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With the dramatic development of location-based services, a large amount of vehicle trajectory data are available
and applied to different areas, while there are still many research challenges left, one of thembeing data access is-
sues. Most of existing tree-shape indexing schemes cannot facilitate maintenance and management of very large
vehicle trajectory data. How to retrieve vehicle trajectory information efficiently requires more efforts. According-
ly, this paper presents a trip-oriented data indexing scheme, named TripCube, for massive vehicle trajectory data.
Its principle is to represent vehicle trajectory data as trip information records and develop a three-dimensional
cube-shape indexing structure to achieve trip-oriented trajectory data retrieval. In particular, the approach is im-
plemented and applied to vehicle trajectory data in the city of Shanghai including N100 million locational records
per day collected from about 13,000 taxis. TripCube is compared to two existing trajectory data indexing structures
in our experiments, and the result exhibits that TripCube outperforms others.
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1. Introduction

With the dramatic development of location-based services, vast
amount of vehicle trajectory data can be easily gathered with GPS re-
ceivers equipped on vehicles. The abundance of trajectory data presents
a valuable opportunity for scholars to discover previously unknown but
potentially valuable information about vehiclemovements and traffic sit-
uations, such as developing trajectory data mining methods (Dodge,
Weibel, and Forootan, 2009; Izakian, Mesgari, and Abraham, 2016; Liu
and Karimi, 2006; Pfoser and Theodoridis, 2003; Zhou et al., 2015), infer-
ring residents travel characteristics and patterns (Hu,Miller, and Li, 2014;
Kang, Liu, and Wu, 2015; Liu, Wang, Xiao, and Gao, 2012; Torrens et al.,
2012), discovering spatio-temporal features of traffic flow (Ge et al.,
2010; Liu and Ban, 2012; Wang, Wang, Song, and Raghavan, 2017; Wei,
Zheng, and Peng, 2012; Zheng, Liu, Yuan, and Xie, 2011), and predicting
travel time (Chen and Rakha, 2014; Jiang and Li, 2013). In themeantime,
such data analysis avenues bring novel challenges, a crucial one being the
development of appropriate solutions for themost efficientmanagement
of vehicle trajectory data (Jiang and Li, 2013; Kwan, 2016). Efficient data
structures and algorithms need to be tailored for vehicle trajectory data
(Jiang and Yao, 2006; Katal, Wazid, and Goudar, 2013).

As themoving of vehicles is usually constrained by road network, the
spatial distribution of vehicle trajectory data is linear alongwith road seg-
ments. With predefined spatio-temporal granularity, original trajectory
data can be divided into trajectory segments. Many indexing structures

based on trajectory segments have been proposed. Most of them employ
R-tree-based indexing structure and set some spatial attributes (e.g., lon-
gitude and latitude) as keywords to index vehicle trajectory points or
segments. The principle of R-tree (Guttman, 1984) is to group nearby ob-
jects based on their spatial locations and to represent them with their
Minimum Bounding Rectangles (MBRs) stored in tree nodes. However,
in urban road network, long-term and massive vehicle trajectory data
must generate a great number of overlapping or redundant MBRs and
the corresponding indexing structure must be a bloated multilevel R-
tree. Such a R-tree indexing structure is difficult to maintain, which dra-
matically increases operational cost and reduces query efficiency.

Different from tree-shape indexing structure, the size of cube-shape
indexing structure is controllable by predefining spatio-temporal dimen-
sions, whereas the depth and breadth of tree-shape indexing structures
extend continuously. Most of cube-shape indexing approaches divide tra-
jectory data into segments by fixed spatial granularity or fixed distance,
andaggregate trajectory segmentswith the same spatio-temporal features
into cells of cube. Trajectory segment retrieval can bemade from the cube
with given query conditions. However, such trajectory segmentationwith
fixed granularity is only beneficial to trajectory retrieval under given gran-
ularity. Moreover, it splits the semantic integrity of vehicle trajectory that
brings obstacle to trajectory retrieval by given origin and destination.

In this paper, we attempt to explore a flexible indexing scheme for
vehicle trajectory data with cube structure. Generally, a vehicle trajecto-
ry indicates vehicle driving process and can be divided bymeaningful or-
igin-destination pairs (e.g., the pick-up anddrop-off points of taxicab, the
entrances and exits of express road system, etc.) to represent vehiclemo-
bility. Therefore, instead of fixed spatial granularity, we define vehicle
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trip to represent a travel casewith an origin-destination pair and tomake
flexible trajectory segmentation. Moreover, we design a trip-oriented
cube structure with three dimensions, namely origin, destination, and
departure time, to index vehicle trajectory data and achieve efficient
trip information retrieval.

Accordingly, this research introduces a vehicle trajectory data
indexing scheme for trip information retrieval. A trip-orientedvehicle tra-
jectory data indexing structure, named TripCube, is developed and imple-
mented. TripCube consists of a three dimensional index cube and a set of
trip information record. It is designed to evaluate queries on trip informa-
tion between any pair of origin and destination locations at any time. The
approach is applied to a large taxi trajectory data set in the city of Shang-
hai, and performance tables and figures as well as comparison to two
existing methods are presented. Our contributions can be summarised
as follows:

• TripCube is developed to address the challenge of organizing and
indexing massive vehicle trajectory data.

• Different frommost existing tree-shape indexing structures, TripCube
is based on a cube-shape indexing structure and allocates indexing
storage space before inserting new entries in order to facilitate main-
taining complicated indexing structure when data volume dramati-
cally increases.

• TripCube is especially applicable to long-term andmassive vehicle tra-
jectory data confined to a given road network.

• Compared with two existing trajectory-segment-based indexing
structures, TripCube exhibits more excellent query efficiency.

The rest of this paper is organized as follows. The next section gives a
detailed review of related works. TripCube is developed in Section 3 and
is validated in Section 4 through a series of experiments. The last section
concludes the paper.

2. Related works

In past few years, many research works for vehicle trajectory data
indexing have beenmade. R-tree (Guttman, 1984) is themost common
one. R-Tree and its variants, e.g., R + tree (Sellis, Roussopoulos, and
Faloutsos, 1987), R*-tree (Beckmann, 1990), X-tree (Berchtold, Keim,
and Kriegel, 1996), RT-tree (Xu, Han, and Lu, 1990), HR-tree
(Nanopoulos, Theodoridis, and Manolopoulos, 2006), B dual-Tree (Yiu,
Tao, and Mamoulis, 2008),R k-d Tree (Anandhakumar, Priyadarshini,
Monisha, Sugirtha, and Raghavan, 2010),Vor-Tree (Sharifzadeh and
Shahabi, 2010),HTPR*-Tree (Fang, Cao, Wang, Peng, and Song,
2012),and HBSTR-Tree (Ke et al., 2014), are often retained as the
indexing structure of vehicle trajectory data. They use the Minimum
Bounding Rectangle (MBR) to cluster spatial objects and create the
height-balanced tree to index spatial objects. The spatial range retrieval
based on MBR can be made with logarithmic query performance. How-
ever, maintaining such indexing structure is considerably complex, and
insertion, update, and deletion operations, whichmight change the cor-
relation and the volume of tree nodes, are time-consuming compared to
data retrieval queries (Guttman, 1984). Although vehicle trajectory data
are usually managed as a sort of “append-only record set”with only in-
sertion operations but no update or deletion operations, the rapid
growth of data volume still leads to a significant challenge for tree
index maintenance, which not only expands the index space, but also
lengthens the index query execution time.

As such, some existing solutions about trajectory segmentation have
already tried to deal with the data volume challenges of vehicle trajec-
tory data to some extent. Brakatsoulas, Pfoser, and Tryfona (2004) pro-
poses a trajectory data management scheme to model, store, and mine
moving object database. In this schema, vehicle trajectory is divided
into segments corresponding to the edge of road network. Leonardi et
al., (2014) deigns a spatio-temporal hierarchies framework, and decom-
poses a complete trajectory into trajectory segments with respect to
given distance and time. In addition, trajectory segment can be

delineated according to spatial region and time (Leonardi, Marketos,
Frentzos, and Giatrakos, 2010; Masciari, 2012; Masciari, 2015; Pelekis
and Theodoridis, 2014; Surya Prakash, 2014). With predefined spatio-
temporal granularities, these approaches split trajectory data as trajec-
tory segments with fixed distance or fixed range and index trajectory
segments with tree-shape indexing structure (B-tree, or R-tree). This
can reduce the complexity of tree indexing structure to some extent
and facilitate trajectory segment retrieval under the defined spatio-
temporal granularity. However, the fixed trajectory segmentation may
break the semantic integrity of vehicle trajectory and cause data errors
and losses inevitably (Masciari, 2015). The challenges caused by the
large vehicle trajectory data have not been solved yet.

As the description of a travel case, vehicle trip from an origin to a des-
tination contains complete semantic information. Using vehicle trip in-
formation from vehicle trajectory data, many research works have
been made to predict travel time (Jiang and Li, 2013; Xu, Li, and
Claramunt, 2017; Xu, Xu, Hu, and Li, 2017), analyze driving behavior
(Ren, Tao, and Xiang, 2014), and reveal traffic patterns (Dai, Yang, Guo,
and Ding, 2015; Izakian et al., 2016; Liu and Ban, 2012), etc. How to re-
trieval vehicle trip information efficiently has become a critical issue.
Therefore, it is very valuable to trajectory segmentation based on vehicle
trip for the management and application of vehicle trajectory data.

Since vehicle trip can be easily identified by origin, destination, and
departure time, a controllable indexing space can be designed with spa-
tial features (origin and destination points) and temporal features (de-
parture time). A cube structure can directly map the relationship of
spatio-temporal data, and some research results (Cao et al., 2015; Lins,
Klosowski, and Scheidegger, 2013; Pelekis and Theodoridis, 2014;
Surya Prakash, 2014) about cube structures for the management of
spatio-temporal data have been presented. Based on them, we attempt
to develop a novel trip-oriented trajectory data indexing scheme,
named TripCube, to support themaintenance and retrieval of vehicle tra-
jectory data. The TripCube consists of a three-dimensional indexing cube
and a set of vehicle trip information records. Vehicle trajectory data are
organized as vehicle trip information records and indexed by the cube
structure on its attributes (i.e., origin, destination, and departure time).

3. Methodology

3.1. Principles

TripCube is a two-level indexing structure, i.e., a trip level and a cube
level. At the trip level, we define trip information record as vts to repre-
sent trip information from raw vehicle trajectory data, where vts is a
composite structure that includes vehicle ID, origin, destination, depar-
ture time, travel route, travel time, and vehicle trajectory, etc. At the
cube level, a three dimensional index cube, consisting of one origin di-
mension, one destination dimension, and one time dimension, is gener-
ated to manage vtswith specific origin, destination, and departure time.
The origin and destination of a trip represent the travel starting and end-
ing positions, which can be determined by application purposes, e.g., the
pick-up/drop-off points of taxicab, the entrances and exits of express
road system, and commuter destinations, etc. TripCube converts vehicle
trajectory data to vts and indexes it by origin, destination, and departure
time. By this means, TripCube is not a typical spatial indexing structure.
Instead of performing a spatial search for vehicle trajectory points,
TripCube retrieves the set of vehicle trips with explicitly encoded spatial
and temporal query conditions (e.g., origin, destination, and departure
time). The structure of TripCube, its initialization procedure, and retrieval
algorithms are presented in the remaining part of this section.

3.2. Vehicle trip structure

To extract trip information from raw vehicle trajectory data, we de-
fine vehicle trip structure to represent trip information and corresponding
locational sample points.



Assume that raw vehicle trajectory data consist of massive sample
points and each sample point contains vehicle ID, timestamp, longitude,
latitude, speed, and matched location in road network. Raw vehicle tra-
jectory data are stored as a file on disk, and all sample points are sorted
by vehicle ID and timestamp. Let traj(s,num) defined by Eq. (1) represent
a trajectory of a vehicle with length num (the number of sample points)
from ith to (s+ num-1)th sample points in a rawdata file, whereℙ is the
raw vehicle trajectory data set, and pi is a sample point from ℙ.

traj s;numð Þ ¼ ⋃
sþnum−1

i¼s
pi;pi∈ℙ ð1Þ

Let vehicle trip structure (in short, vts), defined as Eq. (2), represent a
vehicle traveling case from an origin to a destination, where o is the ori-
gin of the trip, d is the destination of the trip, t is departure time, tt is trav-
el time, r is travel route, and s and num are position parameters of vehicle
trajectory data in ℙ defined by Eq. (1).

vts ¼ vehicle ID; o; d; t; tt; r; s;numf g ð2Þ

vts is a composite structure with rich trip information and is a light-
weight structure since vts does not contain massive sample points,
while the position parameters, s and num, indicate corresponding trajec-
tory data. Moreover, as shown in Eq. (3), letVTbe the complete set of vts
to represent all travel cases from ℙ. Therefore, raw trajectory data are or-
ganized as trip information set, and detailed trip information and corre-
sponding trajectory data are retrieved by VT.

VT ¼ ⋃vtsi ð3Þ

The creation ofVT is shown in Algorithm 1. Its input includes the raw
vehicle trajectory data set (ℙ) and the predefined origin and destination
set (ODs), and the output is the complete setVT. The time complexity of
Algorithm1 isΟ(n), and its running time is directly related to the volume
of ℙ. Algorithm 1 traverses ℙ to search every time-continuous or posi-
tion-continuous trajectory series (traj), creates vts and inserts it in VT.
The key step is to determinewhether the sample point pi is in the current
trajectory series (traj) by the continuity of time or position between pi
and the last sample point of traj (line 5). If two points are continuous,
the length of traj plus 1 in line 6, and otherwise, vts is generated from
traj and added in VT in line 9 to 10. Origin (o) and destination (d) of
vts can be matched by the predefined origin and destination set (ODs).
Departure time (t) is the timestamp of the fist sample point of traj. Travel
time (tt) is the difference between the timestamp of the first sample
point and the last sample point of traj. Travel route (r) is the sorted set
of matched road segments of traj.

Algorithm 1. CreateVT (ℙ, ODs).

With vts, raw vehicle trajectory data ℙ are organized as trip cases
from origin node to destination node in road network.

3.3. Three dimensional index cube

In order to achieve a fast access to vts from the vts set (VT), trip index
is created on o, d, and t of vts. Then, using the quadruple group (oi,dj,ts,te),
trip information can be retrieved with the ith origin, the jth destination,
and the departure time range [ts ,te). Accordingly, we define a three di-
mensional index cube structure to indexVTand retrieve trip information
with query conditions (oi,dj, ts,te), i.e. origin, destination, and departure
time range.

As shown in Eq. (4), ℂ½O�½D�½T� denotes a three dimensional cube
structure consisting of one origin dimension ðOÞ, one destination dimen-
sion ðDÞ, and one time dimension ðTÞ, whereO:count andD:count are the
number of origin nodes and destination nodes, respectively, andT:count
is determined by the time granularity and the time span of raw vehicle
trajectory data. cijk is defined as a cell with the ℂ coordinates of i, j, k.
Since the size of the cube ℂ is the product of O:count, D:count, and T:
count, the volume of ℂ is affected by the size of O, D, and T.

ℂ O½ � D½ � T½ � ¼ cijk
� ��0≤ i≤O:count;0≤ i≤D:count;0≤ i≤T:count; g ð4Þ

As shown in Eq. (5), each cell (cijk) of ℂ contains some pointers (gwijk)
to vts, where gwijk denotes thewth pointer in cijk. The asterisk (*) symbol is
a pointer operator, and vtsv is the vth vts inVT. Itmeans that, gwijk points to
vtsv with origin node (oi), destination node (dj), and departure time
range [tk ,tk+1)

cijk ¼ gijkw jw≥0; �gijkw ¼ vtsv
n o

ð5Þ

The creation of three dimensional index cubeℂ is given in Algorithm
2. Its inputs include the vts setVT, the predefined origin and destination
set (ODs), and time granularity tg, and its output is the three dimensional
index cube ℂ. In line 1 to 3, Algorithm 2 generates origin dimension (O)
and destination dimension (D) by ODs; set the time dimensionTwith tg

and the time span of ℙ; and then, create a blank cube structureℂ. In line
4 to 11, for each vts, get the address pointer (g) with the fetch (&) sym-
bol, the origin (oi), the destination (dj), and the departure time (tk). Then,
insert g into the specific cube cell cijk. The time complexity of Algorithm 2
is Ο(n3), and its running time is directly related to the size of ℂ.

Algorithm 2. Createℂ (VT, ODs, tg).

The origin dimension (O) and the destination dimension (D) ofℂ are
from the predefined origin-destination pairs (ODs). The time dimension
T is determined by tg. With the fixed time span of ℙ, tg is related to the
capacity of elements of ℂ, and negatively related to the number of
elements.

Using the complete index cubeℂ, we can directly access specific trip
information with the query conditions, i.e. the ith entrance (oi), the jth
exit (dj), and departure time range [ts ,te).

3.4. TripCube structure

Based on the above mentioned vts set (VT) and three dimensional
index cube (ℂ), we propose a vehicle trajectory data indexing structure,
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named TripCube. As shown in Eq. (6), TripCube denotes the proposed
indexing structure including a vts set (VT) and a cube structure (ℂ).

TripCube ¼ bVT;ℂN ð6Þ

TripCube is a trip-oriented two level indexing structure including a
trip level and a cube level. The trip level is a vts set (VT), and the cube
level is a three dimensional cube structure (ℂ) which consists of one or-
igin dimension ðOÞ, one destination dimensionðDÞ, and one timedimen-
sion ðTÞ . By recognizing vehicle trajectory series from origin to
destination in road network, trip information are organized by vts and
raw vehicle trajectory data set (ℙ) can be indexed by the vts set (VT).
Moreover, TripCube employs index pointer (gw) to mark the location
of vts inVT and these pointers are stored in specific cells of ℂwith con-
straint conditions of origin, destination, and departure time.

By integrating Algorithms 1 and 2, TripCube initialization, as shown in
Algorithm3, creates the vts set (VT) and the cube indexing structure (ℂ),
and inserts all vts and its pointers (gw) into them, respectively. The inputs
of Algorithm 3 are the raw vehicle trajectory data set (ℙ), the predefined
origin and destination set (ODs), and the time granularity (tg). The out-
put is the complete TripCube. Inheriting fromAlgorithm 2, the time com-
plexity of Algorithm 3 is also Ο(n3), and its running time is directly
related to the size of ℂ.

Algorithm 3. TripCube initialization (ℙ, ODs, tg).

In addition, TripCube has good scalability for the continuously in-
creasing raw vehicle trajectory data. Theoretically, the structure of
TripCube is extensible, and its volume is only limited by memory capac-
ity. Therefore, for trajectory data newly added in ℙ, ℂ needs to be ex-
panded to create more cells, and new vts and its pointer g are
generated to update VT and ℂ.

To create TripCube, all vehicle trip information and trip index pointers
are sorted in TripCubewith the form of vts and pointer (gw), and TripCube
is ready for retrieval. A schematic overview of TripCube is shown in Fig. 1.
The retrieval process is divided into three steps. First, based on query
conditions (oi,dj,ts,te), read pointer gw in cijk fromcube structureℂdirect-
ly; then, fetch vts from VT; finally, use s and num to extract trajectory
sample points from ℙ, and then integrate trip information and sample
points to answer trip-oriented vehicle trajectory retrieval.

Based on Fig. 1, trip-oriented queries can be answered with the algo-
rithm of trip retrieval shown in Algorithm 4. The inputs of Algorithm 4
are retrieval conditions, i.e. the ith entrance (oi), the jth exit (dj), and

departure time range [ts, te). The outputs are the retrieval results, i.e.
trip information set, named TRIP, and corresponding vehicle trajectory
series set, named TRAJ. First, generate retrieved cells set Cs from ts,
te,and tg (line 1). Then, traverse every pointer gw of every cell of Cs to ex-
tract trip information TRIP from VT and extract sample points TRAJ from
ℙ (line 2 to 11).

Algorithm 4. TripCube retrieval (oi,dj,ts,te).

Theoretically, as long as tg is short enough, the volume of cijkwill be 1
and the time complexity of Algorithm 4will beΟ(n×m). n is the number
of cells of Cs, and m is the number of pointer of cell. It indicates that the
retrieval performance of TripCube is directly related to the span of query

Fig. 2. The express road system of central Shanghai.

Fig. 1. Schematic overview of TripCube.
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time and the number of cells of TripCube. However, with the space com-
plexityΟ(n3), such tg is unacceptable and unfeasible because of a dramat-
ic increase in the volume of ℂ and limited memory usage. Moreover,
same to Algorithm 2, the space complexity of Algorithm 4 is Ο(n3).

The main idea of the TripCube is to generate and maintain the three-
dimensional index cube (ℂ) and the vts set (VT) to realize the storage
and retrieval of trip information from raw vehicle trajectory data. More-
over, TripCube is a flexible and extensible data indexing scheme fitting
formassive trajectory data,while its volume is limited bymemory capac-
ity. Finally, TripCube can achieve good retrieval performance because it
uses cube structure and vts set to read trip information and vehicle tra-
jectory sample points directly without traversing. Moreover, query
based on specific vehicles is also supported by TripCube. Based on the re-
trieval mechanism of TripCube, vehicle information between a specified
OD pair can be retrieved, where vehicles' identifications (e.g., ID) have
been included. For example, “how many vehicles passed by this OD
pair last month?”, “how many times did the vehicle with vehicle ID
‘12345’ travel between this OD pair last year?” and so on.

4. Experiments

4.1. Data

The express road system of Shanghai central city, China, provides the
spatial layout of experiments. As shown in Fig. 2, the express road system
covers about 680 km2 including 240 entrances and 246 exits. The total
length of road segments in the system is about 370 km. We define the
entrances and exits as the origins and destinations of vehicle trips and
use them to fill the ODs.

Vehicle trajectory data are from about 13,000 taxies covering the ex-
press road system for onemonth. In order to extract specific vehicle tra-
jectory data of the express road system, map matching of vehicle

trajectory data has been previously performed (Li, Li, Tang, and Xu, X.,
2010). Each sample point of vehicle trajectory consists of vehicle ID,
timestamp, longitude, latitude, speed, and matched location in the ex-
press road system. The average sampling rate of records is 0.1 Hz, and
the average number of records is about 14 million per day.

4.2. Implementation

All experiments are conducted with a computer equipped with Intel
i5, 3.4 GHz CPU, 4GB RAM, and Windows 10 64-bit operation system.

As mentioned in Section 4.1, ℙ is a set of locational sample points
matched on road segments. It is a continuously growing dataset, with
very large amount of taxi trajectory data streaming into it per day. Part
ofℙ (30days) fromApril 1, 2015 to April 30, 2015 is used in the following
experiments. In addition, to avoid the interference from commercial da-
tabase inherent indexing structures, ℙ is stored in a hard drive as text
files. The total capacity of ℙ file is about 12.9 GB, and the number of loca-
tional sample points is about 500 million.

To generate TripCube, its size is confirmed first. Because of the daily
periodicity change of taxi services, one whole day is a proper time gran-
ularity forTof TripCube, andT ¼ ftijApril 1;2015≤ti ≤April 30;2015; 1≤
i≤30g. Moreover, the origins and destinations of vehicle trip are supplied
by the entrances and exits of the express road system, whereO ¼ foij 1
≤ i≤240g,D ¼ fdij 1≤ i≤246g. Therefore, the size of TripCube used for the
following experiments is about 1.77million (30×240×246=1771200).

4.3. Performance of TripCube

Based on the given tg (one whole day) and the raw vehicle trajectory
data set ℙ, Algorithm 3 (see Section 4.4) generates VT from ℙ, creates a
blank cube structure ℂ, and stores each index pointer gw into ℂ. Fig. 3
shows the time consumption of TripCube initialization. The vertical axis
represents running time (unit: seconds), while the horizontal axis

Fig. 6. The relationship between time granularity (tg) and retrieval time.

Fig. 5. Retrieval time of TripCube.

Fig. 4. Storage space of TripCube.

Fig. 3. Time for generating TripCube.
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represents the number of vehicle trajectory sample points (unit: mil-
lions). Black points are the time of TripCube initialization. It is observed
that the trend of initialization time is linear, and the formula of trend
line is y=0.6163x, which indicates the time of TripCube initialization is
directly related to the volume of ℙ and about 0.6163 s permillion sample
points.

Fig. 4 shows the storage space of TripCube with different data vol-
umes. It takes about 0.52 MB storage space for each million sample
points, and the blank cube structure (ℂ) occupies about 10 MB storage
space.When the number of sample points is about 500million, the num-
ber of vehicle trips inVT is 2,848,289, and the number of cells in the cube
structure (ℂ) is about 1,771,200.

With query conditions (origin, destination, and departure time
range), vehicle trip information and trajectory sample points are re-
trieved by Algorithm 4. The time consumption is given in Fig. 5. Retrieval
time is changing in a near linear fashion. It takes about 19.09 s permillion
sample points.

Since the size ofℂ in TripCube is variedwith time granularity (tg) and
thenumber of entrances and exits, the relationship between the size ofℂ
and retrieval performance is explored.

Fig. 6 illustrates the relationship between time granularity (tg) (from
6 to 720 h) and retrieval time. Black points represent consuming time
for retrieving threemillions sample points and corresponding trip infor-
mationwith random retrieval conditions. Gray points represent the size
of ℂwith different time granularity (tg). The trend of retrieval time can
be divided into three stages. The first stage has smaller tg in 6 or 12 h.
With the increase of tg, the size of ℂ becomes smaller and the retrieval
time is reduced slowly. It means smaller tg produces larger cube struc-
ture (ℂ) and larger retrieved cell set Cs (see Algorithm 4) for massive
trajectory data retrieval. Therefore, smaller tg (6 or 12 h) leads to larger
overhead for cell operation. The second stage hasmoderate tg from24 to
144 h (6 days) and has the best retrieval performance than other stages.
The third stage has larger tg from 240 (10 days) to 720 h (30 days). The
larger tg reduces the number of cells of ℂ and increases the volume of
cells, which leads to the increase of the time to traverse pointers of vts
in cells. Especially, when tg is 720 h, all pointers of vts in each entrance
exit pair are stored in one cell, andℂ degenerates into a two-dimension-
al structure. Only specific vtswith departure time range [ts, te) can be ob-
tained by traversing all time pointers with oi and dj. The retrieval time is
maximum and 121 s. As a result, we suggest that a moderate tg is neces-
sary for high performance TripCube.

Fig. 7 shows the relationship between the number of origin-destina-
tion pairs and retrieval time. Similar with Fig. 6, black points represent
consuming time for retrieving three millions sample points and corre-
sponding trip information with 24-hour granularity tg and random re-
trieval conditions. Gray points represent the size of ℂ with seven
orders of magnitude of entrance-exit pairs. With the increase of the
number of entrance-exit pairs, the size of ℂ becomes larger, and the re-
trieval time is stationary on about 54 s. It indicates that the spatial distri-
bution of vehicle trajectory data (the number of entrance-exit pairs)
does not affect the retrieval performance of TripCube if the storage
space is sufficient to operate TripCube.

4.4. Comparative analysis

In view of the application targets ofmanaging andmaintaining vehi-
cle trajectory data, TripCube takes vehicle trip as a unit to create vts, and
uses origin, destination, and departure time to index trip information
and vehicle trajectory sample points. To evaluate the performance of
TripCube, two of trajectory data indexing schemes based on trajectory
segments are employed, and comparative analysis between TripCube
and them are made. They are proposed by Brakatsoulas et al. (2004),
named Brakatsoulas method, and Leonardi et al. (2014), named Leonardi
method, respectively.

Brakatsoulas method is a scheme of managing vehicle trajectory data,
in which, vehicle trajectory is divided into trajectory segments to store
and index. A trajectory segment corresponds to an edge of road network
and is defined as Eq. (7), where ts represents trajectory segments,
trajectory_id and edge_id are the identification of vehicle trajectory and
the edge of road network, time1 and time2 are the time vehicle enters
the edge and leaves the edge. The initialization of Brakatsoulas method
is to create the set of ts from ℙ and to store it as table using Oracle™ 11
DBMS suite with B-tree index on edge_id, time1, and time2. Trip informa-
tion retrievalwith Brakatsoulasmethod is to traverse the table of tswith a
given route anddeparture time range to get a set of ts, and then, integrate
ts with the same trajectory_id to generate output results, i.e. vehicle trip
information and trajectory data.

ts ¼ trajectory id; edge id; time1; time2f g ð7Þ

Similar to Brakatsoulas method, Leonardi method treats vehicle trajec-
tory as a series of trajectory segments to build a framework for modeling
trajectory data. The difference is that Leonardi method defines a flexible
spatio-temporal granularity and hierarchies, and decomposes a com-
plete trajectory into trajectory segments with designated spatio-tempo-
ral granularity. Then, set the edge of road network as the spatial
granularity and 24 h as the temporal granularity to model ℙ. The initial-
ization of Leonardimethod is to create four tables usingOracle™ 11DBMS
suite. They are: POINT_T storing raw sample points, SPACIAL_T storing
the position of each trajectory segment in POINT_T and indexed by spa-
tial granularity (the edge of the express road system), TEMPORAL _T
storing the position of each trajectory segment in POINT_T and indexed
by the temporal granularity (24 h), and FACT_T storing trajectory seg-
ment information (e.g. start time, end time, speed, etc.). With respect
to a given route and departure time range, trip information retrieval
with Leonardi method is to traverse SPACIAL_T and TEMPORAL_T to get
the set of trajectory segments, and then, generates trip information
from FACT_T and integrates vehicle trajectory from POINT_T.

Table 1
Features of the three indexing approaches.

Scheme Indexed object Indexed domain Retrieval conditions

TripCube Trajectory segments of multiple edges Space and time Origin, destination, and departure time.
Brakatsoulas method Trajectory segments of one edge Space Route and departure time
Leonardi method Trajectory segments of one edge Space and time Route and departure time

Fig. 7. The relationship between the number of entrances and exits and retrieval time.

Image of Fig. 7


Features of the three indexing approaches are given in Table 1. Com-
parisons aremade from three perspectives, i.e. generation, storage space,
and trip retrieval.

• Generation

Fig. 8 demonstrates the comparison results of generation time.
Brakatsoulas method needs to split a vehicle trajectory to edge-based tra-
jectory segments with B-tree index in edge_id, time1, and time2 (see Eq.
7). Leonardi method uses spatio-temporal granularity to generate trajec-
tory segments from ℙ and extracts trajectory segment information to fill
FACT_T. TripCube creates a vts set (VT) and a cube structure (ℂ). As indi-
cated in Fig. 8, the generation time of TripCube is the shortest. Note that
Brakatsoulas method and Leonardi method are based on Oracle™ 11
DBMS. Additional time consumption caused by Oracle's own mechanics
has been eliminated (e.g. time consumption of creating table space, cre-
ating data file, etc.). Time values of the two methods shown in Fig. 8 are
actual generation time (including CPU time, and I/O time, etc.).

• Storage space

Comparison results of storage space are given in Fig. 9. Note that the
storage space involved in the comparison does not include the storage
space of raw trajectory sample points. Brakatsoulasmethod and Leonardi
method store raw vehicle trajectory data as tables in Oracle, and ℙ of
TripCube are text files. Brakatsoulas method takes the largest space to
store B-tree structure on trajectory segments. Leonardi method needs
738 MB to create three tables to index trajectory segments. TripCube's
storage space is the smallest than others.

• Trip retrieval

As shown in Table 1, retrieval conditions of TripCube are the origin
and destination of a trip, and departure time,whereasBrakatsoulasmeth-
od and Leonardi method are the route of a trip and departure time. As

indicated in Fig. 10, thousands of vehicle trips are retrieved, TripCube is
the best than others. Furthermore, the retrieval time of TripCube in-
creases much less slowly with the increase of the number of trips than
Brakatsoulas method and Leonardi method. This is because TripCube can
directly read trip information,whereas Brakatsoulasmethod and Leonardi
method need to decompose the route to the edges set, search trajectory
segments of each edge, and then, compose trajectory segments to gener-
ate trip information.

5. Discussion and conclusion

This paper introduces a novel indexing structure, TripCube, to main-
tain and retrieve very large vehicle trajectory data. TripCube uses a
three-dimensional cube structure and a vts set to initialize and index ve-
hicle trajectory data. Efficient vehicle trip retrieval can be achieved by
specific query conditions including origin, destination, and departure
time range. The proposed approach is applied to a large vehicle trajectory
sample points set covering Shanghai express road system. A series of ex-
periments are conducted to evaluate the performance of TripCube. Two
other existing approaches are implemented and compared to the pro-
posed one. According to the comparison results, TripCube outperforms
others in terms of generation, storage space, and trip retrieval.

When applying it to vehicle trajectory data, TripCubemakes it possi-
ble to analyze traffic volumes and commuting patterns between any
pair of origin and destination in large-scale road networks. Future ef-
forts will be made in the following three directions. First, the spatio-
temporal scalability of TripCube will be examined with larger datasets.
Second, the size of three-dimensional cube cannot grow unlimitedly;
as such, a partitioned indexmay be an alternative. Third, the fundamen-
tal structure of TripCube may be revisited to explore the possibility of
further improving its performance.
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