
Colonel Blotto Games and Hide-and-Seek Games as
Path Planning Problems with Side Observations

Dong Quan Vu
Nokia Bell Labs France
AAAIRD department

Patrick Loiseau
Univ. Grenoble Alpes,

Inria, CNRS Grenoble INP LIG
& MPI-SWS

Alonso Silva
Safran Tech

Signal and Information
Technologies

Long Tran-Thanh
University of Southampton
Electronic and Computer

Science Department

Abstract

Resource allocation games such as the famous Colonel Blotto (CB) and Hide-and-
Seek (HS) games are often used to model a large variety of practical problems,
but only in their one-shot versions. Indeed, due to their extremely large strategy
space, it remains an open question how one can efficiently learn in these games.
In this work, we show that the online CB and HS games can be cast as path plan-
ning problems with side-observations (SOPPP): at each stage, a learner chooses a
path on a directed acyclic graph and suffers the sum of losses that are adversarially
assigned to the corresponding edges; and she then receives semi-bandit feedback
with side-observations (i.e., she observes the losses on the chosen edges plus some
others). Then, we propose a novel algorithm, EXP3-OE, the first-of-its-kind with
guaranteed efficient running time for SOPPP without requiring any auxiliary ora-
cle. We provide an expected-regret bound of EXP3-OE in SOPPP matching the
order of the best benchmark in the literature. Moreover, we introduce additional
assumptions on the observability model under which we can further improve the
regret bounds of EXP3-OE. We illustrate the benefit of using EXP3-OE in SOPPP
by applying it to the online CB and HS games.

1 Introduction

Resource allocation games have been studied profoundly in the literature and showed to be very
useful to model many practical situations, including online decision problems, see e.g. [10, 12,
24, 40]. In particular, two of the most renowned are the Colonel Blotto game (henceforth, CB
game) and the Hide-and-Seek game (henceforth, HS game). In the (one-shot) CB game, two players,
each with a fixed amount of budget, simultaneously allocate their (indivisible) resources on n ∈
N battlefields, each player’s payoff is the aggregate of the values of battlefields where she has a
higher allocation. The scope of applications of the CB games includes a variety of problems; for
instance, in security (e.g., [15, 32]) where resources correspond to security forces, in politics (e.g.,
[25, 30]) for allocating budget to attract voters, and in advertisement (e.g., [27, 28]) for distributing
the broadcasting time. On the other hand, in the (one-shot) HS game, a seeker chooses n among k
locations (n < k) to search for a hider, who randomly chooses to hide in one of the k locations. The
seeker’s payoff is the probability that she finds the hider and the hider’s payoff is the probability that
she successfully escape the seeker’s pursuit. Several variants of the HS games are used to model
surveillance situations [8, 9], anti-jamming problems in telecommunications [29, 37, 38], vehicles
control [16, 34], etc.

Preprint. Under review.

Both the CB games and the HS games have a long-standing history (originated in 1921 [11] and
1953 [35], respectively); however, the results achieved so-far in these games are mostly limited to
their one-shot and full-information version (see e.g., [6, 18, 30, 32, 36] for CB games and [19, 21, 39]
for HS games). On the contrary, in most of the applications (e.g., web security, advertising, telecom-
munications), a more natural setting is to consider the case where the game is played repeatedly
and players have access only to incomplete information at each stage. In this setting, players are
often required to sequentially learn the game on-the-fly and adjust the trade-off between exploiting
known information and exploring to gain new information. Thus, this work focuses on the following
sequential learning problem: at each stage, a learner plays a CB game (resp. HS game); at the end of
the stage, she receives limited feedback that is the gain she obtains from each battlefield (resp. the
hider’s escape probability corresponding to the chosen locations); and her objective is to maximize
her cumulative payoffs. A formal definition of these problems is given in Section 4; hereinafter, we
reuse the term CB game and HS game to refer to this sequential learning version of the games. The
main challenge in those games is that their strategy space is exponential in the natural parameters
(e.g., number of troops and battlefields in the CB game, number of locations in the HS game); hence
how to efficiently learn in these games is an open question.

Our first contribution towards solving this open question is to show that the CB and HS games
can be cast as Path Planning Problems (henceforth, PPP), one of the most well-studied instances of
the Online Combinatorial Optimization framework (henceforth, OCOMB; see [14] for a survey). In
PPPs, given a graph with E edges, at each stage, a learner chooses a path; then a loss in [0, 1] is
adversarially chosen for each edge and the learner suffers the aggregate of edges’ losses belonging
to her chosen path. The learner’s goal is to minimize regret.1 The information that the learner
receives in the CB and HS games as described above straightforwardly corresponds to the so-called
semi-bandit feedback setting of PPPs, i.e., at the end of each stage, the learner observes the edges’
losses belonging to her chosen path. However, the specific structure of the considered games also
allows the learner to deduce (without any extra cost) from the semi-bandit feedback the losses of
some of the other edges that may not belong to the chosen path; these are called side-observations.
Henceforth, we will use the term SOPPP to refer to this PPP under semi-bandit feedback with side-
observations.

SOPPP is a special case of OCOMB with side-observations (henceforth, SOCOMB) studied by [23]
and, following their approach, we will use observation graphs2 (defined in Section 2) to capture the
learner’s observability. In [23], the authors focus on the class of Follow-the-Perturbed-Leader (FPL)
algorithms (originated from [22]) and propose an algorithm named FPL-IX for SOCOMB, which
could be applied directly to SOPPP. However, this faces two main problems: (i) the efficiency of
FPL-IX is only guaranteed with high-probability (as it depends on the geometric sampling technique)
and (ii) it requires that there exists an efficient oracle that solves an optimization problem at each
stage—both of which are incompatible with our goal of learning in the CB and HS games.

In this paper, we focus instead on another prominent class of OCOMB algorithms, called EXP3
[5, 17]. Then, our second contribution is to propose an algorithm for SOPPP that solves both of
the aforementioned issues and provides good regret guarantees. In more details, this contribution is
three-fold: (i) We propose a novel algorithm, EXP3-OE, that is applicable to any instance of SOPPP.
Importantly, EXP3-OE is always guaranteed to run efficiently (i.e., in polynomial time in terms of
the number of edges of the graph in SOPPP) without the need of any auxiliary oracle; (ii) We
prove that EXP3-OE guarantees an upper-bound on the expected regret matching in order with the
best benchmark in the literature (the FPL-IX algorithm). We also prove further improvements under
additional assumptions on the observation graphs that have been so-far ignored in the literature; (iii)
We demonstrate the benefit of using the EXP3-OE algorithm in the CB and HS games.

Our EXP3-OE algorithm is based on the EXP3-IX algorithm [23]. However, EXP3-IX has a very in-
efficient running time in SOCOMB (and particularly in SOPPP) and thus, it is only analyzed by [23]
in the trivial cases of SOCOMB involving only actions with L1-norm that equals to 1 (corresponding
to SOPPP with graphs where all paths have length 1)—the existence of an efficient implementation
of EXP3-type algorithms in SOCOMB is left as an open question in [23]. We address this question in
the particular case of SOPPP as follows. We introduce two main major updates in EXP3-OE. First,
unlike EXP3-IX that uses adaptive implicit exploration scheme, we assume that the time horizon is

1The regret is the difference between the learner’s cumulative loss and that of the best action in hindsight.
2The observation graphs, proposed in [23] and used here for SOPPP, extend the side-observations model

for multi-armed bandits problems studied by [1, 2, 26]. Indeed, they capture side-observations between edges
whereas the side-observations model considered in [1, 2, 26] is between actions (i.e., paths in PPPs).

2

known3 in advance and fix an implicit exploration parameter in the loss estimator of EXP3-OE. This
change reduces the computations and leads to a different parameters tuning scheme with improved
regret bounds compared to EXP3-IX. Second (and the main reason that makes EXP3-OE signifi-
cantly more efficient than EXP3-IX), we use a novel loss estimator, which enables us to efficiently
compute it based on a dynamic-programming technique, called weight pushing. Note that while
weight pushing has been used for efficiently sampling paths from exponentially-updated weights
in several variants of EXP3 (e.g., [20, 31, 33]), the way we apply it to compute the loss estimator
is novel and non-trivial. Finally, note that the SOPPP model (and thus, our proposed EXP3-OE
algorithm) can be applied into many problems beyond the considered games, e.g., auctions, recom-
mendation systems.

Throughout the paper, we use bold symbols to denote vectors, e.g., x ∈ Rn, and x(i) to denote the
i-th element. For any m ≥ 1, the set {1, 2, . . . ,m} is denoted by [m] and the indicator function of
a set A is denoted by IA. For graphs, we write either e∈p or p∋ e to refer that an edge e belongs
to a path p. For the sake of conciseness, we present first our second contribution on the SOPPP in
general and we then return in Section 4 to our first contribution relating to the CB and HS games.

2 Path Planning Problems with Side-Observations (SOPPP) Formulation

As discussed in Section 1, motivated by the CB and HS games, we focus on the path planning
problem with semi-bandit and side-observations feedback (SOPPP) and design an EXP3-type algo-
rithm that always runs efficiently in SOPPP. To do this, we first formally define the SOPPP model
as follows.

SOPPP model. Consider a directed acyclic graph (henceforth, DAG), denoted by G, whose set
of vertices and set of edges are respectively denoted by V and E . Let V := |V| ≥ 2 and E :=
|E| ≥ 1; there are two special vertices, a source and a destination, that are respectively called s
and d. We denote by P the set of all paths starting from s and ending at d. Each path p ∈ P
corresponds to a vector in {0, 1}E (thus, P ⊂ {0, 1}E) where p(e) = 1 if and only if edge e ∈ E
belongs to p. Let n be the length of the longest path in P , that is ‖p‖1 ≤ n, ∀p ∈ P . Given a
time horizon T ∈ N, at each (discrete) stage t ∈ [T], a learner chooses a path p̃t ∈ P . Then, a loss

vector ℓt ∈ [0, 1]E is secretly and adversarially chosen (oblivious from the learner’s decisions). Each
element ℓt(e) corresponds to the scalar loss embedded on the edge e ∈ E . The learner’s incurred

loss is Lt(p̃t) = (p̃t)
⊤ℓt =

∑

e∈p̃t
ℓt(e), i.e., the sum of the losses from all the edges belonging

to p̃t. The learner’s feedback at stage t after choosing p̃t is presented as follows. First, she receives
a semi-bandit feedback, that is, she observes all the edges’ losses ℓt(e), for any e belonging to the
chosen path p̃t. Additionally, each edge e ∈ p̃t may reveal the losses on several other edges. To

represent these side-observations at time t, we consider a graph, denoted GO
t , containing E vertices.

Each vertex ve of GO
t corresponds to an edge e ∈ E of the graph G. There exists a directed edge

from a vertex ve to a vertex ve′ in GO
t if, by observing the edge loss ℓt(e), the learner can also

deduce the edge loss ℓt(e
′) (we also denote this by e → e′ and say that the edge e reveals the

edge e′). The objective of the learner is to minimize the cumulative expected regret, defined as

RT := E
[

∑

t∈[T] L (p̃t)
]

− min
p∗∈P

∑

t∈[T] L (p∗).

Hereinafter, in places where there is no ambiguity, we use the term path to refer to a path in P and
the term observation graphs to refer to GO

t . In general, these observation graphs can depend on the

decisions of both the learner and the adversary. On the other hand, all vertices in GO
t always have

self-loops. In the case where none among GO
t , t ∈ [T] contains any other edge than these self-loops,

no side-observation is allowed and the problem is reduced to the classical semi-bandit setting. If all
GO

t , t ∈ [T] are complete graphs, SOPPP corresponds to the full-information PPPs. In this work,

we focus on considering the uninformed setting, i.e., the learner observes GO
t only after making a

decision at time t. On the other hand, let us introduce two new notations:

Ot(e) :={p ∈ P :∃e′∈p, e′→ e} , ∀e ∈E and Ot(p) :={e ∈E :∃e′ ∈p, e′→ e} , ∀p ∈P .

Intuitively, Ot(e) is the set of all paths that, if chosen, reveal the loss on the edge e and Ot(p) is the
set of all edges whose losses are revealed if the path p is chosen. Trivially, p ∈ O(e) ⇔ e ∈ O(p).
Moreover, due to the semi-bandit feedback, if p∗ ∋ e∗, then p∗ ∈ Ot(e

∗) and e∗ ∈ Ot(p
∗).

Apart from the results for general observation graphs, in this work, we additionally present several
results under two particular assumptions, satisfied by some instances in practice (e.g., the CB and

3If T is unknown, we can use the doubling trick (see [4, 7]) to get similar results.

3

HS games), that provide more refined regret bounds compared to cases that were considered in [23]:
(i) symmetric observation graphs where for each edge from ve to ve′ , there also exists an edge from

ve′ to ve (i.e., if e → e′ then e′ → e); i.e., GO
t is an undirected graph; (ii) observation graphs under

the following assumption (A0) that requires that if two edges belong to a path in G, then they cannot
simultaneously reveal the loss of another edge.

Assumption (A0): For any e ∈ E , if e′ → e and e′′ → e, then ∄p ∈ P : p ∋ e′,p ∋ e′′.

3 EXP3-OE - An Efficient Algorithm for the SOPPP

In this section, we present a new algorithm for SOPPP, called EXP3-OE (OE stands for Observable
Edges), whose pseudo-code is given by Algorithm 1. The guarantees on the expected regret of EXP3-
OE in SOPPP is analyzed in Section 3.2. More importantly, EXP3-OE always runs efficiently in
polynomial time in terms of the number of edges of G; this is discussed in Section 3.1.

As an EXP3-type algorithm, EXP3-OE relies on the average weights sampling where at stage t
we update the weight wt(e) on each edge e by the exponential rule (line 9). For each path p, we
denote the path weight wt(p) :=

∏

e∈p wt(e) and define the following normalized terms, according

to which a path p̃t is sampled at each stage t (see line 5) of the EXP3-OE algorithm:

dt(p) :=
∏

e∈p

wt(e)
/

∑

p′∈P

∏

e′∈p′

wt(e
′)=wt(p)

/

∑

p′∈P

wt(p
′), ∀p ∈ P . (1)

Compared to other instances of the
EXP3-type algorithms, EXP3-OE has
two major differences. First, at each
stage t, the loss of each edge e is es-

timated by ℓ̂t(e) (line 8) based on the
term qt(e) and a parameter β. Intu-
itively, qt(e) is the probability that the
loss on the edge e is revealed from play-
ing the chosen path at t. On the other
hand, the implicit exploration parame-
ter β added to the denominator allows
us to “pretend to explore" in EXP3-OE
without knowing the observation graph
GO

t before making the decision at stage
t (the uninformed setting). Unlike the
standard EXP3 algorithm, the loss esti-
mator used in EXP3-OE is biased, that
is

Algorithm 1 EXP3-OE Algorithm for SOPPP.

1: Input: T , η, β > 0, graph G.
2: Initialize w1(e) := 1, ∀e ∈ E .
3: for t = 1 to T do
4: Loss vector ℓt is chosen adversarially (unob-

served).
5: Sample a path p̃t according to dt(p̃t) by Algo-

rithm 4 (Appendix A).
6: Suffer the loss Lt(p̃t) =

∑

e∈p̃t
ℓt(e).

7: Observation graph GO
t is generated and ℓt(e),

∀e ∈ Ot(p̃t) are observed.

8: ℓ̂t(e) :=
ℓt(e)

qt(e)+β I{e∈Ot(p̃t)}
, ∀e∈E , where

qt(e) :=
∑

p∈Ot(e)

dt(p) is computed by Algorithm 2.

9: Update weights wt+1(e) := wt(e) · exp(−ηℓ̂t(e)).
10: end for

Et

[

ℓ̂t(e)
]

=
∑

p̃∈P

dt(p̃)
ℓt(e)

qt(e)+β
I{e∈Ot(p̃)}=

∑

p̃∈Ot(e)

dt(p̃)
ℓt(e)

∑

p∈Ot(e)

dt(p)+β
≤ℓt(e), ∀e ∈ E . (2)

Here, Et denotes the expectation w.r.t. the randomness of choosing a path at stage t. Second,
unlike standard EXP3 algorithms that keep track and update on the weight of each path, the weight
pushing technique is applied at line 5 (via Algorithm 4 in Appendix A) and line 8 (via Algorithm 2
in Section 3.1) where we work with edges weights instead of paths weights (recall that E ≪ |P|).

3.1 Running Time Efficiency of the EXP3-OE Algorithm

We recall that in order to efficiently sample a path according to dt(p),p ∈ P , follow-
ing the literature, it is useful to compute the terms Ht(s, u) :=

∑

p∈Ps,u

∏

e∈p wt(e) and

Ht(u, d) :=
∑

p∈Pu,d

∏

e∈p wt(e) for any vertex u in G. Intuitively,Ht(u, v) is the aggregate weight

of all paths from vertex u to vertex v at stage t. Then, a path in G is sampled sequentially edge-by-
edge based on these terms Ht. The collection of the computations described above is often referred
to as weight pushing, that can be done in O(E) by exploiting the structure of the graph. We rewrite
this step formally in Appendix A.

The final non-trivial step to efficiently implement EXP3-OE is to compute qt(e), the probability
that an edge e is revealed at stage t, needed in line 8. We note that qt(e) is the sum of |Ot(e)| =

4

O(|P|) terms; therefore, a direct computation is inefficient while a naive application of the weight
pushing technique can easily lead to errors. To compute qt(e), we propose Algorithm 2, a non-
straightforward application of weight pushing, in which we consecutively consider all the edges
e′ ∈ Rt(e) :={e′ ∈E :e′→ e}. Then, we take the sum of the terms dt(p) of the paths p going
through e′ by the weight pushing technique while making sure that each of these terms dt(p) is
only included one time, even if p has more than one edge revealing e (this is a non-trivial step). In
Algorithm 2, we denote by C(u) the set of the direct successors of any vertex u ∈ V . A proof that
Algorithm 2 outputs exactly qt(e) as defined in line 8 of Algorithm 1 can be found in Appendix B.
Algorithm 2 runs in O (|Rt(e)|E) time; therefore, line 8 of Algorithm 1 can be done in at most

O
(

E3
)

time. In conclusion, the EXP3-OE algorithm runs in at most O(E3T) time, this guarantee
works even for the worst-case scenario. For comparison, the running time of FPL-IX proposed by
[23] is O(E|V|2T) in expectation if we choose Dijkstra’s algorithm to be the optimization oracle
at each stage. On the other hand, with the chosen parameters in [23], we can deduce that FPL-IX

achieves the running time in4 Õ(n1/2E3/2 ln(E/δ)T 3/2) with a probability at least 1 − δ for an
arbitrary δ > 0. That is, FPL-IX is not guaranteed to have efficient running time in all cases.

Algorithm 2 Compute qt(e) of an edge e at stage t.

1: Input: e ∈ Ot(p̃t), set Rt(e) and wt(ē), ∀ē ∈ E .
2: Initialize w̄(ē) := wt(ē), ∀ē ∈ E and qt(e) := 0.
3: Compute H∗(s, d) by Algorithm 3 (Appendix A) with input {wt(ē), ē ∈ E}.
4: for e′ ∈ Rt(e) do
5: Compute H(s, u), H(u, d), ∀u ∈ V by Algorithm 3 with input {w̄(ē), ∀ē ∈ E}.
6: K(e′) := H(s, ue′)·w(e′)·H(ve′ , d) where edge e′ goes from ue′ to ve′ ∈ C(ue′).
7: qt(e) := qt(e) +K(e′)/H∗(s, d).
8: Update w̄(e′) = 0.
9: end for

10: Output: qt(e).

3.2 Performance of the EXP3-OE Algorithm

In this section, we present an upper-bound of the expected regret achieved by the EXP3-OE algo-
rithm in the SOPPP. For the sake of brevity, with dt(p) defined in (1), for any t ∈ [T] and e ∈ E , we
denote:

rt(e) :=
∑

p∋e
dt(p) and Qt :=

∑

e∈E
rt(e)

/

(qt(e) + β). (3)

Intuitively, rt(e) is the probability that the chosen path at stage t contains an edge e and Qt is the
summation over all the edges of the ratio of this quantity and the probability that the loss of an edge
is revealed (plus β). We can bound the expected regret with this key term Qt.

Theorem 3.1. The expected regret of the EXP3-OE algorithm in the SOPPP satisfies:

RT ≤ ln(|P|)
/

η +
[

β + (n · η)
/

2
]

·
∑

t∈[T]
Qt. (4)

The proof of Theorem 3.1 is given in Appendix C and has an approach similar to [2, 13] with several
necessary adjustments to handle the new biased loss estimator in EXP3-OE. To see the relationship
between the structure of the side-observations of the learner and the bound of the expected regret,
we look for the upper-bounds of Qt in terms of the observation graphs’ parameters. Let αt be the
independence number5 of GO

t , we have the following statement.

Theorem 3.2. Let us denote M := ⌈2E2/β⌉, Nt :=ln
(

1+M+E
αt

)

and Kt :=ln
(

1+ nM+E
αt

)

, Upper-

bounds of Qt in different cases of GO
t are given in the following table:

SATISFIES (A0) NOT SATISFIES (A0)

SYMMETRIC αt nαt

NON-SYMMETRIC 1+2αtNt 2n (1+αtKt)

4The notation Õ is a version of the big-O asymptotic notation that ignores the logarithmic terms.
5The independence number of a directed graph is computed while ignoring the direction of the edges.

5

A proof of this theorem is given in Appendix E. The main idea of this proof is based on several
graph theoretical lemmas that are extracted from [2, 23, 26]. These lemmas establish the relationship
between the independence number of a graph and the ratios of the weights on the graph’s vertices
that have similar forms to the key-term Qt. The case where observation graphs are non-symmetric
and do not satisfy assumption (A0) is the most general setting. Moreover, as showed in Theorem 3.2,
the bounds of Qt are improved if the observation graphs satisfy either the symmetry condition or
assumption (A0). Intuitively, given the same independence numbers, a symmetric observation graph
gives the learner more information than a non-symmetric one; thus, it may yield a better bound on
Qt and the expected regret. On the other hand, assumption (A0) is a technical assumption that
allows the use of different techniques in the proofs to obtain better bounds. These cases have not
been analyzed in the literature while they are satisfied by several practical situations, including the
CB and HS games (see Section 4).

Finally, we give results on the order of the upper-bounds of the expected regret, obtained by the
EXP3-OE algorithm, presented as a corollary of Theorems 3.1 and 3.2.

Corollary 3.3. In SOPPP, let α be an upper bound of αt, ∀t ∈ [T]. With appropriate choices of the
parameters η and β, the expected regret of the EXP3-OE algorithm is:

(i) RT ≤ Õ(n
√

Tα ln(|P|)) in the general cases.

(ii) RT ≤ Õ(
√

nTα ln(|P|) if assumption (A0) is satisfied by the observation graphs GO
t , ∀t ∈ [T].

The choices of the parameters β and η (which are non-trivial in the cases where the observation
graphs are non-symmetric) that yield these results will be given in Appendix F. We also note that
a trivial upper-bound of αt is the number of vertices of the graph GO

t which is E (the number of

edges in G). In general, the more connected GO
t is, the smaller α may be chosen; and thus the better

upper-bound of the expected regret. In the (classical) semi-bandit setting, αt =E, ∀t ∈ [T] and in
the full-information setting, αt=1, ∀t ∈ [T]. Finally, we also note that, if |P| = O(exp(n)) (this is
typical in practice, including the CB and HS games), the bound in Corollary 3.3-(i) matches in order
with the bounds (ignoring the logarithmic factors) given by the FPL-IX algorithm (see [23]). On
the other hand, the form of the regret bound provided by the EXP3-IX algorithm (see [23]) does not
allow us to compare directly with the bound of EXP3-OE in the general SOPPP. In [23], EXP3-IX
is only analyzed when n = 1, i.e., |P| = E; in this case, we observe that the bound given by our
EXP3-OE algorithm is better than that of EXP3-IX (by some multiplicative constants).

4 Colonel Blotto Games and Hide-and-Seek Games as SOPPP

Given the regret analysis of EXP3-OE in SOPPP, we now return to to our main motivation, the
Colonel Blotto and the Hide-and-Seek games, and discuss how to apply our findings to these games.
To address this, we define formally the online version of the games and show how these problems
can be formulated as SOPPP in Sections 4.1 and 4.2, then we demonstrate the benefit of using the
EXP3-OE algorithm for learning in these games (Section 4.3).

4.1 Colonel Blotto Games as an SOPPP

The online Colonel Blotto game. This is a game between a learner and an adversary over n ≥ 2 bat-
tlefields within a time horizon T > 0. Each battlefield i ∈ [n] has a value bt(i) > 0 (unknown to
the learner) at stage t such that

∑n
i=1 bt(i) = 1. At stage t, the learner needs to distribute k troops

(k ≥ 1 is fixed) towards the battlefields while the adversary simultaneously allocate hers. The
learner’s strategy set is Sk,n := {x ∈ Nn :

∑n
i=1 x(i) = k}. At stage t and battlefield i ∈ [n], if the

adversary’s allocation is strictly larger than the learner’s allocation, the learner loses this battlefield
and she suffers the loss bt(i); if they have tie allocations, she suffers the loss bt(i)/2; otherwise, she
wins and suffers no loss. At the end of stage t, the learner observes the loss from each battlefield
(and which battlefield she wins, ties, or loses) but not the adversary’s allocations. The learner’s loss
at each time is the sum of the losses from all the battlefields. The objective of the learner is then to
minimize her loss over a finite period of time.

While this problem can be formulated as a standard OCOMB, it is difficult to derive an efficient
learning algorithm under that formulation, due to the learner’s exponentially large set of strategies
that she can choose from per stage. Instead, we show that by reformulating the problem as an SOPPP,
we will be able to exploit the advantages of the EXP3-OE algorithm to solve it. To do so, first note
that the learner can deduce several side-observations as follows: (i) if she allocates xt(i) troops to
battlefield i and wins, she knows that if she had allocated more than xt(i) troops to i, she would also
have won; (ii) if she knows the allocations are tie at battlefield i, she knows exactly the adversary’s

6

allocation to this battlefield and deduce all the losses she might have suffered if she had allocated
differently to battlefield i; (iii) if she allocates xt(i) troops to battlefield i and loses, she knows that
if she had allocated less than xt(i) to battlefield i, she would also have lost.

Now, to cast the CB game as SOPPP, for each instance of the parameters k and n, we create a DAG
G := Gk,n such that the strategy set Sk,n has a one-to-one correspondence to the paths set P of
Gk,n. The formal definition of Gk,n will be given in Appendix G; due to the lack of space, we
only present here an example illustrating the graph of an instance of the CB game in Figure 1-(a).

The graph Gk,n has E= O(k2n) edges and |P| = |Sk,n| = Ω
(

2min{n−1,k}
)

paths while the length
of every path is n. Each edge in Gk,n corresponds to allocating a certain amount of troops to a
battlefield. Therefore, the CB game model is equivalent to a PPP where at each stage the learner
chooses a path in Gk,n and the loss on each edge is generated from the allocations of the adversary
and the learner (corresponding to that edge) according to the rules of the game. At stage t, the
(semi-bandit) feedback and the side-observations6 deduced by the learner as described above infers
an observation graph GO

t . This formulation indeed transforms any CB game into an SOPPP.

Note that since there are edges in Gm,n that refer to the same allocation (e.g., the edges 5, 9, 12,
and 14 in G3,3 all refer to allocating 0 troops to battlefield 2), in the observation graphs, the vertices
corresponding to these edges are always connected. Therefore, an upper bound of the independence
number αt of GO

t in the CB game is αCB = n(k + 1) = O(nk). Moreover, we can verify that the

observation graph GO
t of the CB game satisfies assumption (A0) for any t and it is non-symmetric.

Battlefield 1

Battlefield 2

Battlefield n = 3

(a) The graph G3,3 corresponding to the CB game with
k = n = 3. E.g., the bold-blue path represents the
strategy (0, 0, 3) while the dash-red path represents the
strategy (2, 0, 1).

1st-move

2nd move

n-th move

Auxiliary edges

(b) The graph G3,3,1 corresponding to the HS game
with k=n=3 and κ = 1. E.g., the blue-bold path
represents the (1, 1, 1) search and the red-dashed
path represents the (2, 3, 2) search.

Figure 1: Examples of the graphs corresponding to the CB game and the HS game.

4.2 Hide-and-Seek Games as an SOPPP

The online Hide-and-Seek game. This is a repeated game (within the time horizon T > 0) between
a hider and a seeker. In this work, we consider that the learner plays the role of the seeker and the
hider is the adversary. There are k locations, indexed from 1 to k. At each stage t, the learner
sequentially chooses n locations, called an n-search, to seek for the hider, that is, she chooses an
xt ∈ [k]n (if xt(i)=j, we say that location j is her i-th move). The hider maliciously assigns losses
on all k locations (intuitively, these losses can be the wasted time supervising a mismatch location
or the probability that the hider does not hide there, etc.). In this work, we consider the following
condition on how the hider/adversary assigns the losses on the locations.

(C1) At stage t, the adversary secretly assigns a loss bt(j) to each location j ∈ [k] (unknown to the
learner). These losses are fixed throughout the n-search of the learner.

The learner’s loss at stage t is the sum of the losses from her chosen locations in the n-search at
stage t, that is

∑

i∈[n],j∈[k] I{xt(i)=j}bt(j). Moreover, often in practice the n-search of the learner

needs to satisfy some constraints. In this work, as an example, we use the following constraint:
|xt(i)− xt(i+ 1)| ≤ κ, ∀i ∈ [n] for a fixed κ ∈ [0, k − 1] (called the coherence constraint), i.e.,

6E.g., in Figure 1-(a), if the learner chooses a path going through edge 10 (corresponding to allocating 1
troop to battlefield 2) and wins (thus, the loss at edge 10 is 0), then she deduces that the losses on the edges
6, 7, 8, 10, 11, and 13 (corresponding to allocating at least 1 troop to battlefield 2) are all 0.

7

the seeker cannot search too far away from her previously chosen location.7 At the end of stage
t, the learner only observes the losses from the locations she chose among her n-search, and her
objective is to minimize her total loss over T .

Similar to the case of the CB game, tackling the HS game as a standard OCOMB is computation-
ally involved. As such, we follow the SOPPP formulation instead. In particular, knowing that the
adversary follows condition (C1), the learner can deduce the following side-observations: within a
stage, the loss at each location remains the same no matter when it is chosen among the n-search;
that is, knowing the loss of choosing location j as her i-th move, the learner knows all the loss if she
chooses location j as her i′-th move for any i′ 6= i. Given this, we create a DAG G := Gk,n,κ whose
paths set has a one-to-one correspondence to the set containing all feasible n-search of the learner in
the HS game with k locations under κ-coherent constraint. A formal definition of Gk,n,κ is given in
Appendix G. The HS game is equivalent to the PPP where the learner chooses a path in Gk,n,κ and
edges’ losses are generated by the adversary at each stage (note that to ensure all paths end at d, there
are n auxiliary edges in Gk,n,κ that are always embedded with 0 losses). Figure 1-(b) illustrates the

corresponding graph of an instance of the HS game. We note that there are E = O(k2n) edges and

|P| = Ω(κn−1) paths in Gk,n,κ.

The semi-bandit feedback and side-observations as described above generate an observation graph
GO

t at time t (e.g., in Figure 1-(b), the edges 1, 4, 6, 11, and 13 represent that location 1 is chosen;

thus, they mutually reveal each other). The independence number of GO
t is αHS = k for any t. We

note that the observation graphs of the HS game are symmetric and do not satisfy assumption (A0).
Finally, we consider a relaxation of condition (C1):

(C2) At stage t, the adversary assigns a loss bt(j) on each location j ∈ [k]. For i = 2, . . . , n, after
the learner chooses, say location ji, as her i-th move, the adversary can observe that and change the
losses bt(j) for any location that has not been searched before by the learner,8 i.e., she can change
the losses bt(j), ∀j /∈ {j1, . . . , ji}.

By replacing condition (C1) with condition (C2), we can limit the side-observations of the learner:
she can only deduce that if i1 < i2, the edges in Gk,n,κ representing choosing a location as the i1-th
move reveals the edges representing choosing that same location as the i2-th move; but not vice versa.
In this case, the observation graph GO

t only contains directed edges; however, its independence
number is still αHS = k as in the HS games with condition (C1).

4.3 Performance of EXP3-OE in the Colonel Blotto and Hide-and-Seek Games

Having formulated the CB game and the HS game as SOPPPs, we can use the EXP3-OE algorithm
to achieve the following results (deduced directly from Corollary 3.3).

Corollary 4.1. The expected regret of the EXP3-OE algorithm satisfies:

(i) RT ≤ Õ(
√

nTαCB ln(|P|)) = Õ(
√
Tn3k) in the CB games with k troops and n battlefields.

(ii) RT ≤ Õ(n
√

TαHS ln(|P|)) = Õ(
√
Tn3k) in the HS games with k locations and n-search.

At a high-level, given the same scale on their inputs, the independence numbers of the observation
graphs in HS games are smaller than in CB games (by a multiplicative factor of n). However,
since assumption (A0) is satisfied by the observation graphs of the CB games and not by the HS
games, the expected regret bounds of the EXP3-OE algorithm in these games have the same order
of magnitude. From Corollary 4.1, we note that in the CB games, the order of the regret bounds
given by EXP3-OE is better than that of the FLP-IX algorithm (thanks to the fact that (A0) is
satisfied). On the other hand, in the HS games with condition (C1) involving symmetric observation
graphs, the regret bounds of the EXP3-OE algorithm improves the bound of FPL-IX but they are
still in the same order of the games’ parameters (ignoring the logarithmic factors). Finally, we
compare the regret guarantees given by our EXP3-OE algorithm and by the Online Stochastic Mirror
Descent algorithm (henceforth, OSMD; see [3])—the benchmark algorithm for OCOMB with semi-
bandit feedback (although OSMD does not run efficiently in general). Applying OSMD to the
CB and HS games (as SOPPP), the side-observations are ignored and the expected regret bound

guaranteed by OSMD is in O(
√
TnE) = O(

√
Tn2k2). Using the parameters β and η chosen for

7Our results can be applied to HS games with other constraints, such as xt(i) ≤ xt(i+ 1),∀i ∈ [n], i.e.,
she can only search forward; or,

∑
i∈[n] I{xt(i)=k∗} ≤ κ, i.e., she cannot search a location k∗ ∈ [k] more than

κ times, etc.
8An interpretation is that by searching a location, the learner/seeker “discovers and secures" that location;

therefore, the adversary/hider cannot change her assigned loss at that place.

8

Corollary 3.3 and 4.1 (see Appendix F) in the corresponding cases of the observation graphs, the
EXP3-OE algorithm provides a better upper-bound of the expected regret than OSMD in the CB

games if O
(

n · ln (n3k5
√
T)
)

≤ k; in the HS games with condition (C1) if O(n lnκ) ≤ k; and

in the HS games with condition (C2) if n · lnκ ln (n4k5
√
T) ≤ O(k). A proof of this statement is

given in Appendix H.

5 Conclusion

In this work, we introduce the EXP3-OE algorithm for the path planning problem with semi-
bandit feedback and side-observations. EXP3-OE is always efficiently implementable. Moreover, it
matches the regret guarantees compared to that of the FPL-IX algorithm. We apply our findings to
derive the first solutions to the online version of the Colonel Blotto and Hide-and-Seek games. This
work also extends the scope of application of the PPP model in practice, even for large instances.

References

[1] Noga Alon, Nicolo Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feed-
back graphs: Beyond bandits. In JMLR Workshop and Conference Proceedings, volume 40.
Microtome Publishing, 2015.

[2] Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. From bandits to ex-
perts: A tale of domination and independence. In Advances in Neural Information Processing
Systems, pages 1610–1618, 2013.

[3] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial
optimization. Mathematics of Operations Research, 39(1):31–45, 2014.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In focs, page 322. IEEE, 1995.

[5] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[6] Soheil Behnezhad, Sina Dehghani, Mahsa Derakhshan, MohammadTaghi HajiAghayi, and
Saeed Seddighin. Faster and simpler algorithm for optimal strategies of Blotto game. In AAAI,
pages 369–375, 2017.

[7] Lilian Besson and Emilie Kaufmann. What doubling tricks can and can’t do for multi-armed
bandits. arXiv preprint arXiv:1803.06971, 2018.

[8] Sourabh Bhattacharya, Tamer Başar, and Maurizio Falcone. Surveillance for security as a
pursuit-evasion game. In International Conference on Decision and Game Theory for Security,
pages 370–379. Springer, 2014.

[9] Sourabh Bhattacharya and Seth Hutchinson. On the existence of nash equilibrium for a two
player pursuit-evasion game with visibility constraints. In Algorithmic Foundation of Robotics
VIII, pages 251–265. Springer, 2009.

[10] Jeremiah Blocki, Nicolas Christin, Anupam Datta, Ariel D Procaccia, and Arunesh Sinha. Au-
dit games. In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

[11] Emile Borel. La théorie du jeu et les équations intégrales à noyau symétrique. Comptes rendus
de l’Académie des Sciences, 173(1304-1308):58, 1921.

[12] Joseph L Bower and Clark G Gilbert. From resource allocation to strategy. Oxford University
Press, 2005.

[13] Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and
System Sciences, 78(5):1404–1422, 2012.

[14] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General frame-
work and applications. In International Conference on Machine Learning, pages 151–159,
2013.

[15] Pern Hui Chia. Colonel Blotto in web security. In The Eleventh Workshop on Economics and
Information Security, WEIS Rump Session, pages 141–150, 2012.

[16] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search and pursuit-evasion in
mobile robotics. Autonomous robots, 31(4):299, 2011.

9

[17] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[18] Oliver Gross and Robert Wagner. A continuous Colonel Blotto game. U.S.Air Force Project
RAND Research Memorandum, 1950.

[19] JD Grote. The theory and application of differential games. Springer, 1975.

[20] András György, Tamás Linder, Gábor Lugosi, and György Ottucsák. The on-line shortest path
problem under partial monitoring. Journal of Machine Learning Research, 8(Oct):2369–2403,
2007.

[21] Joao P Hespanha, Maria Prandini, and Shankar Sastry. Probabilistic pursuit-evasion games: A
one-step nash approach. In Proceedings of the 39th IEEE Conference on Decision and Control
(Cat. No. 00CH37187), volume 3, pages 2272–2277. IEEE, 2000.

[22] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

[23] Tomáš Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient learning by implicit
exploration in bandit problems with side observations. In Advances in Neural Information
Processing Systems, pages 613–621, 2014.

[24] Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. Complexity of computing optimal stack-
elberg strategies in security resource allocation games. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[25] Dan Kovenock and Brian Roberson. Coalitional Colonel Blotto games with application to the
economics of alliances. Journal of Public Economic Theory, 14(4):653–676, 2012.

[26] Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-observations. In
Advances in Neural Information Processing Systems, pages 684–692, 2011.

[27] Antonia Maria Masucci and Alonso Silva. Strategic resource allocation for competitive influ-
ence in social networks. In Allerton, pages 951–958, 2014.

[28] Antonia Maria Masucci and Alonso Silva. Defensive resource allocation in social networks.
In CDC, pages 2927–2932, 2015.

[29] Vishnu Navda, Aniruddha Bohra, Samrat Ganguly, and Dan Rubenstein. Using channel hop-
ping to increase 802.11 resilience to jamming attacks. In INFOCOM 2007. 26th IEEE Interna-
tional Conference on Computer Communications. IEEE, pages 2526–2530. IEEE, 2007.

[30] Brian Roberson. The Colonel Blotto game. Economic Theory, 29(1):2–24, 2006.

[31] Shinsaku Sakaue, Masakazu Ishihata, and Shin-ichi Minato. Efficient bandit combinatorial
optimization algorithm with zero-suppressed binary decision diagrams. In International Con-
ference on Artificial Intelligence and Statistics, pages 585–594, 2018.

[32] Galina Schwartz, Patrick Loiseau, and Shankar S Sastry. The heterogeneous Colonel Blotto
game. In NetGCoop, pages 232–238, 2014.

[33] Eiji Takimoto and Manfred K Warmuth. Path kernels and multiplicative updates. Journal of
Machine Learning Research, 4(Oct):773–818, 2003.

[34] Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sastry. Prob-
abilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE
transactions on robotics and automation, 18(5):662–669, 2002.

[35] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment
problem. Contributions to the Theory of Games, 2:5–12, 1953.

[36] Dong Quan Vu, Patrick Loiseau, and Alonso Silva. Efficient computation of approximate
equilibria in discrete Colonel Blotto games. In IJCAI-ECAI, July 2018.

[37] Qingsi Wang and Mingyan Liu. Learning in hide-and-seek. IEEE/ACM Transactions on Net-
working, 24(2):1279–1292, 2016.

[38] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The feasibility of launching
and detecting jamming attacks in wireless networks. In Proceedings of the 6th ACM interna-
tional symposium on Mobile ad hoc networking and computing, pages 46–57. ACM, 2005.

[39] Yaakov Yavin. Pursuit–evasion differential games with deception or interrupted observation.
In Pursuit-Evasion Differential Games, pages 191–203. Elsevier, 1987.

10

[40] Chongjie Zhang, Victor Lesser, and Prashant Shenoy. A multi-agent learning approach to on-
line distributed resource allocation. In Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

11

A Weight Pushing for Path Sampling

We re-visit some useful results in the literature. In this section, we consider a DAG G with parame-
ters as introduced in Section 2. For simplicity, we assume that each edge in E belongs to at least one
path in P . Let us respectively denote by C(u) and F (u) the set of the direct successors and the set
of the direct predecessors of any vertex u ∈ V . Moreover, let e[u,v] and Pu,v respectively denote the

edge and the set of all paths from vertex u to vertex v. Let us consider a weight w(e)> 0 for each
edge e ∈ E . It is needed in the EXP3-OE algorithm to sample a path p̃ ∈ P with the probability:

d(p̃) :=
[

∏

e∈p̃
w(e)

]/ [

∑

p∈P

∏

e∈p
w(e)

]

. (5)

A direct computation and sampling from dt(p̃), ∀p̃ ∈ P takes O(|P|) time which is very inefficient.
To efficiently sample the path, we first label the vertices set by V={s = u0, u1, . . . , d=uK} such
that if there exists an edge connecting ui to uj then i < j. We then define the following terms for
each vertex u ∈ V :

H(s, u) :=
∑

p∈Ps,u

∏

e∈p

w(e) and H(u, d) :=
∑

p∈Pu,d

∏

e∈p

w(e).

Intuitively, H(u, v) is the aggregate weight of all paths from vertex u to vertex v and H(s, d) is
exactly the denominator in (5). These terms H(s, u) and H(u, d), ∀u ∈ V can be recursively com-
puted by Algorithm 3 that runs in O(E) time, through dynamic programming. This technique is
called weight pushing and can be found in [20, 31, 33].

Algorithm 3 Weight Pushing.

1: Input: Graph G, set of weights {w(e), e ∈ E}.
2: Initialization H(s, u0) := H(uK , d) := 1.
3: for k = 1 to K do
4: H(uK−k, d) :=

∑

v∈C(uK−k)

w(e[uK−k,v])H(v, d).

5: H(s, uk) :=
∑

v∈F (uk)

w(e[v,uk])H(s, v).

6: end for
7: Output: H(s, u), H(u, d), ∀u ∈ V .

Based on Algorithm 3, we construct Algorithm 4 that uses the weights w(e), e ∈ E as inputs and
randomly outputs a path in P . Intuitively, starting from the root vertex s = u0, Algorithm 4 se-
quentially samples vertices by vertices based on the terms H(u, v) computed by Algorithm 3. It is
noteworthy that Algorithm 4 also runs in O(E) time and it is trivial to prove that the probability that
a path p is sampled from Algorithm 4 matches exactly d(p).

Algorithm 4 Path-sampling Algorithm.

1: Input: Graph G, set of weights {w(e), e ∈ E}.
2: H(u, d), ∀u ∈ V are computed by Algorithm 3.
3: Initialize Q := {s}, vertex u := s.
4: while u 6= d do
5: Sample a vertex v from C(u) with probability w(e[u,v])H(v, d)

/

H(u, d).
6: Add v to the set Q and update u := v.
7: end while
8: Output: p̃ ∈ P going through all the vertices in Q

B Proof of Algorithm 2’s Output

Proof. Fixing an edge e ∈ E , we prove that when Algorithm 2 takes the edges weights {wt(e), e ∈
E} as the input, it outputs exactly qt =

∑

p∈Ot(e)
dt(p). We note that if e′ ∈ Rt(e) := {e′ : e′ → e},

then {p ∈ P : p ∋ e′} ⊂ Ot(e).

We denote |Rt(e)| = ρe and label the edges in the set Rt(e) by {e1, e2, . . . , eρe
}. We let the for-loop

in lines 3–8 of Algorithm 2 consecutively run with the edges in Rt(e) as follows:

12

(i) After the for-loop runs for e1, we have K(e1) :=
∑

p∋e1

∏

ē∈pw̄(ē) =
∑

p∋e1
wt(p); there-

fore, qt(e) =
∑

p∋e1
dt(p) since H(s, d) =

∑

p∈P wt(p) computed from the original weights

wt(ē), ē ∈ E . Due to line 8 that sets w̄(e1) := 0, henceforth in Algorithm 2, the weight w̄(p) :=
∏

e∈p w̄(e) of any path p that contains e1 is set to 0.

(ii) Let the for-loop run for e2, we have K(e2) :=
∑

p∋e2
w̄(p) =

∑

{p∋e2}\{p∋e1}

wt(p) because any

path p ∋ e1 has the weight w̄(p) = 0. Therefore, qt(e) =
∑

p∋e1
dt(p) +

∑

{p∋e2}\{p∋e1}
dt(p).

(iii) Similarly, after the for-loop runs for ei (where i ∈ {3, . . . , ρe}), we have:

qt(e) =

i
∑

k=1









∑

{p∋ek}\
⋃

j<k

{p∋ej}

dt(p)









.

(iv) Therefore, after the for-loop finishes running for every edge in Rt(e); we have
qt :=

∑

p∈Ot(e)
dt(p) where each term dt(p) was only counted once even if p contains more than

one edge that reveals the edge e.

C Proof of Theorem 3.1

Theorem 3.1. The expected regret of the EXP3-OE algorithm in the SOPPP satisfies:

RT ≤ ln(|P|)
/

η +
[

β + (n · η)
/

2
]

·
∑

t∈[T]
Qt. (4)

Proof. We first denote9 Wt :=
∑

p∈P wt(p), ∀t ∈ [T]. From line 9 of Algorithm 1, we triv-

ially have:

wt+1(p) = wt(p) · exp(−ηL̂t(p)), ∀p ∈ P , ∀t ∈ [T − 1]. (6)

Here, we recall L̂t(p) :=
∑

e∈p ℓ̂t(e), then from (2), we have:

Et

[

L̂t(p)
]

≤ Lt(p) :=
∑

e∈p
ℓt(e), ∀p ∈ P . (7)

Under the condition that 0 < η, we obtain:

Wt+1

Wt
=
∑

p∈P

wt+1(p)

Wt
=
∑

p∈P

wt(p) · exp(−ηL̂t(p))

Wt

=
∑

p∈P
dt(p) · exp(−ηL̂t(p)))

≤
∑

p∈P

[

dt(p)

(

1− ηL̂t(p) +
η2

2
(L̂t(p))

2

)]

= 1−
∑

p∈P

[

dt(p)

(

ηL̂t(p)−
η2

2
(L̂t(p))

2

)]

. (8)

Here, the second equality comes from (6) and the inequality comes from the fact that

exp(−x) ≤ 1− x+ x2/2 for x := ηL̂t(p) ≥ 0. From (8) and the inequality ln(1− y) ≤ −y for

any y < 1, we have the following inequality:10

ln

(

WT+1

W1

)

=

T
∑

t=1

ln

(

Wt+1

Wt

)

≤
T
∑

t=1



−η
∑

p∈P

dt(p)L̂t(p)+
η2

2

∑

p∈P

dt(p)(L̂t(p))
2



. (9)

9We recall that wt(p) :=
∏

e∈p
wt(e).

10We can easily check that ηL̂t(p)−η2L̂t(p)
2/2<1 for any η > 0.

13

On the other hand, let us fix a path p∗ ∈ P , then

ln

(

WT+1

W1

)

≥ ln

(

wT+1(p
∗)

W1

)

= ln
wT (p

∗) exp(−ηL̂T (p
∗))

|P|

= ln
wT−1(p

∗) exp(−ηL̂T (p
∗)−ηL̂T−1(p

∗))

|P|

= −η

T
∑

t=1

L̂t(p
∗)− ln(|P|). (10)

In the arguments leading to (10), we again use (6) and the fact that w1(p) = 1, ∀p ∈ P , includ-
ing w1(p

∗). Therefore, combining (9) and (10) then dividing both sides by η, we have that

T
∑

t=1

∑

p∈P

dt(p)L̂t(p) ≤
ln(|P|)

η
+

T
∑

t=1

L̂t(p
∗) +

η

2

T
∑

t=1

∑

p∈P

dt(p)(L̂t(p))
2. (11)

Now, we take the expectation Et w.r.t. to the randomness in choosing p̃t on (11), then we apply (7)
to obtain:

T
∑

t=1

∑

p∈P

dt(p)Et[L̂t(p)] ≤
ln(|P|)

η
+

T
∑

t=1

Lt(p
∗) +

η

2

T
∑

t=1

∑

p∈P

dt(p)Et[L̂t(p)
2]. (12)

Now, we look for a lower bound of
∑

p∈P dt(p)Et

[

L̂t(p)
]

. For any fixed p ∈ P , we consider:

Et

[

∑

e∈p

ℓ̂t(e)

]

=
∑

p̃∈P

[

dt(p̃)
∑

e∈p

(

ℓt(e)

qt(e)+β
I{e∈Ot(p̃)}

)

]

=
∑

e∈p

∑

p̃∈O(e)

dt(p̃)
ℓt(e)

qt(e) + β

=
∑

e∈p

qt(e)ℓt(e)

qt(e) + β
. (13)

On the other hand, applying (13) and recalling that ℓt(e) ≤ 1, ∀e ∈ E , we have:

∑

p∈P

dt(p)Et

[

L̂t(p)
]

−
∑

p∈P

dt(p)Lt(p) =
∑

p∈P

dt(p)
∑

e∈p

qt(e)ℓt(e)

qt(e) + β
−
∑

p∈P

dt(p)
∑

e∈p

ℓt(e)

=
∑

p∈P

dt(p)
∑

e∈p

ℓt(e)

(

qt(e)

qt(e) + β
− 1

)

≥−
∑

p∈P

dt(p)
∑

e∈p

β

qt(e) + β

=− β
∑

e∈E

∑

p∋e
dt(p)

qt(e) + β

=− βQt. (14)

Now, we look for an upper bound of
∑

p∈P dt(p)Et

[

L̂t(p)
2
]

. To do this, we fix p ∈ P and

consider

Et

[

L̂t(p)
2
]

= Et

[

(

∑

e∈p
ℓ̂t(e)

)2
]

≤n · Et

[

∑

e∈p
ℓ̂t(e)

2
]

=n ·
∑

p̃∈P

[

dt(p̃)
∑

e∈p

(

ℓt(e)

qt(e) + β
I{e∈Ot(p̃)}

)2
]

14

≤n ·
∑

e∈p

∑

p̃∈Ot(e)

dt(p̃)
1

(qt(e) + β)2

=n ·
∑

e∈p

qt(e)
1

(qt(e) + β)2

≤n ·
∑

e∈p

1

qt(e) + β
. (15)

The first inequality comes from applying Cauchy–Schwarz inequality. The second inequality comes
from the fact that ℓt(e) ≤ 1 and the last inequality comes from qt(e) ≤ qt(e) + β since β > 0.

Now, applying (15), we can bound

∑

p∈P

dt(p)Et

[

L̂t(p)
2
]

≤n ·
∑

p∈P

dt(p)
∑

e∈p

1

qt(e) + β

=n ·
∑

e∈E

∑

p∋e

dt(p)
1

qt(e) + β

=n ·
∑

e∈E

rt(e)

qt(e) + β
= n ·Qt. (16)

Here, we recall the notation rt(e) and Qt defined in (3). Replacing (14) and (16) into (12), we have
that the following inequality holds for any p∗ ∈ P .

T
∑

t=1

∑

p∈P

dt(p)Lt(p)−
T
∑

t=1

βQt −
T
∑

t=1

Lt(p
∗) ≤ ln(|P|)

η
+
η

2

T
∑

t=1

nQt

⇒RT ≤ ln(|P|)
η

+

T
∑

t=1

Qt

(

n
η

2
+β
)

.

D Lemmas on Graphs’ Independence Numbers

In this section, we present some lemmas in graph theory that will be used in the next section to prove

Theorem 3.2. Consider a graph G̃ whose vertices set and edges set are respectively denoted by Ṽ
and Ẽ . Let α̃ be its independence number.

Lemma D.1. Let G̃ be an directed graph and Iv be the in-degree of the vertex v ∈ Ṽ , then

∑

v∈Ṽ
[1/(1 + Iv)] ≤ 2α̃ ln

(

1 + |Ṽ|/α̃
)

.

A proof of this lemma can be found in Lemma 10 of [2].

Lemma D.2. Let G̃ be a directed graph with self-loops and consider the numbers

k(v) ∈ [0, 1], ∀v ∈ Ṽ such that there exists γ > 0 and
∑

v∈Ṽ k(v) ≤ γ. For any c > 0, we have

∑

v∈Ṽ

k(v)
1
γ

∑

v′→v

k(v′)+c
≤ 2γα̃ ln

(

1+
γ⌈|Ṽ|2/c⌉+ |Ṽ |

α̃

)

+2γ.

A proof of this lemma can be found in Lemma 1 of [23].

Lemma D.3. Let G̃ be an undirected graph with self-loops and consider the numbers

k(v) ≥ 0, v ∈ Ṽ . We have
∑

v∈Ṽ

[

k(v)
/

∑

v′→v
k(v′)

]

≤ α̃.

This lemma is extracted from Lemma 3 of [26].

15

E Proof of Theorem 3.2

Theorem 3.2. Let us denote M := ⌈2E2/β⌉, Nt :=ln
(

1+M+E
αt

)

and Kt :=ln
(

1+ nM+E
αt

)

, Upper-

bounds of Qt in different cases of GO
t are given in the following table:

SATISFIES (A0) NOT SATISFIES (A0)

SYMMETRIC αt nαt

NON-SYMMETRIC 1+2αtNt 2n (1+αtKt)

Case 1: GO
t does not satisfy assumption (A0). Fixing an edge e, due to the fact that n is the length

of the longest paths in P , we have

nqt(e)=n
∑

p∈Ot(e)

dt(p) ≥
∑

e′→e

∑

p∋e′

dt(p)=
∑

e′→e

rt(e
′) (17)

⇒ Qt=
∑

e∈E

rt(e)

qt(e)+β
≤
∑

e∈E

rt(e)
1
n

∑

e′→e

rt(e′)+β
. (18)

Case 1.1: If GO
t is a non-symmetric (i.e., directed) graph, we apply Lemma D.2 with γ = n, c = β

on the graph G̃ = GO
t (whose vertices set Ṽ corresponds to the edges set E of G) and the numbers11

k(ve) = rt(e), ∀ve ∈ Ṽ (i.e., ∀e ∈ E). We obtain the following inequality:

∑

e∈E

rt(e)
1
n

∑

e′→e

rt(e′)+β
≤ 2nαt ln

(

1+
n⌈E2/β⌉+E

αt

)

+ 2n.

Case 1.2: If GO
t is a symmetric (i.e. undirected) graph, we apply Lemma D.3 with the graph

G̃ = GO
t (whose vertices set Ṽ corresponds to the edges set E of the graph G) and the numbers

k(ve) = rt(e), ∀ve ∈ Ṽ (i.e., ∀e ∈ E) to obtain:

∑

e∈E

rt(e)
1
n

∑

e′→e

rt(e′)+β
≤ n

∑

e∈E

rt(e)
∑

e′→e

rt(e′)
≤ nαt.

Case 2: GO
t satisfies assumption (A0). Under this assumption, qt(e) =

∑

e′→e rt(e
′) due to the

definition of Ot(e). Therefore, Qt =
∑

e∈E

[

rt(e)
/

(
∑

e′→e rt(e
′) + β)

]

.

Case 2.1: If GO
t is a non-symmetric (i.e., directed) graph. We consider a discretized version

of dt(p) for any path p ∈ P that is d̃t(p) := k/M where k is the unique integer such that

(k − 1)/M ≤ dt(p) ≤ k/M ; thus, d̃t(p)− 1/M ≤ dt(p) ≤ d̃t(p).

Let us denote the discretized version of rt(e) by r̃t(e) :=
∑

p∋e d̃t(p). We deduce that

rt(e) ≤ r̃t(e) and

∑

e′→e

rt(e) ≥
∑

e′→e

(

r̃t(e
′)− 1

M

)

≥
∑

e′→e

r̃t(e
′)− E

M
.

We obtain the bound:

Qt =
∑

e∈E

rt(e)
(

∑

e′→e

rt(e′) + β

) ≤
∑

e∈E

r̃t(e)
∑

e′→e

r̃t(e′)−E/M+β
. (19)

11We verify that these numbers satisfy

∑

e∈E

rt(e)=
∑

e∈E

∑

p∋e

dt(p)=
∑

p∈P

∑

e∈p

dt(p)≤
∑

p∈P

ndt(p) = n.

16

We now consider the following inequality: If a, b ≥ 0 and a+ b ≥ B > A > 0, then

a

a+ b−A
≤ a

a+ b
+

A

B − A
. (20)

A proof of this inequality can be found in Lemma 12 of [2]. Applying (20)12 with a = r̃t(e),
b =

∑

e′→e,e′ 6=e

r̃t(e
′) + β, A = E/M , and B = β to (19), we have

Qt ≤
∑

e∈E





r̃t(e)
∑

e′→e

r̃t(e′) + β
+

E/M

β − E/M



 ≤
∑

e∈E

r̃t(e)
∑

e′→e

r̃t(e′)
+ 1. (21)

The last inequality comes from the fact that E
Mβ−E ≤ E

2E2−E ≤ 1
2E−1 ≤ 1

E , ∀E ≥ 1.

Finally, we create an auxiliary graph G∗
t such that:

(i) Corresponding to each edge e in G (i.e., each vertex ve in GO
t), there is a clique, called C(e), in

the auxiliary graph G∗
t with Mr̃t(e) ∈ N vertices.

(ii) In each clique C(e) of G∗
t , all vertices are pairwise connected with length-two cycles. That is,

for any k, k′ ∈ C(e), there is an edge from k to k′ and there is an edge from k′ to k in G∗
t .

(iii) If e → e′, i.e., there is an edge in GO
t connecting ve and ve′ ; then in G∗

t , all vertices in the clique
C(e) are connected to all vertices in C(e′).

We observe that the independence number αt of GO
t is equal to the independence number of G∗

t .
Moreover, the in-degree of each vertex k ∈ (e) in the graph G∗

t is:

I∗k = Mr̃t(e)−1+
∑

e′→e,e′ 6=e

Mr̃t(e
′)=

∑

e′→e

Mr̃t(e
′)−1. (22)

Let us denote V ∗
t the set of all vertices in G∗

t , then we have:

∑

e∈E

r̃t(e)
∑

e′→e

r̃t(e′)
=
∑

e∈E

Mr̃t(e)
∑

e′→e

Mr̃t(e′)
=
∑

e∈E

∑

k∈C(e)

1

I∗k+1

=
∑

k∈V ∗

t

1

Ĩk + 1
≤ 2αt ln

(

1 +
M + E

αt

)

. (23)

Here, the second equality comes from the fact that |C(e)| = Mr̃t(e) and (22). The
inequality is obtained by applying Lemma D.1 to the graph G∗

t and the fact that
|V ∗

t | =
∑

e∈E Mr̃t(e) ≤ M
∑

e∈E (rt(e)+1/M)≤E+M .

In conclusion, combining (21) and (23), we obtain the regret-upper bound as given in Theorem 3.2
for this case of the observation graph.

Case 2.2: Finally, if GO
t is a symmetric (i.e., undirected) graph, we again ap-

ply Lemma D.3 to the graph G̃ = GO
t and the numbers k(ve) = rt(e) to obtain that

Qt ≤
∑

e∈E

[

rt(e)
/
∑

e′→e rt(e
′)
]

≤ αt.

F Parameters Tuning for EXP3-OE: Proof of Corollary 3.3

In this section, we suggest a choice of β and η that guarantees the expected regret given in Corol-
lary 3.3.

Corollary 3.3. In SOPPP, let α be an upper bound of αt, ∀t ∈ [T]. With appropriate choices of the
parameters η and β, the expected regret of the EXP3-OE algorithm is:

(i) RT ≤ Õ(n
√

Tα ln(|P|)) in the general cases.

(ii) RT ≤ Õ(
√

nTα ln(|P|) if assumption (A0) is satisfied by the observation graphs GO
t , ∀t ∈ [T].

12Trivially, we can verify that a+ b ≥ B and B > A comes from the fact that β ≥ β 1
E

> E
⌈2E2/β⌉

.

17

Case 1: Non-symmetric (i.e. directed) observation graphs that do not satisfy assumption (A0).

We find the parameters β and η such that Rt ≤ Õ
(

n
√
Tα
)

. We note that αt ≥ 1, ∀t ∈ [T];

therefore, recalling that α is an upper bound of αt, from Theorem 3.1 and 3.2, we have:

RT ≤ ln(|P|)
η

+

T
∑

t=1

(

n
η

2
+β
)

2n

[

1+αt ln

(

1+
nM+E

αt

)]

≤ ln(|P|)
η

+T
(

n
η

2
+β
)

2n [1 + α ln (α+nM+E)]

=
ln(|P|)

η
+ ηTn2 [1 + α ln (α+ nM + E)] + 2βTn [1 + α ln (α+ nM + E)] . (24)

Recalling that M := ⌈2E2/β⌉, by choosing any

β ≤ 1/
√

Tn[1 + α ln(α + n⌈E2/β⌉+ E)], (25)

and η =
√

ln |P|/
√

n2T [1 + α ln (α+ n⌈E2/β⌉+ E)],

we obtain the bound:

RT ≤2n
√

T ln |P| · [1 + α ln(α+ nM + E)] + 2
√

Tn[α+ α ln(α+ nM + E)] (26)

≤Õ
(

n
√

Tα ln(|P|)
)

.

In practice, as long as it satisfies (25), the larger β is, the better upper-bounds that EXP3-OE gives.

Finally, as an example that (25) always has at least one solution, we now prove that it holds with

β∗ =
−Tn2E2+

√

(Tn2E2)2+4Tn(1+α lnα+E+n)

2Tn(1+α lnα+E+n)
. (27)

Indeed, β∗ > 0 and it satisfies:

β∗2 · Tn(1 + α lnα+ E + n) + β∗Tn2E2 = 1.

⇒β∗2 · Tn(1 + α lnα+ E) + β∗2Tn2

(

E2

β∗
+ 1

)

= 1

⇒β∗2 · Tn(1 + α lnα+ E) + β∗2Tn2
⌈E2

β∗

⌉

≤ 1

⇒β∗ ≤ 1
√

Tn (1 + α lnα+ E + nM)
.

On the other hand, applying the inequality ln(1 + x) ≤ x, ∀x ≥ 0, we have:

nM + E

α
≥ ln

(

1 +
nM + E

α

)

⇒nM + E

α
+ lnα ≥ ln(α+ nM + E)

⇒nM + E + α lnα+ 1 ≥ α ln(α+ nM + E) + 1

⇒ 1
√

Tn (1+αlnα+nM+E)
≤ 1
√

Tn (αln (α+nM+E)+1)
.

Therefore, β∗ satisfies (25).

Case 2: non-symmetric observation graphs GO
t satisfying assumption (A0), ∀t. We will prove

that RT ≤ Õ
(

√

nTα ln(|P|)
)

for any

β ≤ 1/
√

Tα[1 + 2 ln (1 + ⌈E2/β⌉+ E)], (28)

η = 2
√

ln |P|/
√

Tnα [1 + 2 ln (α+M + E)]. (29)

18

Indeed, from Theorem 3.1 and 3.2, we have:

RT ≤ ln(|P|)
η

+

T
∑

t=1

(

n
η

2
+β
)

[

1+2αt ln

(

1+
M+E

αt

)]

≤ ln(|P|)
η

+

T
∑

t=1

(

n
η

2
+β
)

[α+ 2α ln (1 +M + E)]

=
ln(|P|)

η
+ ηTα

n

2
[1 + 2 ln (1 +M + E)] + βTα [1 + 2 ln (1 +M + E)] . (30)

We replace (28) and (29) into (30) and obtain:

RT ≤ 3

2

√

Tnα [1 + 2 ln (1 +M + E)] · ln |P|+
√

Tα [1 + 2 ln (1 +M + E)]. (31)

≤ Õ
(

√

nαT ln(|P|)
)

.

A choice for β that satisfies (28) is

β∗ :=
−TαE2+

√

(TαE2)2+Tα(3 + 2E)

Tα(3 + 2E)
. (32)

Case 3: symmetric observation graphs that do not satisfy (A0). Trivially, we have that if

β := 1/
√
nαT and η = 2

√

ln |P|/
√
n2αT , then

RT ≤ ln |P|
η

+
(

n
η

2
+ β

)

nαT

=
1

2
n
√

αT ln |P|+ n
√

αT ln |P|+
√
nαT (33)

≤ Õ
(

n
√

αT ln(|P|)
)

.

Case 4: all observation graphs are symmetric and satisfy (A0). From Theorem 3.1 and 3.2, we

trivially have that if β := 1/
√
αT and η = 2

√

ln |P|/
√
nαT , then RT ≤ Õ

(

√

nαT ln(|P|)
)

.

G Graphical Representation of the Games’ Actions Sets

G.1 The Actions Set of the Colonel Blotto Games

We give a description of the graph corresponding to the actions set of the learner in the CB game
who distributes k troops to n battlefields.

Definition G.1 (CB Graph). The graph Gk,n is a DAG that contains:

(i) N := 2 + (k + 1)(n− 1) vertices arranged into n+1 layers. Layer 0 and Layer n, each contains
only one vertex, respectively labeled s := (0, 0)–the source vertex and d := (n, k)–the destination
vertex. Each Layer i ∈ [n− 1] contains k + 1 vertices whose labels are ordered from left to right
by (i, 0), (i, 1), . . . , (i, k).

(ii) There are directed edges from vertex (0, 0) to every vertex in Layer 1 and edges from every vertex
in Layer n − 1 to vertex (n, k). For i ∈ {1, 2, . . . , n − 2}, there exists an edge connecting vertex
(i, j1) (of Layer i) to vertex (i + 1, j2) (of Layer (i+ 1)) if k ≥ j2 ≥ j1 ≥ 0.

Particularly, Gk,n has E = (k + 1) [4+(n−2)(k+2)]/2 = O(nk2) edges and

|P| =
(

n+k−1
n−1

)

= O(2min{n−1,k}) paths going from vertex s := (0, 0) to vertex d := (k, n). The

edge connecting vertex (i, j1) to vertex (i+1, j2) for any i ∈ {0, 1, . . . , n−1} represents allocating
(j2 − j1) troops to battlefield i + 1. Moreover, each path from s to d represents a strategy in Sk,n.
This is formally stated in Proposition G.2.

Proposition G.2. Given k and n, there is a one-to-one mapping between the action set Sk,n of the
learner in the CB game (with k troops and n battlefields) and the set of all paths from vertex s to
vertex d of the graph Gk,n.

19

The proof of this proposition is trivial and can be intuitively seen in Figure 1-(a). We note that a
similar graph can be found in [6]; however, it is used for a completely different purpose and it also
contains more edges and paths than Gk,n (that are not useful in this work).

G.2 The Actions Set of the Hide-and-Seek game

We give a description of the graph corresponding to the actions set of the learner in the HS games
with the n-search among k locations and coherence constraints |xt(i)− xt(i + 1)| ≤ κ, ∀i ∈ [n]
for a fixed κ ∈ [0, k − 1].

Definition G.3 (HS Graph). The graph Gk,κ,n is a DAG that contains:

(i) N := 2 + kn vertices arranged into n + 2 layers. Layer 0 and Layer (n + 1), each con-
tains only one vertex, respectively labeled s–the source vertex and d–the destination vertex.
Each Layer i ∈ {1, . . . , n} contains k vertices whose labels are ordered from left to right by
(i, 1), (i, 2), . . . , (i, k).

(ii) There are directed edges from vertex s to every vertex in Layer 1 and edges from every vertex
in Layer n to vertex d. For i ∈ {1, 2, . . . , n − 1}, there exists an edge connecting vertex (i, j1) to
vertex (i+ 1, j2) if |j1 − j2| ≤ κ.

The graph Gk,κ,n has E=2k+(n−1) [k+κ(2k−κ−1)]=O(nk2) edges and at least Ω(κn−1) paths
from s to d. The edges ending at vertex d are the auxiliary edges that are added just to guarantee
that all paths end at d; these edges do not represent any intuitive quantity related to the game. For
the remaining edges, any edge that ends at the vertex (i, j) represents choosing the location j as the
i-th move. In other words, a path starting from s, passing by vertices (1, j1), (2, j2), . . . , (n, jn) and
ending at d represents the n-search that chooses location j1, then moves to location j2, then moves
to location j3, and so on.

Proposition G.4. Given k, κ and n, there is a one-to-one mapping between the action set Sk,κ,n

of the learner in the HS game (with n-search among k locations and coherence constraints with
parameter κ) and the set of all paths from vertex s to vertex d of the graph Gk,κ,n.

H EXP3-OE Algorithm versus OSMD Algorithm in the CB and HS Games

(i) As stated in Section 4, the observation graphs in the CB games are non-symmetric and they
satisfy assumption (A0). If we choose β = β∗ as in (32), then β satisfies (28). Moreover,

β = O(1/
√
TnE); thus, M = O(E2

√
TnE). From (31), the expected regret of EXP3-OE in this

case is bounded by O
√

Tn(αCB) lnM ln |P| (recall that αCB = kn is an upper bound of indepen-
dence numbers of the observation graphs in the CB games). Therefore, to guarantee that this bound

is better than the bound of the OSMD algorithm (that is
√
2TnE), the following inequality needs

to hold:

O (αCB · lnM ln |P|) ≤ E

⇒O
(

nk · ln (E2
√
TnE) ln(2n)

)

≤ nk2

⇒O
(

ln (E2
√
TnE) ln(2n)

)

≤ k

⇒O
(

n ln (n3k5
√
T)
)

≤ k.

(ii) As stated in Section 4, the observation graphs in the HS games with condition (C1) are symmet-

ric and do not satisfy assumption (A0). If we choose β = 1/
√
nαT then by (33), we have that RT

is bounded by O
(

n
√

αHST ln |P|
)

(recall that αHS = k is an upper bound of the independence

numbers of the observation graphs in the HS games). Therefore, to guarantee that this bound is
better than the bound of the OSMD algorithm in HS games, the following inequality needs to hold:

O (αHS · n ln |P|) ≤ E

⇒O (k · n ln |P|) ≤ nk2

⇒O (ln |P|) ≤ k

20

⇒O (n lnκ) ≤ k.

(iii) Finally, the observation graphs in the HS games with condition (C2) are non-symmetric and
do not satisfy assumption (A0). Therefore, if we choose β = β∗ as in (27), then β satisfies (25).

In this case, β = O(1/
√
TnE) and M = O(E2

√
TnE). Therefore, from (26), in this case, RT is

bounded by O(n
√

TαHS lnαHS ln(nM). Therefore, to guarantee that this bound is better than the

bound of OSMD (that is,
√
2TnE), the following inequality needs to hold:

O (αHS · n lnnM ln |P|) ≤ E

⇒O
(

nk ln (κn) ln(nE2
√
TnE)

)

≤ nk2

⇒O
(

n lnκ ln (n4k5
√
T)
)

≤ k.

21

	Introduction
	Path Planning Problems with Side-Observations (SOPPP) Formulation
	Exp3-OE - An Efficient Algorithm for the SOPPP
	Running Time Efficiency of the Exp3-OE Algorithm
	Performance of the Exp3-OE Algorithm

	Colonel Blotto Games and Hide-and-Seek Games as SOPPP
	Colonel Blotto Games as an SOPPP
	Hide-and-Seek Games as an SOPPP
	Performance of Exp3-OE in the Colonel Blotto and Hide-and-Seek Games

	Conclusion
	Weight Pushing for Path Sampling
	Proof of Algorithm 2's Output
	Proof of Theorem 3.1
	Lemmas on Graphs' Independence Numbers
	Proof of Theorem 3.2
	Parameters Tuning for Exp3-OE: Proof of Corollary 3.3
	Graphical Representation of the Games' Actions Sets
	The Actions Set of the Colonel Blotto Games
	The Actions Set of the Hide-and-Seek game

	Exp3-OE Algorithm versus OSMD Algorithm in the CB and HS Games

