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Context Data analysis: main results

Correlation heatmap on numeric variables (exam 1 and exam 2 learners only)
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e Learner modeling techniques are crucial for providing a personalized and efficient adaptive
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Clustering: method and results
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DESIGN: 2 between-subjects variables and 2 within-subjects variables:

2 Learning Conditions X 3 Grain Sizes X 2 Question Types X 2 Retention Intervals

e After aggregation, four types of variables were considered in our analysis: Reading-Reading group Reading-Quiz group
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e Data preprocessing:
o Data cleansing and variables aggregation (e.g. sum of durations, mean of quiz scores);
o Specific attention to duration data: presence of outliers — replaced by mean (over chapter
unit if relevant) when above a threshold (determined after histogram screening);

e After preprocessing: 251 students who passed both exams and 294 students who passed only
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o Balanced across learning conditions and grain sizes: RR (52%) vs RQ (48%), SGS (34%) vs The skilled learners (18%) The illusioned learners (21%)
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e Metacognitive Awareness Inventory (MAI) — validated in our population The eijfiment learners (29%) The conscientious but under-confident
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o 10 items were kept in total

. The struggling learners (16%
o Factor analysis — 2 dimensions (strategies and general knowledge on metacognition) 4 55115 (16%)
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Highlights & Perspectives
e Possible to use data from an e-learning platform to do post hoc analyses (could be interesting to use log file from a real . e Integrating both numeric and categorical variables inside the cluster analysis (e.g. AFDM)
learning context) — good support for formulating new hypotheses and guiding future experiments e Using a mediation model to look at direct and indirect effects of the covariates on the exam grades
e The IV (learning conditions and grain size) are not the only variables that explained the results, effects are modulated - e More complex modelling: Bayesian network (uncover more complex dependencies)
\ by uncontrolled variables : /
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