EXP3-OE algorithm is: (i) R T ≤ Õ(n T α ln(|P|)) in the general cases. (ii) R T ≤ Õ( nT α ln(|P|) if assumption (A0) is satisfied by the observation graphs G O t , ∀t ∈ [T ].

The regret is the difference between the learner's cumulative loss and that of the best action in hindsight.

The observation graphs, proposed in[START_REF] Kocák | Efficient learning by implicit exploration in bandit problems with side observations[END_REF] and used here for SOPPP, extend the side-observations model for multi-armed bandits problems studied by[START_REF] Noga Alon | Online learning with feedback graphs: Beyond bandits[END_REF][START_REF] Noga Alon | From bandits to experts: A tale of domination and independence[END_REF][START_REF] Mannor | From bandits to experts: On the value of side-observations[END_REF]. Indeed, they capture side-observations between edges whereas the side-observations model considered in[START_REF] Noga Alon | Online learning with feedback graphs: Beyond bandits[END_REF][START_REF] Noga Alon | From bandits to experts: A tale of domination and independence[END_REF][START_REF] Mannor | From bandits to experts: On the value of side-observations[END_REF] is between actions (i.e., paths in PPPs).

If T is unknown, we can use the doubling trick (see[START_REF] Auer | Gambling in a rigged casino: The adversarial multi-armed bandit problem[END_REF][START_REF] Besson | What doubling tricks can and can't do for multi-armed bandits[END_REF]) to get similar results.

The notation Õ is a version of the big-O asymptotic notation that ignores the logarithmic terms.

The independence number of a directed graph is computed while ignoring the direction of the edges.

E.g., in Figure1-(a), if the learner chooses a path going through edge 10 (corresponding to allocating 1 troop to battlefield 2) and wins (thus, the loss at edge 10 is 0), then she deduces that the losses on the edges 6,

[START_REF] Besson | What doubling tricks can and can't do for multi-armed bandits[END_REF][START_REF] Bhattacharya | Surveillance for security as a pursuit-evasion game[END_REF][START_REF] Blocki | Audit games[END_REF][START_REF] Borel | La théorie du jeu et les équations intégrales à noyau symétrique[END_REF], and 13 (corresponding to allocating at least 1 troop to battlefield 2) are all 0. 7 Our results can be applied to HS games with other constraints, such as xt(i) ≤ xt(i + 1), ∀i ∈ [n], i.e., she can only search forward; or, i∈[n] I {x t (i)=k * } ≤ κ, i.e., she cannot search a location k * ∈ [k] more than κ times, etc.

An interpretation is that by searching a location, the learner/seeker "discovers and secures" that location; therefore, the adversary/hider cannot change her assigned loss at that place.

We recall that wt(p) := e∈p wt(e).

We can easily check that η Lt(p)-η 2 Lt(p) 2 /2 < 1 for any η > 0.