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SUMMARY 

Navigation systems used in racing boats require sensors to be more and more sophisticated in order to obtain accurate 
information in real time. To meet the need for accuracy of the surface speed measurement, the mechanical sensor paddle 
wheel has been replaced by the ultrasonic sensor. This ultrasonic sensor measures the water speed precisely and with 
very good linearity. Furthermore, by its principle of operation, it measures the water flow several centimetres from the 
sensor, which puts it outside the boundary layer, the region close to the hull where the flow is disturbed. However, this 
sensor has several drawbacks: it is quite sensitive and if the flow contains too many air bubbles, the sensor picks them 
up, which can happen quite frequently on boat with a planing hull. Another limitation of this sensor is its low frequency 
measurement rate. In this paper, we explain the techniques used based on Kalman filters to address these shortcomings, 
firstly by identifying the inaccurate measurements caused by inadvertent dropouts, then by improving the useful sensor 
frequency with GNSS data fusion. 

NOMENCLATURE 

SOG Speed Over Ground (knots) 
SOW Speed Over Water (knots) 
GNSS Global Navigation Satellite System 
𝑋𝑋𝑘𝑘 State vector 
𝑦𝑦𝑘𝑘  Measurement vector 
𝐹𝐹𝑘𝑘 State transition matrix 
𝐻𝐻𝑘𝑘 Observation matrix 
𝑤𝑤𝑘𝑘 Process noise 
𝑣𝑣𝑘𝑘 Observation noise 
𝑄𝑄𝑘𝑘 Process noise covariance matrix 
𝑅𝑅𝑘𝑘 Measurement noise covariance matrix 
𝐾𝐾𝑘𝑘 Kalman gain matrix 
𝑃𝑃𝑘𝑘 State covariance  
𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 Speedometer standard deviation 
𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆  GPS speed standard deviation 
𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Model noise 
𝑟𝑟 Fault detection threshold 
𝑇𝑇𝑇𝑇 Integration time  
𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘  Measurement residual  
𝑆𝑆𝑘𝑘 Measurement covariance 

1. INTRODUCTION

Surface speed corresponds to boat speed relative to the 
water. It is a major element in the wind measurement 
chain, because it is one of the basis for calculations to 
determine, among others, the true wind speed and angle. 
As it is data that occurs at the basis of the reconstruction 
of the true wind, the measurement error is transmitted 
and amplified onto the ensuing results. Sensors 
commonly used are the paddle wheel, the wheel is driven 
by the water flow. The boat speed is then determined by 
measuring the rotation speed of this wheel. This kind of 
sensor presents two major problems: the first one is that 
the mobile part is immersed in sea water, so it is quickly 
covered by seaweed that leads to variations in its 
behaviour. The second is that it measures the flow along 

the hull, in the boundary layer; where the flow is 
disturbed and not representative of the actual boat speed. 
In conclusion, the sensor measurements are neither 
precise nor linear. 

Figure 1: Dropout example. Sea recording on a 60’ 
Imoca. (ErrorState 2 is for valid data, 0 for errors). 

To address the shortcomings of the paddle wheel sensor, 
a new kind of sensor has been developed: an ultrasonic 
sensor. Its main advantage is that it has no moving parts, 
so it is not sensitive to the marine environment1. The 
second one is that it measures the flow velocity several 
centimetres away, outside the boundary layer; where the 
speed measurement is less disturbed by the hull. The 
measurements are thus highly accurate and linear over 

1 It is a flush sensor that can be covered with gel coat or anti-
fouling as the rest of the hull. 



the full speed range. However, new problems occur: the 
sensor is inaccurate when it is near the limit of 
immersion. This is often the case with planing hulls or 
when the boat is heeled over too far. Indeed in this case, 
the sensor is no longer able to acquire the real data so it 
drops out. This phenomenon is shown in Figure 1.  

We can see that surface speed drops to 6 knots whereas 
the ground speed remains stable. The sensor is therefore 
in an error state.  

The main problem in this situation is not that the sensor 
is no longer able to provide a valid speed, although the 
fact of no longer having surface speed is an issue, it is 
even more problematic to rely on completely erroneous 
information while thinking it is accurate because all the 
information and rules that are using this data are 
deceived.  

Currently, the method performed by the electronic sensor 
to detect these dropouts is not efficient enough because 
this state is detected after 2 or 3 erroneous samples (as 
shown in Figure 1). This delay leads to some errors in the 
computation of the true wind angle for instance, which is 
a concern for security when the boat is under autopilot. 
Although this period is very short, the autopilot will 
make decisions based on incorrect information which can 
for example, lead to unwanted gybes.  

The objective of this paper is to propose a methodology 
to detect these errors as soon as they appear, and not after 
a delay as is currently the case. The present paper does 
not seek to compare the performance and accuracy of the 
sensor but focuses on the error detection. 

2. FAULT DETECTION METHODOLOGY

In this section we will present our methodology in order 
to detect the sensor’s errors. First, we will present the 
ultrasonic sensor. 

2.1 THE ULTRASONIC SENSOR 

The purpose of this section is not to describe how this 
sensor works, but to understand its basic principle of 
operation. 

As shown in Figure 2, the sensor monitors the flow of 
particles at 8 centimetres with its ultrasonic beam.  

Figure 2: Ultrasonic sensor working principle 

This means that in this area, the water must be 
homogeneous, without large air bubbles, otherwise the 
sensor cannot follow the signal, as shown in Figure 1. As 
already stated, it is not so much that sometimes the 
sensor picks up that is constraining, because this is rarely 
the case in normal conditions of use, but the fact that 
there is a delay in the actual error detection. The goal is 
therefore to provide a solution that detects errors before 
they are transmitted to the rest of the navigation system. 
Our approach is presented below. 

2.2 METHODOLOGY OF DETECTION 

With the aim of detecting errors at their earliest stage, we 
will move towards a filter that features predictive 
capabilities. By observing the correlation between the 
predicted and the measured value, we could then estimate 
the validity of the latter. 

Prediction is one of the main characteristics of the well-
known Kalman filter (Kalman, 1960), which is why it 
was chosen. Mehra and Peschon (Mehra, 1970) were the 
first to apply Kalman filters for fault detection. 

Generally the practical implementation of a Kalman filter 
is quite complicated, but in this case, the one used is 
relatively straightforward, firstly because the processed 
variables are linear; this enables us to avoid linearization 
steps. And secondly because of the observation (2.13) 
and transition (2.14) matrices which are of a limited 
order. 

The filter is characterized by two equations: the state 
equation and the measurement equation (2.1).  

𝑦𝑦𝑘𝑘  represents the measurement vector, in this case the 
surface speed and 𝑋𝑋𝑘𝑘 its estimate. 

�𝑋𝑋𝑘𝑘 = 𝐹𝐹𝑘𝑘𝑋𝑋𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1
𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑋𝑋𝑘𝑘 + 𝑣𝑣𝑘𝑘

(2.1) 

Measurement equation (2.1) refers to 𝐻𝐻𝑘𝑘 the observation 
or measurement matrix which associates the 
measurement vector to the state estimate. 

𝐹𝐹𝑘𝑘 is the state transition matrix which models the 
transition between two estimates. 

𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 respectively represent, model noise and 
measurement noise which are assumed to have a normal 
probability distribution. 

𝑝𝑝(𝑤𝑤)~ 𝑁𝑁(0,𝑄𝑄𝑘𝑘) (2.2) 
𝑝𝑝(𝑣𝑣) ~ 𝑁𝑁(0,𝑅𝑅𝑘𝑘) (2.3) 

(2.2) and (2.3) state that 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 are not biased with 
variance 𝑄𝑄𝑘𝑘 and 𝑅𝑅𝑘𝑘. 

The state of the filter is represented by two variables: 



• 𝑋𝑋�𝑘𝑘|𝑘𝑘 the a posteriori state estimate at time 𝑘𝑘
giving observations up to and including at 
time 𝑘𝑘 

• 𝑃𝑃𝑘𝑘|𝑘𝑘 the a posteriori error covariance matrix

We compute the filter in two recursive steps, prediction 
and estimation.  

In the context of error detection, it is the predictive 
ability of the filter that we are going to use in order to 
detect the sensor errors. 

2.2 (a) Prediction 

This step predicts the a priori estimate of the state vector 
(equation 2.4) and the covariance of the estimation error 
(equation 2.5) of the system at time 𝑘𝑘 from the previous 
state. 

𝑋𝑋�𝑘𝑘|𝑘𝑘−1 = 𝐹𝐹𝑘𝑘𝑋𝑋�𝑘𝑘−1|𝑘𝑘−1 (2.4) 
𝑃𝑃𝑘𝑘|𝑘𝑘−1 = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−1|𝑘𝑘−1𝐹𝐹𝑇𝑇𝑘𝑘 + 𝑄𝑄𝑘𝑘 (2.5) 

After the prediction comes the update step. 

2.2 (b) Update 

The update step calculates from the a priori error 
covariance 𝑃𝑃𝑘𝑘|𝑘𝑘−1 (2.5), the Kalman gain (2.6) which 
minimizes the covariance of the estimated error. A 
posteriori estimate of the state vector (2.7) and a 
posterior estimate covariance (2.8) are both updated with 
the new gain (2.6) and measurement vector 𝑦𝑦𝑘𝑘. 

𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 − 𝑅𝑅𝑘𝑘�
−1 (2.6) 

𝑋𝑋�𝑘𝑘|𝑘𝑘 =  𝑋𝑋�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾𝑘𝑘�𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑋𝑋�𝑘𝑘|𝑘𝑘−1� (2.7) 
𝑃𝑃𝑘𝑘|𝑘𝑘 =  𝑃𝑃𝑘𝑘|𝑘𝑘−1 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1 (2.8) 

2.3 IMPLEMENTATION 

The measurement vector (2.9) is limited to one 
dimension: the raw signal. As it has been observed 
previously, the aim of this work is to detect sensor errors 
only by observing its evolutions, without external 
information which could also be incorrect. 

𝑦𝑦 = (𝑆𝑆𝑆𝑆𝑆𝑆) (2.9) 

We restrict the state vector to a first order system, i.e. we 
use one derivative to model the system. As we try to 
model the speed, this first order is adapted to a constant 
acceleration model. This approximation must be taken 
into account in the process noise covariance matrix 
(2.15). 

𝑋𝑋 = � 𝑆𝑆𝑆𝑆𝑆𝑆�
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� � (2.10) 

Using (2.1), (2.9) and (2.10) we can deduce both the state 
matrix (2.13) and observation matrix (2.14). 

(𝑆𝑆𝑆𝑆𝑆𝑆) =  [1 0] ∗ � 𝑆𝑆𝑆𝑆𝑆𝑆�
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� � (2.11) 

� 𝑆𝑆𝑆𝑆𝑆𝑆�
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� �

𝑘𝑘+1
=  �1 𝑇𝑇𝑇𝑇

0 1 � ∗ � 𝑆𝑆𝑆𝑆𝑆𝑆�
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� �

𝑘𝑘
(2.12) 

Hence: 
𝐻𝐻 =  [1 0] (2.13) 
𝐹𝐹 =  �1 𝑇𝑇𝑇𝑇

0 1 � (2.14) 

The transition matrix (2.14) assumes that acceleration is 
constant during the time steps. If it is not the case, we 
will have to adjust the noise model applied to 
acceleration 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, depending on the boat’s 
acceleration/ deceleration capability, brought back onto 
the iterative time 𝑇𝑇𝑇𝑇. 

𝑄𝑄 = �0 0
0 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2� (2.15) 

The 𝑄𝑄 matrix design is one of the trickiest aspects of the 
Kalman filter. If 𝑄𝑄 is too small, then the filter will be 
overconfident and if it is too large the estimate will be 
too affected by measurements. Normally this matrix can 
be more complex, but in order to limit the computing 
cost and as the iterative time is small, we have restricted 
it to (2.15). Measurement noise 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 depends on sensor 
characteristics, and more precisely on its inaccuracy. 
Techniques for a good variance estimate are proposed in 
(Mehra, 1971). 

𝑅𝑅 = [𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2] (2.16) 

The measurement noise covariance matrix (2.16) will 
influence the weight given to a new measurement during 
the prediction step (2.6). The more its value increases, 
the less the sensor data will be taken into account. In the 
case of our application, model and sensors noises are 
considered to be static, which is why subscripts 𝑘𝑘 of their 
respective matrices are no longer present in the 
equations. 

We have seen the implementation of the Kalman filter; 
now let us look at its error detection abilities. 

2.4 FAULT CONDITION 

The filter’s predictive ability enables us to know if we 
are dealing with bad data, by comparing the difference 
between the measured 𝑦𝑦𝑘𝑘  value and the estimated 
𝑋𝑋�𝑘𝑘value. The measurement residual is computed with 
equation (2.17): 

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 =  𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑋𝑋�𝑘𝑘|𝑘𝑘−1 (2.17) 

Measurement residual is also called innovation because 
once weighted by the Kalman gain during the update step 
(2.7), it determines the evolution of the prediction 
compared to the last estimate. 



In Figure 3 we observe the evolution of the 
𝑆𝑆𝑆𝑆𝑆𝑆�  residual with respect to the uncertainty drawn from 
the state covariance (2.8). In this experiment we are in 
the operating conditions of the sensor, so it is normal to 
observe that most of the data is in the 1 𝜎𝜎  standard 
deviation bounds (68%). 

Figure 3: Residual vs 1𝜎𝜎 uncertainty 

Now we have to determine if the last data from the 
sensor is valid or not by using the residual behaviour.  
Several methods from the literature can be used as 
Zarchan (Zarchan, 2009) or Salehfar (Salehfar, 1995). 
Zarchan compare the absolute of the residual with a 
multiple of the standard deviation of the innovation 
covariance √𝑆𝑆.   

This method requires huge computational resources and 
as we use an embedded system it is not suitable.  

The Salehfar method compares the square of the residual 
with a pre-specified detection threshold 𝑟𝑟: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘2 > 𝑟𝑟2 (2.19) 

If the condition (2.19) is satisfied then the sensor is 
reported faulty. 

It is the correct setting of 𝑟𝑟 which allows bad-data 
detection. Its determination is performed empirically but 
the good value is usually close to 10 times the sensor 
standard deviation (Huang, 2010):  𝑟𝑟 = 10 ∗ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 

Figure 4 shows an error condition that it detected with 
the filter that has been set up. 

While the boat was under way without making any 
particular manoeuvre, the raw speed suddenly drops to 5 
knots.  

This is clearly impossible but the error state 
communicated by the sensor (2 is for normal operation 
and 0 for error) occurs 960 milliseconds too late. For 
about one second, the entire measurement chain which 

uses this information was incorrect, this is not 
acceptable. 

Figure 4: Fault detection. Sea recording on a 60’ Imoca. 

By using the fault detection rule (2.19) based on the 
prediction of the filter, it is able to identify bad 
measurements from their very first iteration.  

The results from Figure 4 show that we are able to detect 
if the data provided by the sensor are valid or not. In this 
example if the values are not valid then no speed is 
communicated to the system, however a speed 
measurement is required.  

In the next section, we will present a solution in order to 
provide a speed value when the one provided by the  
transducer is no longer valid.  

3. SOW SUBSTITUTION

In order to provide an alternative for surface speed when 
the sensor is unable to provide a valid one, we propose to 
rely on another sensor: the GNSS receiver. Firstly, 
because of its ready availability and secondly because it 
relies on a different technology. Both sensors therefore 
have few common causes of breakdowns. 

However the GNSS receiver provides speed information 
which is not in the same referential as the one from the 
speedometer. Indeed the speedometer measures the flow 
velocity of the water, therefore the boats moving speed 
relative to the water surface. Unlike the GNSS receiver 
which measures its speed in the Earth referential, relative 
to the ground. 

3.1 ASSUMPTIONS 

Surface and ground speed differ with the effect of current 
and leeway. To simplify the calculations we consider that 
the current and leeway are constant over the iteration 

𝑆𝑆𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅 (2.18) 



time. So we can say that surface and ground speed differ 
from an almost constant offset. 
This may also be written as: 

The derivative of the speed relative to the water and the 
ground are identical.  

Compared to the previous implementation, measurement 
(3.1) and state (3.3) vectors are enhanced by ground 
speed. 

We retain that the boat acceleration is constant between 
two iterative steps so: 

𝑆𝑆𝑆𝑆𝑆𝑆�𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆�𝑘𝑘−1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑘𝑘−1 ∗ 𝑇𝑇𝑇𝑇 (3.2) 

𝑋𝑋 = �
𝑆𝑆𝑆𝑆𝑆𝑆�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�
𝑆𝑆𝑆𝑆𝑆𝑆�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�

� (3.3) 

Adding SOG to the state vector (3.3) aims to take 
advantage of the GNSS receiver information when 
surface speed is no longer available. We must now define 
the method that takes advantage of this new sensor. 

3.2 TOLERANT FAULT ESTIMATOR 

Unlike the previous implementation, transition and 
observation matrices are no longer constant.  

We will switch between two models with their respective 
matrices based on the state of the sensor, if the sensor is 
detected as being in default or not. We use subscript  _𝑁𝑁 
for normal operation mode and _𝐹𝐹 when the sensor has 
been identified as faulty. 

3.2 (a) Normal operating mode 

When the transducer is operational, the model is fed by 
each sensor, the observation matrix (3.4) includes two 
inputs, the whole measurement vector. 

𝐻𝐻𝑁𝑁 =  �1 0 0 0
0 0 1 0� (3.4) 

We find the same pattern (2.14) in the transition matrix 
(3.5) since it uses the same model and same filter order 
as for fault detection, with the additional dimensions for 
speed over ground. 

𝐹𝐹𝑁𝑁 =  �

1 𝑇𝑇𝑇𝑇 0 0
0 1 0 0
0 0 1 𝑇𝑇𝑇𝑇
0 0 0 1

� (3.5) 

3.2 (b) Substitution mode 

When condition (2.19) is satisfied, information returned 
by the faulty sensor must be rejected. Compared to (3.4) 
the substitution observation matrix (3.6) no longer takes 
into account information from the sensor to feed the 
model. 

𝐻𝐻𝐹𝐹  prevents the use of bad data during the a posteriori 
estimate (2.7).  

𝐻𝐻𝐹𝐹 =  �0 0 0 0
0 0 1 0� (3.6) 

It is the previous assumption which suggests that the 
derivative of the speed relative to the water and the 
ground are identical that allows us to maintain an 
evolution of the surface speed based on the variations of 
the other. The transition matrix (3.7) no longer uses the 
SOW accelerations to update the estimate but uses those 
from the SOG. 

𝐹𝐹𝐹𝐹 =  �

1 0 0 𝑇𝑇𝑇𝑇
0 1 0 0
0 0 1 𝑇𝑇𝑇𝑇
0 0 0 1

� (3.7) 

The a priori estimate 𝑆𝑆𝑆𝑆𝑆𝑆�  is now supplied by the SOG 
derivative. The evolutions of 𝑆𝑆𝑆𝑆𝑆𝑆�  are then based on 
those from the speed over ground estimate. Assumptions 
and approximations made must now be taken into 
account. 

3.3 NOISE MATRICES 

The sensor’s characteristics do not change whether they 
are in fault or not. There is no reason to change their 
noise, 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 is therefore the same. Although the GPS 
receptor used is very accurate, the order of magnitude of 
𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 is two times higher than 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 . 

Concerning noise models, when the transducer is 
estimated to be valid, the noise process matrix is similar 
to (2.15). 

𝑄𝑄𝑁𝑁 = �

0 0 0 0
0 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 0 0
0 0 0 0
0 0 0 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2

� (3.9) 

However 𝑄𝑄𝐹𝐹  does not refer to the same model, therefore 
it as to be adapted: 

𝜀𝜀∆𝐴𝐴𝐴𝐴𝐴𝐴  represents the modelling error introduced by the 
assumption that the ground and surface acceleration are 
identical. As 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and 𝜀𝜀∆𝐴𝐴𝐴𝐴𝐴𝐴  are two independent 
variables the standard deviation of their sum is equal to:  

𝑦𝑦 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 � (3.1) 

𝑅𝑅 = �𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆
2 0

0 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆2
� (3.8) 



�𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝜀𝜀∆𝐴𝐴𝐴𝐴𝐴𝐴2 

εSOW is no longer equal to zero because it would mean 
that the model is absolutely correct. 𝜀𝜀𝑆𝑆𝑆𝑆𝑆𝑆 =  𝜀𝜀∆𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇 

During substitution, Q  becomes: 

𝑄𝑄𝐹𝐹 =

⎣
⎢
⎢
⎡𝜀𝜀𝑆𝑆𝑆𝑆𝑆𝑆

2 0 0 0
0 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝜀𝜀∆𝐴𝐴𝐴𝐴𝐴𝐴2 0 0
0 0 0 0
0 0 0 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2⎦

⎥
⎥
⎤
 (3.10) 

3.4 RESULTS 

We have applied our tolerant fault estimator to the same 
application as in (2.19). Results are shown in Figure 5. 

Figure 5: SOW substitution during a fault. 

The first interesting thing to notice in this case is the fact 
that the ErrorState indicates that the sensor status 
remains at 2. This means the sensor is not aware of its 
own fault, despite the relatively long duration (4 sec). 

The Fault detection is performed at the right moment as 
soon as the condition (2.19) is satisfied. At this moment 
the filter switches to the substitution model. SOW 
estimate X starts to follow SOG variations during all the 
substitution phases and we can see that the false 
measurements are correctly rejected. 

Throughout this phase, the filter uncertainty increases, 
due to 𝜀𝜀𝑆𝑆𝑆𝑆𝑆𝑆 which is added to each iteration of (2.5) and 
which cannot be reduced during (2.8) since 𝐻𝐻𝐹𝐹(1,1) is 
equal to zero. 

A return to normal operating mode does not occur as 
soon as the condition (2.19) is no longer met because we 
want to ensure that the sensor has recovered the signal 
for a few iterations. The artefact of uncertainty which 

appears at the hang-up is due to the switching of the 
covariance matrices which have lost their continuity. It is 
not of great concern because we want to give more 
importance to the measurements during this transition 
phase. 

Our system now enables the detection of errors and 
proposes the use of substitution data so that the rest of 
the measurement chain continues to operate properly. 
Furthermore our approach also helps to improve signal 
quality when the sensor is not in an error state. The 
following section will present this aspect. 

4. SIGNAL IMPROVEMENT

The signal processing functions developed in the 
previous sections allow possibilities other than the fault 
detection. As the tools are in place, we will use them to 
improve the signal quality. 

The ultrasonic sensor is used in a navigation system that 
calculates and provides commands to the autopilot 25 
times per second, but the sensor provides new data only 2 
to 4 times per second, so there are two issues with this 
situation. The first is that the data refresh rate is not 
fixed, so it must be taken into account when applying the 
Kalman filter.  

The second is that the autopilot computes its algorithms 
at a higher frequency than the one provided by the 
sensor. To be efficient the sensor should provide its 
values as fast as the autopilot computes its own. 

4.1 TIME VARYING FILTER 

The information is coming from the sensor at random 
intervals. It is necessary to take this into account during 
the prediction step to propagate the state covariance 
(2.5). The transition matrix (2.14) needs to be reassessed 
to take into account the exact time since the last iteration: 
𝑇𝑇𝑇𝑇𝑘𝑘. 

𝐹𝐹𝑘𝑘 =  �1 𝑇𝑇𝑇𝑇𝑘𝑘
0 1 � (4.1) 

Likewise, the process noise covariance matrix (2.15) 
must be revised as it takes into account the acceleration 
model noise 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 itself related to 𝑇𝑇𝑇𝑇𝑘𝑘. 𝑄𝑄 becomes: 

𝑄𝑄𝑘𝑘 = �
0 0
0 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘

2� (4.2) 

The next section presents what can be done between the 
measurement updates. 

4.2 IMPROVED FREQUENCY 

As the navigation system runs its algorithms at 25Hz it is 
preferable to do the same with the Kalman filter, or 6 to 



12 times more often than the sensor refresh rate. The 
technique is simple, as planned by the filter:  

The prediction steps (2.4) & (2.5) are performed at each 
iteration. 𝑇𝑇𝑇𝑇 used in the transition matrix (2.14) is 
constant and worth 1/25.  However, the process noise 
covariance matrixes (4.2) increase with each new 
prediction step because the acceleration model noise 
𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 refers to time spent since the last update step.  

When new data from the sensor is available, update steps 
(2.6), (2.7) & (2.8) are performed. 

Figure 6 shows the filter 25Hz predictions (dotted line) 
between the measurements updates (o). As the estimate 
takes account of acceleration, the signal is continued 
until the next measurement update. When this 
acceleration is well modelled, prediction coincides with 
the next sensor measurement.  

The constant line corresponds to the shape of the signal 
that we would be forced to use without the prediction: 
holding the last measurement until the new one. 

Figure 6: Signal prediction between the measurement 
update. 

Note in Figure 6 that the uncertainty increases with the 
square of the time since the last measurement. This is in 
agreement with the noise covariance matrix (4.2), which 
increases with each prediction iteration without new 
measurement updates. 

The next section will present the complete methodology 
flow (from fault detection to the improved signal). 

4.3 METHODOLOGY FLOW 

Figure 7 summarizes the decision process for updating 
the model at 25Hz. 

Figure 7: Flowchart. 

Figure 7 shows the process used when the sensor is not at 
fault, as for the example in Figure 6. At each iteration, if 
no new sensor data is available, then the signal is 
constructed using the prediction. If new data is available, 
then we first apply the fault detection method (section 2). 
If the outcome is positive we switch to the substitution 
process (section 3). If the data is good then it is used to 
update the estimate. 

4.4 ADJUSTABLE PROCESS NOISE 

Figure 8: Poor acceleration estimate 

We have seen in Figure 6 that the speed prediction 
between measurement updates is suitable when we are in 
conditions described by the model, if the acceleration is 
close to a constant.  However this is no longer the case 
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when the boat switches from an acceleration phase to a 
deceleration phase, and vice versa. Indeed, in this 
situation the model approximation is borderline and tends 
to delay the signal. The first-order filter is no longer 
optimal. It is the situation presented in Figure 8: where 
the sensor is not in fault but subjected to waves. The 
resulting readout speeds are very fluctuating, so 
estimated accelerations induce errors and add noise to the 
signal. Therefore it is necessary to find a law that will 
detect these circumstances and will then correct the 
behaviour of the model. 

Shalom (Bar-Shalom, 2001) described a method adapted 
to this situation;  

Adjusting the process noise Q according to criteria based 
on normalized residual squared: 

𝜖𝜖𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 (4.3) 

With 𝑆𝑆𝑘𝑘 measurement covariance described in (2.18) 

(4.3) offers two possibilities, either Q is proportional to ϵ 
or increases by a scaling factor whenever ϵ exceeds a 
threshold. The second solution adopted: switching 
between two noise covariance matrices Q whenever ϵ is 
higher or lower than a threshold. 

 𝜖𝜖𝑘𝑘 >  𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚  (4.4) 

The switching threshold 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 is chosen such that the 
probability of it being reached under normal conditions is 
small. Normalizing the residual by the measurement 
covariance ensures that the residual is disassociated from 
measurement noise. Choosing 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 has to be done 
empirically but can be from a baseline in the order of 3 to 
5 times the sensor/signal standard deviation 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆. 

Figure 9: Here, see adjusted process noise 

When condition (4.4) is reached, the process noise 
ε_AccSOW is increased which will give more weight to 
the measurements. So the estimate will adhere to the 
measurements in such situations; this case is presented in 
Figure 9 which uses the same signal as Figure 8 but 
adjusting Q when condition (4.4) is met. The estimates 
do not add more noise; the behaviour of the filter is 
comparable to a low pass filter. 

5. CONCLUSIONS

In this paper, we have shown that even if the ultrasonic 
sensor is intrinsically accurate, sometimes errors may 
appear. In this case, all computations derived from these 
data also generate errors which can be harmful to the 
system’s performance (here on a boat). In order to detect 
these faults, we proposed the use of a Kalman filter that 
allows us not only, due to its predictive property, to 
detect the sensor’s errors (cf. section 2) but also to 
provide an alternative way to obtain a boat speed 
measurement when the sensor is in fault (cf. section 3). 

The implementation of this filter also improves the signal 
quality when the sensor operates correctly, indeed we are 
able to use the predictive property of the Kalman filter in 
order to predict the sensor data between two 
measurement cycles (cf. section 4). However, particular 
attention to the noise model must be given in order to 
adjust it when the transition matrix no longer correctly 
represents the behaviour.  

We have shown that with our proposed methodology, the 
ultrasonic sensor is now reliable and even more accurate.  
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