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Sud-Ouest - Avenue de l’Université, 64000 Pau, France

Abstract

In this paper, we develop reduced models to approximate the solution of the electromagnetic
scattering problem in an unbounded domain which contains a small perfectly conducting sphere.
Our approach is based on the method of matched asymptotic expansions. This method consists in
defining an approximate solution using multi-scale expansions over outer and inner fields related
in a matching area. We make explicit the asymptotics up to the second order of approximation
for the inner expansion and up to the fifth order for the outer expansion. We validate the results
with numerical experiments which illustrate the efficiency of the asymptotic models.

Keywords: Matched asymptotic expansions, Maxwell’s equations, Reduced models, Scattering
by spheres, Multipoles

1. Introduction

Many physical phenomena involve multiple electromagnetic scattering by small obstacles
[1, 2, 3, 4]. All exact theories and numerical techniques for computing the electromagnetic fields
are based on the resolution of the Maxwell’s equations. Numerical simulation of scattering by
small obstacles using finite difference or finite element methods can become very expensive or
not affordable in terms of computational time and memory capacity even in the context of mesh
refinement and parallel computation. The multiscale asymptotic analysis of problems posed in
singularly perturbed domains, such as domains with small holes, has turned out to be very ef-
ficient to define reduced models adapted to low cost numerical techniques. Indeed, it enables
to consider the size of the obstacle as a parameter which does not act from a geometrical point
of view [5, 6, 7, 8]. The resulting approaches provide algorithms to compute approximate solu-
tions at any order with respect to the small parameter [9, 10, 11, 12]. The method of matched
asymptotic expansions, which brought out of this branch of analysis, consists in defining local
approximations of the solution in different regions of the domain of propagation with appropriate
scales, and matching them in an intermediate area [7, 13, 14]. The justification of matching rules
is obtained thanks to the introduction of a uniformly valid expansion in the whole domain [15].
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Typically, this method is used for the single scattering case and the extension to multiple scatter-
ing is done with suitable models relying on Born or Foldy-Lax theory for instance [16, 17, 18].

Problems dealing with electromagnetic scattering by small obstacles have already given rise
to numerous works [12, 17, 19, 20]. In [12], Korikov and Plamenevskii used the method of
multi-scale expansions to approximate the solution of the interior Maxwell problem with a small
hole, both for time-harmonic and time-dependent Maxwell equations. They set up a rigorous
framework to express asymptotic expansions, including elliptic regularization, at any order. Error
estimates are performed for dissipative equations. In [19], Ammari et al. derived and rigorously
justified asymptotic formulas for perturbations in tangential trace of the magnetic field caused
in the presence of heterogeneities. These formulas are used in the theory of inverse problems
through boundary integral methods in order to determine physical properties, localization and
size of the obstacles [20, 21].

In this paper, we apply the method of matched asymptotic expansions to approximate the
solution of the time-harmonic Maxwell problem into an unbounded domain which contains a
small perfectly conducting spherical obstacle. This method leads to a collection of elementary
problems that can be solved analytically in spherical geometries. We derive explicitly the first
terms of the asymptotics, up to the second order for the inner expansion and up to the fifth
order for the outer expansion. We give a physical interpretation of the first terms through the
idealistic notion of electromagnetic multipoles. These new results are illustrated and validated
with numerical simulations.

This article is organized as follows. In Section 2, we describe the time-harmonic electromag-
netic scattering problem and we introduce the main results. The first terms of the asymptotic
expansions are analytically derived using the technique of separation of variables on the elemen-
tary problems provided by the matched asymptotic expansions method, see also Appendix A.
In Sections 3 then 4, we introduce some applications of the asymptotics. We show how the
obstacle can be replaced by equivalent multipolar point-sources. Then, we define a collected
dipolar model relying on the physical interpretation and an extension to multiple scattering prob-
lem based on a superposition principle. In Section 5, we present some numerical results which
illustrate the performance of the asymptotic models by considering two different incident waves.
Finally, we provide in Section 6 our conclusion and we describe some of the perspective of our
work.

2. Problem description and main result

2.1. Description of scattering problem
The propagation of time-harmonic electromagnetic waves of angular frequency ω > 0 in

a homogeneous, isotropic and linear dielectric medium with electric permittivity ε > 0 and
magnetic permeability µ > 0 is described by incident electromagnetic fields,E

i(x, t) = <
[
ε−

1
2 Ei(x) exp(−iωt)

]
, x ∈ R3, t > 0,

Hi(x, t) = <
[
µ−

1
2 Hi(x) exp(−iωt)

]
, x ∈ R3, t > 0,

where the corresponding phasors (Ei,Hi) satisfy the reduced Maxwell equations in the free-space
∇ × Ei − iκHi = 0 in R3,

∇ × Hi + iκEi =
j
c

in R3.
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We assume that the electric current density j is a smooth vector field with compact support in R3.
The wave-number κ satisfies the dispersion relation

κ =
ω

c

with the wave-speed c = (µε)−
1
2 . In the presence of small obstacles with characteristic length δ,

the incident field (Ei,Hi) is scattered and gives birth to outgoing electromagnetic fields (Eδ,Hδ)
solving the time-harmonic Maxwell equations. These scattered fields strongly depend on the
geometry and the physical properties of the obstacles. In this paper, we consider the multiple
electromagnetic scattering by K perfectly conducting spherical obstacles B(ck, δ), k = 1, . . . ,K,
each one being centered at ck with small radius δ > 0, see Figure 1. We assume that any distance

ck

c j

d jk δ
Ωδ

(Ei,Hi) (Eδ,Hδ)

Figure 1: Domain of propagation

d jk between two distinct centers is not small in comparison with λ. The domain of propagation
Ωδ is defined by

Ωδ = R3 \

K⋃
k=1

B(ck, δ).

Then, the scattering problem reads as

∇ × Eδ − iκHδ = 0 in Ωδ,

∇ × Hδ + iκEδ = 0 in Ωδ,

n × Eδ = −n × Ei on ∂Ωδ,

n · Hδ = −n · Hi on ∂Ωδ,

lim
r→∞

r
(
Hδ × x̂ − Eδ

)
= 0 uniformly in x̂ =

x
r
,

(2.1)

where r = |x| and n denotes the inward-pointing normal unit vector of Ωδ. It is well-known that
the electromagnetic scattering problem by a finite number of spheres is well-posed in Hloc(∇×,Ωδ),
see for instance [22, 23, 24]. Afterwards, we introduce the results that we have established for
K = 1 and c1 = 0, i.e. for the scattering problem by one small sphere B(0, δ) centered at the
origin with small radius δ. For any smooth vector field u, we denote by γn[u], γt[u] and γ×[u] its
radial and tangential traces relatively to the sphere, defined for x = rx̂ ∈ R3 by

γn[u](x) = x̂ · u(x̂), γt[u](x) = u(x̂) − γn[u](x) x̂, γ×[u](x) = x̂ × γt[u](x). (2.2)

Remark 1. The scalar field γn[u] and the vector fields γt[u] and γ×[u] will depend on x̂ even if the
vector field u is constant. In the rest of the paper, we will denote γ�[u](x) and γ�[u] indifferently,
for � = n, t or ×.
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2.2. Asymptotic expansions

In this paragraph, we introduce the outer and inner approximations of the solution to problem
(2.1), up to fifth order for the outer expansion and up to second order for the inner expansion.
These formulas have been obtained in Appendix A thanks to the method of matched asymptotic
expansions. Far from the obstacle, the exact solution (Eδ,Hδ) possesses the following formal
asymptotic expansion

Eδ = δ3Ẽ3 + δ5Ẽ5 + . . . , Hδ = δ3H̃3 + δ5H̃5 + . . . .

For any x ∈ Ω? = R3 \ {0}, the third-order outer terms Ẽ3 and H̃3 are given by

Ẽ3(x) = −
κ3

2
h(1)

1 (κr)γ×
[
Hi(0)

]
− κ3h̃(1)

1 (κr)γt
[
Ei(0)

]
− 2κ3 h(1)

1 (κr)
iκr

γn
[
Ei(0)

]
x̂,

H̃3(x) = −κ3h(1)
1 (κr)γ×

[
Ei(0)

]
+
κ3

2
h̃(1)

1 (κr)γt
[
Hi(0)

]
+ κ3 h(1)

1 (κr)
iκr

γn
[
Hi(0)

]
x̂,

(2.3)

where γn, γt and γ× are defined by (2.2), see also Remark 1. For any non-negative integer n, h(1)
n

is the spherical Hankel function of first kind of order n, see for instance [25], and h̃(1)
n is given by

h̃(1)
n (z) =

h(1)
n (z)
iz
− i

d
dz

[
h(1)

n (z)
]
, with h(1)

n (z) = −izn
[
−

1
z

d
dz

]n exp(iz)
z

.

Furthermore, for any x ∈ Ωδ, the fifth-order outer terms Ẽ5 and H̃5 are given by

Ẽ5(x) =
3κ5

10
h(1)

1 (κr)γ×
[
Hi(0)

]
−

3κ5

10
h̃(1)

1 (κr)γt
[
Ei(0)

]
−

3κ5

5
h(1)

1 (κr)
iκr

γn
[
Ei(0)

]
x̂

−
κ4

9
h(1)

2 (κr)γ×
[
Js

Hi (0)x̂
]
−
κ4

6
h̃(1)

2 (κr)γt

[
Js

Ei (0)x̂
]
−
κ4

2
h(1)

2 (κr)
iκr

γn

[
JEi (0)x̂

]
x̂

(2.4)

and

H̃5(x) = −
3κ5

10
h(1)

1 (κr)γ×
[
Ei(0)

]
−

3κ5

10
h̃(1)

1 (κr)γt
[
Hi(0)

]
−

3κ5

5
h(1)

1 (κr)
iκr

γn
[
Hi(0)

]
x̂

−
κ4

6
h(1)

2 (κr)γ×
[
Js

Ei (0)x̂
]

+
κ4

9
h̃(1)

2 (κr)γt

[
Js

Hi (0)x̂
]

+
κ4

3
h(1)

2 (κr)
iκr

γn

[
JHi (0)x̂

]
x̂,

(2.5)

where Jψ denotes the Jacobian matrix of ψ for ψ = Ei or Hi and Js
ψ = 1

2
(
Jψ+J>ψ

)
the symmetrized

Jacobian of ψ. Close to the obstacle, the exact solution (Eδ,Hδ) admits the formal asymptotic
expansion

Eδ(δ · ) = Ê0 + δÊ1 + δ2Ê2 + . . . , Hδ(δ · ) = Ĥ0 + δĤ1 + δ2Ĥ2 + . . . .

For any X ∈ Ω̂ := δ−1Ωδ, the zeroth-order inner terms Ê0 and Ĥ0 are given by

Ê0(X) =
1
r3

(
3γn

[
Ei(0)

]
x̂ − Ei(0)

)
, Ĥ0(X) = −

1
2r3

(
3γn

[
Hi(0)

]
x̂ − Hi(0)

)
, (2.6)
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with X = rx̂ and r = δ−1r. Moreover, for any X ∈ Ω̂, the first-order inner terms Ê1 and Ĥ1 are
given by

Ê1(X) =
1
r4

(
− γt

[
Js

Ei (0) x̂
]
+

3
2
γn

[
JEi (0) x̂

]
x̂
)

+
iκ

2r2 γ×
[
Hi(0)

]
,

Ĥ1(X) =
1
r4

(2
3
γt
[
Js

Hi (0) x̂
]
− γn

[
JHi (0) x̂

]
x̂
)

+
iκ
r2 γ×

[
Ei(0)

]
.

(2.7)

Finally, for any X ∈ Ω̂, the second-order inner terms Ê2 and Ĥ2 are given by

Ê2(X) =
1
r5

(2
3
γn

[
x̂>HEi (0) x̂

]
x̂ +

2κ2

15
γn

[
Ei(0)

]
x̂ −

1
2
γt
[
x̂>HEi (0) x̂

]
−

iκ
3
γ×

[
Js

Hi (0) x̂
]
−
κ2

5
γt
[
Ei(0)

])
+

iκ
3r3 γ×

[
Js

Hi (0) x̂
]

−
3κ2

10r3

(
Ei(0) − 3γn

[
Ei(0)

]
x̂
)

+
κ2

2r

(
Ei(0) + γn

[
Ei(0)

]
x̂
)

and

Ĥ2(X) =
1
r5

(
−

1
2
γn

[
x̂> HHi (0) x̂

]
x̂ −

κ2

10
γn

[
Hi(0)

]
x̂ +

3
8
γt
[
x̂>HHi (0)x̂

]
−

iκ
4
γ×

[
Js

Ei (0)x̂
]
+

3κ2

20
γt
[
Hi(0)

])
+

iκ
2r3 γ×

[
Js

Ei (0) x̂
]

+
3κ2

10r3

(
3γn

[
Hi(0)

]
x̂ − Hi(0)

)
−
κ2

4r

(
Hi(0) + γn

[
Hi(0)

]
x̂
)
,

where H� denotes the Hessian tensor of �, see Remark 2.

Remark 2. For any x = (x1, x2, x3)> ∈ R3 and f = ( f1, f2, f3)>, the vector field x>H f (0)x is
defined by its componentwise

(
x>H f (0)x

)
i
=

3∑
j=1

3∑
k=1

xk(∂k∂ j fi(0))x j, i = 1, 2, 3.

3. Physical interpretation: Identification of equivalent multipoles

Successive terms of the asymptotic expansions can be interpreted as electromagnetic fields
generated by electromagnetic multipoles. The multipolar sources are well-known in electromag-
netism [26, 27] and are characterized by moments [28, Appendix B]. Time-harmonic multipoles
come from time-dependent multipoles and the computation of electromagnetic fields is based on
the theory of retarded potentials, by taking into account the phase differences.
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3.1. Time-harmonic and static dipoles

3.1.1. Time-harmonic electric dipole
The time-harmonic electromagnetic fields Ee[d] and He[d] generated by an electric dipole

of moment d ∈ C3 are given by

Ee[d](x) =
exp(iκr)

4πr

{
2
(

1
r2 −

iκ
r

)
γn[d] x̂ −

(
1
r2 −

iκ
r
− κ2

)
γt[d]

}
,

He[d](x) =
exp(iκr)

4πr

(
κ2 +

iκ
r

)
γ×[d].

(3.1)

Remark 3. We recognize in (3.1) the Hankel functions of the first kind of order 1, so we can
rewrite (3.1) as

Ee[d](x) = −
κ3

4π

̃h(1)
1 (κr) γt[d] + 2

h(1)
1 (κr)
iκr

γn[d] x̂

 , He[d](x) = −
κ3

4π
h(1)

1 (κr)γ×[d].

The dipolar moment d can be a complex vector. In that case, the dipole moment can be seen
like a superposition of three out of time-phase dipole moments,

d =

3∑
k=1

dk exp(−iωτk) ek,

where (e1, e2, e3) denotes the canonical basis of R3, dk = |d ·ek | denotes the k-th dipole amplitude
and τk = −ω−1arg(d · ek) the k-th time-related phase difference, where arg(d · ek) is chosen into
(0, 2π). It is worth noting that the choice of basis is arbitrary. A dipole of moment d ∈ R3 can be
defined by an asymptotic process including a geometrical point of view: let ε be a real positive
number and consider the electromagnetic fields Eε[d] andHε[d] generated by a distribution of
two electric point-charges, located at + ε

2 d and − ε2 d, and an electric filiform current relating the
two point-charges, see Figure 2. The electromagnetic fields Eε[d] andHε[d] have the following

+0

+q

−q

Fε

εd
2

−
εd
2

+0

+q

+q
−q

−q

εd1

2
−
εd1

2
εd2

2
−
εd2

2

+q

+q
−q

−q
+0

−q

−q
+q

+q

Figure 2: Dipolar, quadrupolar and octupolar configurations

asymptotic behavior

Eε[d] = Ee[d] + O
ε→0

(ε), Hε[d] =He[d] + O
ε→0

(ε),
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and solve the following time-harmonic Maxwell problem in the sense of distributions,

∇ × Eε[d] − iκHε[d] = 0 in DDD ′(R3),

∇ ×Hε[d] + iκEε[d] =
1
c

jε[d] in DDD ′(R3),

∇ · Eε[d] = %ε[d] in D ′(R3),

∇ ·Hε[d] = 0 in D ′(R3),

(3.2)

where the charge density %ε[d] and the current density jε[d] which satisfy the charge conservation
principle are the distributions given by

%ε[d] =
q
ε

(
δ+ ε

2 d − δ− ε
2 d

)
, jε[d] =

iωq
ε

d
|d|

δFε
.

The electric dipole problem is the limit when ε tends to zero of (3.2),
∇ × E[d] − iκH[d] = 0 in DDD ′(R3),

∇ ×H[d] + iκE[d] = iκ d δ0 in DDD ′(R3),

∇ · E[d] = Dδ0[d] in D ′(R3),

∇ ·H[d] = 0 in D ′(R3).

(3.3)

where δ� denotes the Dirac distribution at point � ∈ R3 and Dδ0[d] stands for the differential of
δ0 in the direction d, defined in the sense of distributions by

〈Dδ0[d], f 〉 = − 〈δ0,∇ f · d〉 = −∇ f (0) · d ∀ f ∈ D(R3).

The case where the Dirac distribution is evaluated on the one-dimensional wire Fε is defined by

〈
δFε

, f
〉

=

∫
Fε

f (x) dx ∀ f ∈ D(R3).

3.1.2. Time-harmonic magnetic dipole
The time-harmonic electromagnetic fields Em[d] andHm[d] generated by a magnetic dipole

of moment d ∈ C3 are given by

Em[d](x) =
κ3

4π
h(1)

1 (κr)γ×[d], Hm[d](x) = −
κ3

4π

̃h(1)
1 (κr) γt[d] + 2

h(1)
1 (κr)
iκr

γn[d] x̂

 . (3.4)

A magnetic dipole is defined analogously to an electric dipole by replacing the electric sources
of (3.3), by magnetic sources into the Maxwell-Faraday equation (the first one of (3.3)) and the
Maxwell-Thomson equation (the last one of (3.3)).

3.1.3. Quasi-static dipoles
Electrostatic field generated by an electric dipole. The electric field E0,e[d] generated by an
electrostatic dipole of moment d ∈ C3 is given by

E0,e[d](x) =
1

4πr3

(
2γn[d] x̂ − γt[d]

)
. (3.5)
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This expression matches with (3.1) for ω = 0. Indeed, the electrostatic dipole correcponds to the
electric dipole (3.3) with ω = 0,∇ · E[d] = Dδ0[d] in D ′(R3),

∇ × E[d] = 0 in DDD ′(R3).

Quasi-static magnetic field generated by an electric dipole. The magnetic fieldH0,e[d] gener-
ated by a quasi-static electric dipole of moment d = 1

iκdκ ∈ C3 is given by

H0,e[d](x) = −
1

4πr2 γ×[dκ].

The problem satisfied by the quasi-static magnetic fieldH0,e[d] is obtained by taking ω = 0 into
the magnetic equations of the electric dipole problem (3.3),∇ ·H[d] = 0 in D ′(R3),

∇ ×H[d] = dκ δ0 in DDD ′(R3).

Extension to magnetic dipoles. The quasi-static electric field E0,m[d] and the magnetostatic field
H0,m[d] generated by a magnetic dipole of moment d = 1

iκdκ ∈ C3 read as

H0,m[d](x) =
1

4πr3

(
2γn[d] x̂ − γt[d]

)
, E0,m[d](x) =

1
4πr2 γ×[dκ].

3.2. Time-harmonic and static quadrupoles

3.2.1. Time-harmonic electric quadrupole
The time-harmonic electromagnetic fields Ee[Q] andHe[Q] generated by an electric quadrupole

of moment tensor Q are given by

Ee[Q](x) =
κ4

16π

3 h(1)
2 (κr)
iκr

γn[Qx̂] x̂ + h̃(1)
2 (κr)γt[Qx̂]

 , He[Q](x) = −
κ4

16π
h(1)

2 (κr)γ×[Qx̂].

(3.6)

The quadrupole moment tensor Q is a traceless and symmetric complex-valued two-rank tensor
[26]. Generally, a quadrupole can be decomposed as the superposition of five out of time-phase
quadrupoles,

Q =

5∑
k=1

mk exp(−iωτk) Mk,

where mk denotes the elementary amplitude, τk is the time-related phase difference and (Mk)k=1,...,5
is an arbitrary basis of elementary quadrupole tensors. A suitable basis is given by

M1 =

1 0 0
0 0 0
0 0 −1

 , M2 =

0 0 0
0 1 0
0 0 −1

 , M3 =

0 1 0
1 0 0
0 0 0

 , M4 =

0 0 1
0 0 0
1 0 0

 , M5 =

0 0 0
0 0 1
0 1 0

 .
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Each elementary tensor Mk can be expressed as

Mk =
1
2

(
ukv>k + vku>k

)
where uk, vk ∈ R3, illustrated in Figure 3, are given by u1 = (1, 0, 1)>, v1 = (1, 0,−1)>, u2 =

(0, 1, 1)>, v2 = (0, 1,−1)>, u3 = (1, 0, 0)>, v3 = u2 + v2, u4 = u3, v4 = (0, 0, 2)>, u5 = (0, 1, 0)>,
v5 = v4.

e1

e2

e3

u1

v1

u2

v2

u3
v3

u4

v4

u5

v5

Figure 3: A basis of real-valued quadrupoles defined by the elementary directions uk and vk associated with the basis of
elementary quadrupole moment tensors Mk .

Remark 4. It is also possible to normalize both uk and vk but it leads to a different quadrupole
moment tensor basis M̃k = 1

2 Mk.

Each quadrupole of real-valued moment tensor Mk can be interpreted thanks to an asymptotic
process with a geometrical point of view. Let ε > 0 and consider the electromagnetic fields
Eε[uk, vk] andHε[uk, vk] generated by a distribution of four electric point-charges, two positive
ones located at ± ε2 dk

1 where dk
1 = 1

2 (vk − uk), two negative ones located at ± ε2 dk
2 where dk

2 =
1
2 (uk + vk), and four electric filiform currents connecting the four point-charges, see Figure 2. As
a result, the electromagnetic fields have the following asymptotic behavior,

Eε[uk, vk] = Ee[Qk] + O
ε→0

(ε), Hε[uk, vk] =He[Qk] + O
ε→0

(ε)

and solve the following time-harmonic Maxwell problem,

∇ × Eε[uk, vk] − iκHε[uk, vk] = 0 in DDD ′(R3),

∇ ×Hε[uk, vk] + iκEε[uk, vk] =
1
c

jε[dk
1,d

k
2] in DDD ′(R3),

∇ · Eε[uk, vk] = %ε[dk
1,d

k
2] in D ′(R3),

∇ ·Hε[uk, vk] = 0 in D ′(R3),

where the charge density %ε[dk
1,d

k
2] is the distribution given by

%ε[dk
1,d

k
2] =

q
ε2

(
δ+ ε

2 dk
1

+ δ− ε
2 dk

1
− δ+ ε

2 dk
2
− δ− ε

2 dk
2

)
(3.7)

and jε[dk
1,d

k
2] is defined to satisfy the charge conservation principle.
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3.2.2. Time-harmonic magnetic quadrupole
The time-harmonic electromagnetic fields Em[Q] andHm[Q] generated by a magnetic quadrupole

of moment tensor Q are given by

Hm[Q](x) =
κ4

16π

3 h(1)
2 (κr)
iκr

γn[Qx̂]x̂ + h̃(1)
2 (κr)γt[Qx̂]

 ,
Em[Q](x) =

κ4

16π
h(1)

2 (κr)γ×[Qx̂].

3.2.3. Electrostatic quadrupole
The electric field E0,e[Q] generated by an electrostatic quadrupole is given by

E0,e[Q](x) =
3

16πr4

(
−3γn[Qx̂] x̂ + γt[Qx̂]

)
.

This expression matches with (3.6) for ω = 0. The electrostatic quadrupole is defined analo-
gously to electrostatic dipole by considering the charge density (3.7),∇ · E[u, v] = D2δ0[d1,d2] in DDD ′(R3),

∇ × E[u, v] = 0 in DDD ′(R3),

where the distribution D2δ0[d1,d2] denotes the second-order derivative of δ0 in the directions d1
and d2 defined in the sense of distributions.

3.3. Interpretation of the asymptotic expansions in terms of multipoles
Proposition 1. The electric inner term Ê0 given by (2.6) can be identified with (3.5), a static
electric field generated by an electric dipole of moment de = 4πEi(0). The magnetic inner term
Ĥ0 given by (2.6) can be identified with a static magnetic field generated by a magnetic dipole
of moment dh = −2πHi(0).

Proposition 2. The inner terms Ê1 and Ĥ1 in (2.7) can be identified with the superposition of

• a static electric (resp. magnetic) field generated by a magnetic (resp. electric) filiform
current connecting two point-charges of moment dh (resp. de), given by Proposition 1,

• a static electric (resp. magnetic) field generated by an electric (resp. magnetic) quadrupole
of moment tensor Qe = − 8π

3 J
s
Ei (0) (resp. Qh = 16π

9 Js
Hi (0)), where Js

� = 1
2 (J� + J>� ) denotes

the symmetric part of the Jacobian matrix of �.

Remark 5. The second-order inner terms Ê2 and Ĥ2 are a superposition of octupoles, quadrupoles
and dipoles.

Proposition 3. The outer terms Ẽ3 and H̃3 given by (2.3) can be identified with the superposition
of an electric (resp. magnetic) field generated by an electric dipole of moment de and an electric
(resp. magnetic) field generated by a magnetic dipole of moment dh.

Proposition 4. The outer terms Ẽ5 and H̃5 given by (2.4) and (2.5) can be identified with the
superposition of electric fields, respectively magnetic fields, generated by an electric dipole of
moment 3κ2

10 de, a magnetic dipole of moment 3κ2

5 dh, an electric quadrupole of moment tensor Qe
and a magnetic quadrupole of moment tensor Qh.
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4. Approximate models

In this section, we introduce a semi-analytical method reproducing the main properties of the
asymptotic expansions:

• an accurate formula for the equivalent dipolar approximation,

• a Born approximation of the solution.

4.1. Accurate equivalent dipolar approximation: the collected model
The asymptotic expansion truncated at order P reading as

δ3Ẽ3 + . . . + δPẼP, δ3H̃3 + . . . + δPH̃P,

provides an approximate solution. However, except for Ẽ3 and H̃3, the computation of asymp-
totic coefficients Ẽp and H̃p for p ≥ 5 involves successive derivatives of the incident fields,
which are not always numerically computable. Then, an improved approximate model should
avoid terms with incident derivatives. With this in mind, the improved approximation is de-
fined by collecting terms coming from dipolar sources into (2.3)-(2.4) and neglecting terms from
high-order multipoles. From a far-field point of view, the collected dipolar expansion is

Eδ ≈ αh(δ)Em[dh] + αe(δ)Ee[de], Hδ ≈ αh(δ)He[de] + αe(δ)Hm[dh],

where Ee[de] andHe[de] are given by (3.1) and Em[dh] andHm[dh] by (3.4). The coefficients
αe(δ) and αh(δ) are given by

αe(δ) = δ3
(
1 +

3(κδ)2

10

)
and αh(δ) = δ3

(
1 −

3(κδ)2

5

)
. (4.1)

Regarding numerical results on Figures 10, we observe that the collected approximations are
more accurate than the first approximations δ3Ẽ3 and δ3H̃3. Furthermore, the collected models
have a lower computational cost than the second approximations δ3Ẽ3 + δ5Ẽ5 and δ3H̃3 + δ5H̃5.

4.2. Born approximation
The Born approximation is based on a superposition principle of scattered fields generated in

the presence of obstacles in isolated configurations [29]. The exact solution is approximated by

Eδ ≈

K∑
k=1

Eδ,k, Hδ ≈

K∑
k=1

Hδ,k.

For k = 1, . . . ,K, the scattered fields Eδ,k and Hδ,k approximate the solution of the exterior
Maxwell problem in R3 \ B(ck, δ). We use the asymptotic expansions derived for the single-
scattering case transposed at the center ck of each obstacle,

Eδ,k(x) = αh(δ)Em[dk
h](x − ck) + αe(δ)Ee[dk

e](x − ck),

Hδ,k(x) = αh(δ)He[dk
e](x − ck) + αe(δ)Hm[dk

h](x − ck),

where the coefficients αe(δ) and αh(δ) are given by (4.1), dk
e = 4πEi(ck) and dk

h = −2πHi(ck).
Figure 4 shows a numerical simulation illustrating the Born approximation with K = 13 obstacles
of radius δ = 0.1. The incident field is an electromagnetic plane wave defined by (5.1) whose
physical parameters are given by (5.2) with λ = 1.
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Figure 4: Cross-sections of modulus of x-component of the approximate total electric field

Remark 6. In the context of real multiple scattering, in which we take into account interactions
between obstacles, the Born approximation appears to be less accurate as the number of obstacles
grows or the distance between the obstacles decreases.

5. Numerical simulations

Numerical results make evident orders of convergence for different levels of inner and outer
approximations. To illustrate the results, we propose two test-cases. The first one considers an
incident plane wave involving an analytical solution. In the second one, we consider an incident
gaussian beam that involves a numerical approximation of spectral coefficients.

5.1. The reference solution

Test 1: Incident plane wave. The spherical obstacle is enlighted by an electromagnetic plane
wave (Ei,Hi) of wavelength λ defined by

Ei(x) = p exp(ik · x), Hi(x) =
1
κ

(k × p) exp(ik · x), (5.1)

with k · p = 0. The wave vector k and the polarization vector p are chosen such that

k =

 0
0
−κ

 , p =

100
 , (5.2)

with κ = 2π
λ

.
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Test 2: Incident gaussian beam. An electromagnetic gaussian beam of waist w polarized by the
vector p given by (5.2) and directed through the z-axis, is approximated by

Ei(x) =
z0 exp(iκz)

z0 + iz
exp

(
−

1
2
κ(x2 + y2)

z0 + iz

)
p,

Hi(x) =
z0 exp(iκz)

z0 + iz
exp

(
−

1
2
κ(x2 + y2)

z0 + iz

)


ix
z0 + iz

iy
z0 + iz

1 −
1

κ(z0 + iz)
+

1
2

x2 + y2

(z0 + iz)2


× p,

for any x = (x, y, z), where z0 = κw2

2 denotes the Rayleigh length. This is an approximate solution
of the time-harmonic Maxwell equations assuming that w ≥ 2λ

π
. The reader can refer to [30] for

more details.
In Figure 5, we represent cross-sections of the real part of x-component of the different

incident electric fields. Thereafter, we investigate the numerical orders of convergence for the
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Figure 5: Cross sections of real part of the incident electric fields for λ = 5 and w = 5.

outer and inner approximations. The norm used in the comparison is the Sobolev L2-norm of
the difference between the reference solution and the approximate ones, computed into some
domains of interest. To obtain the data, we compute

• the reference scattered fields (Es
δ,H

s
δ) from their Mie series representation truncated at

Nmod = 8, with analytical coefficients1 for Test 1 and approximate coefficients, computed
from projections2 of the incident field onto the vector spherical harmonics for Test 2,

• the inner approximation (Êδ,P, Ĥδ,P) or the outer approximation (Ẽδ,P+3, H̃δ,P+3) for P =

0, 1 or 2, defined by (A.29)-(A.30),

• the relative errors ‖Es
δ − �

e‖/‖Ei + Es
δ‖ and ‖Hs

δ − �
h‖/‖Hi + Hs

δ‖, replacing (�e, �h) either
by (Êδ,P(·/δ), Ĥδ,P(·/δ)) or (Ẽδ,P+3, H̃δ,P+3), computed in spherical coordinates by using a
Riemann sum for angles θ and ϕ and a trapezoidal rule for radius r,

1from the Anger-Jacobi representation [22].
2we use a quadrature formula based on the Simpson’s rule.
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for a range of δ between 10−4 and 100. In Figures 6 and 7, we draw cross sections of the modulus
of x-component of the electric field induced by the two different tests with δ = 0.5, resp. δ = 0.1.
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Figure 6: Cross sections of x-component of the electric field associated to Test 1 with λ = 5 and δ = 0.5.
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Figure 7: Cross sections of x-component of the electric field associated to Test 2 with λ = 5, w = 5 and δ = 0.1.

5.2. Inner approximation
Let Ω2δ

δ be the subdomain of Ωδ independent of δ in the fast variable X, defined by

Ω2δ
δ = B(0, 2δ) \B(0, δ).

For the results in Figures 8 and 9, we investigate the numerical order of convergence in L2(Ω2δ
δ )-

norm of the inner approximations with respect to the size of the scatterers δ such that

δ ∈

{
1

10p , p = 0.5 : 0.1 : 3.5
}
.

Figure 8 depicts the different orders of convergence for the inner approximations (Êδ,P, Ĥδ,P) for
P = 0, 1, 2, induced by Test 1. The results are consistant in comparison with (A.32). Figure 9
shows similar results for electric field induced by Test 2. Numerically, we observe that for these
three first approximations, the following estimate holds

‖Es
δ − Êδ,P(

·

δ
)‖0,Ω2δ

δ
≤ c δP+1‖Es

δ + Ei‖0,Ω2δ
δ
, ‖Hs

δ − Ĥδ,P(
·

δ
)‖0,Ω2δ

δ
≤ c δP+1‖Hs

δ + Hi‖0,Ω2δ
δ
.
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Figure 8: Relative L2-errors for the inner approximations associated with Test 1 with λ = 5 depending on δ.

The convergence of the inner asymptotics is numerically validated regarding error estimates
(A.32). For the results of Test 2, a loss of convergence in asymptotic regime is due to the approx-
imation of the incident gaussian beam.

5.3. Outer approximation

Let Ω2λ
λ be the subdomain of Ωδ independent of δ given by

Ω2λ
λ = B(0, 2λ) \B(0, λ).

For the results in Figures 10 and 11, we investigate the numerical order of convergence for
L2(Ω2λ

λ )-norm of the outer approximations with respect to the size δ of the obstacles such that

δ ∈

{
1

10p , p = 0.3 : 0.1 : 3.2
}
.

Figure 10 displays the different orders of convergence for the outer approximations (Ẽδ,3, H̃δ,3),
(Ẽδ,5, H̃δ,5) and the collected dipolar model, see Paragraph 4.1, induced by Test 1, using L2-
norm into Ω2λ

λ . Figure 11 shows similar results for the outer approximations of the electric field
induced by Test 2. Except the collected approximation, noting that the fourth-order outer term is
identically zero, we observe that for the first outer approximations, the following estimate holds

‖Es
δ − Ẽδ,P‖0,Ω2λ

λ
≤ c δP+1‖Es

δ + Ei‖0,Ω2λ
λ
, ‖Hs

δ − H̃δ,P‖0,Ω2λ
λ
≤ c δP+1‖Hs

δ + Hi‖0,Ω2λ
λ
.

The convergence of outer asymptotics is numerically validated regarding error estimates (A.31).
For the results of Test 1, the different orders of convergence are consistant in comparison with
(A.31). For the results of Test 2, a loss of convergence in asymptotic regime is due to the approx-
imation of the incident gaussian beam.
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Figure 9: Relative L2-errors for the inner electric approximations associated with Test 2 with λ = 5 and w = 5 depending
on δ.

6. Conclusion and perspectives

The asymptotic analysis has turned out to be very relevant and efficient to derive approximate
solutions of the electromagnetic wave scattering problem by a small obstacle. Local approxima-
tions of electromagnetic fields have been derived and made explicit for a spherical scatterer
thanks to the matched asymptotic expansion method. The method provides accurate approxima-
tions as it is shown by numerical tests, while allowing the size of the obstacles to be very small
compared to the incident wavelength. Being analytic, the implementation is very simple and the
computational cost is very low.

Multiple scattering. This work is a first step to consider the multiple scattering problem by
spherical obstacles. In contrast with the Born approximation, the Foldy theory suggests to take
into consideration interactions between the scaterrers by approximating the scattered field as the
superposition of scattered fields generated by dipoles whose dipolar moments take into account
the local scattered fields as an incident wave for the other scatterers. Spectral-based methods
have been also developed to tackle multiple scattering problems in electromagnetism, see for
instance [31, 32, 33]. Comparisons between a such method and asymptotic models for multiple
scattering will be subject of a further work.

General geometry. A coupling between asymptotic models and a numerical method is required
to take into account obstacles of arbitary shape. Indeed, for a general geometry, inner problems
cannot be solved by the technique of separation of variables and the multipolar moments have to
be approximated.

Time-dependent domain. The application of the inverse Fourier transform should allow to de-
duce properties for the time-dependent problem. In particular, the identification of time-harmonic
symbol (−iω) with partial time-derivative ∂t has been already explored for the wave equation [14]
in contrast with the Helmholtz equation [16].
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Figure 10: Relative L2-errors for the outer approximations associated to Test 1 with λ = 5 depending on δ.

Appendix A. The matched asymptotic expansions

In this section, we develop the method of matched asymptotic expansions [7, 8] for solv-
ing the exterior time-harmonic Maxwell problem (2.1). This method involves two different ap-
proximations, the so-called outer and inner expansions. The outer expansion approximates the
solution far from the obstacle and it is defined into the punctured domain

Ω? = R3 \ {0} .

The inner expansion approximates the solution close to the obstacle and is defined in fast variable
X into the scaled domain

Ω̂ = R3 \B(0, 1).

We present the global construction of the asymptotic expansions including problems satisfied by
the successive terms, and how the expansions are related thanks to a matching procedure. Finally,
we apply the algorithm for deriving the first terms of the expansions.

Appendix A.1. Equations for the coefficients of the outer expansion
Far from the obstacle, the exact solution is approximated by the outer expansion

Eδ(x) ∼
δ→0

∞∑
p=0

δp Ẽp(x), Hδ(x) ∼
δ→0

∞∑
p=0

δpH̃p(x), (A.1)

where x = rx̂ is the space variable. The terms (Ẽp, H̃p), have to satisfy, for any p ≥ 0,
∇ × Ẽp − iκH̃p = 0 in Ω?,

∇ × H̃p + iκẼp = 0 in Ω?,

lim
r→∞

r
(
H̃p × x̂ − Ẽp

)
= 0 uniformly in x̂.

(A.2)
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Figure 11: Relative L2-errors for the outer approximations associated to Test 2 with λ = 5 and w = 5 depending on δ.

These problems are obtained by inserting the asymptotic expansions (A.1) into (2.1) and by
identifying the terms with the same powers in δ. To alter the ill-posedness of these problems in
Hloc(∇×,Ω?), the space of vector fields u such that

∀χ ∈ C∞c (R3), χ = 0 in a neighborhood of 0, χu ∈ L2(R3) and ∇ × (χu) ∈ L2(R3),

the behavior of (Ẽp, H̃p) in the vicinity of the origin is required and will be given by the matching
conditions (A.12).

Appendix A.2. Equations for coefficients of the inner expansion
In a neighborhood of the obstacle, the solution is approximated by the inner expansion

Eδ(δX) ∼
δ→0

∞∑
p=0

δp Êp(X), Hδ(δX) ∼
δ→0

∞∑
p=0

δpĤp(X), (A.3)

where X = δ−1x = rx̂ denotes the fast variable. To obtain the equations satisfied by the terms
(Êp, Ĥp), we make the scaling X = δ−1x into the curl operator (δ−1∇X × u = ∇x × u) and we
insert the expansions (A.3) into the volumic equations (2.1). The inner expansions then satisfy

1
δ
∇X ×

∞∑
p=0

δpÊp − iκ
∞∑

p=0

δpĤp = 0 in Ω̂,

1
δ
∇X ×

∞∑
p=0

δpĤp + iκ
∞∑

p=0

δpÊp = 0 in Ω̂.

We perform in these equations the identification of terms with the same power of δ. We thus
see that, since κ , 0, the terms (Êp, Ĥp) have to satisfy, for any p ≥ 0, the uncoupled nested
Maxwell equations,∇ × Êp = iκĤp−1 in Ω̂,

∇ · Êp = 0 in Ω̂,

∇ × Ĥp = −iκÊp−1 in Ω̂,

∇ · Ĥp = 0 in Ω̂,
(A.4)
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using the convention Ê−1 = Ĥ−1 = 0. The boundary conditions on Γ̂ := ∂Ω̂ are obtained by
identifying the Taylor series expansion in fast variable of the incident field in a neighborhood of
the origin and the boundary conditions satisfied by the exact solution on ∂Ωδ, with respect to the
powers in δ. We have  n × Êp = −n × Êi

p on Γ̂,

n · Ĥp = −n · Ĥi
p on Γ̂,

(A.5)

where
Êi

p(X) =
∑
|α|=p

1
α!

DαEi(0)(Xα), Ĥi
p(X) =

∑
|α|=p

1
α!

DαHi(0)(Xα).

The inner problems will be solved by induction for p ≥ 0. To do that, we decompose the
successive terms (Êp, Ĥp) as the sum of p + 1 vector fields

Êp(X) =

p∑
`=0

Êp,`(X), Ĥp(X) =

p∑
`=0

Ĥp,`(X). (A.6)

For ` = 0, . . . , p, the terms (Êp,`, Ĥp,`) have to satisfy the following nested equations∇ × Êp,` = iκĤp−1,`−1 in Ω̂,

∇ · Êp,` = 0 in Ω̂,

∇ × Ĥp,` = −iκÊp−1,`−1 in Ω̂,

∇ · Ĥp,` = 0 in Ω̂,
(A.7)

using the convention Êp,−1 = Ĥp,−1 = 0 for any integer p. To compute the inner terms of order
p ≥ 0, we have firstly to determine particular solutions of (A.7) for ` = 1, . . . , p and then, to
solve quasi-static problems satisfied by the header terms Êp,0 and Ĥp,0 in L2(Ω̂). It is worth
noting that additionnal conditions are required to guarantee the uniqueness of the electric terms,∫

Γ̂

n · Êp ds = 0, for any p ≥ 0. (A.8)

These null-charge conditions, called gauge conditions in [34, 35, 36], occur when κ , 0 and are
deduced from the initial problem (2.1),

−iκ
∫

Γδ

n · Eδ ds =

∫
Γδ

(∇ × Hδ) · n ds =

∫
Γδ

curlΓδ [n × (Hδ × n)] ds = 0. (A.9)

The last equality is obtained from the Stokes identity [23]. Conditions (A.8) are then obtained
by inserting the asymptotic expansion (A.3) into (A.9) and by identifying with the same powers
in δ.

Appendix A.3. Matching conditions
The outer and inner expansions are related thanks to a matching procedure which allows to

determine the behavior of (Ẽp, H̃p) close to the origin and the behavior of (Êp, Ĥp) towards the
infinity. For p ≥ 0, we expand Ẽp and H̃p in a neighborhood of the origin,

Ẽp(rx̂) ∼
r→0

+∞∑
q=−∞

(κr)qẼq
p(x̂), H̃p(rx̂) ∼

r→0

+∞∑
q=−∞

(κr)qH̃q
p(x̂) (A.10)
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and Êp and Ĥp towards the infinity, in the fast variable X = rx̂,

Êp(rx̂) ∼
r→+∞

+∞∑
q=−∞

(κr)qÊq
p(x̂), Ĥp(rx̂) ∼

r→+∞

+∞∑
q=−∞

(κr)qĤq
p(x̂). (A.11)

We will call singular part of the outer terms (Ẽp, H̃p) the series expansions∑
q<0

(κr)qẼq
p(x̂),

∑
q<0

(κr)qH̃q
p(x̂).

In the previous series expansions, it appears a singularity at the origin due to the negative powers
of r. The regular part is naturally defined by the series with non-negative indices q. In addition,
we define the increasing part of the inner expansion by∑

q≥0

(κr)qÊq
p(x̂),

∑
q≥0

(κr)qĤq
p(x̂).

and reciprocally the decreasing part, with indices q < 0. Following [7], the expansions (A.1)
and (A.3) are matched in the overlapping area by using the expansions (A.10) and (A.11) and
by identifying the terms with the same powers of δ and κr. We differenciate two matching
formulations following the sign of q ∈ R,

(
Ẽq

p, H̃
q
p
)

=
(
Êq

p+q, Ĥ
q
p+q

)
, −p ≤ q < 0,(

Ẽq
p, H̃

q
p
)

= 0, p ≤ 0 or q < −p,
(A.12)

and 
(
Êq

p, Ĥ
q
p
)

=
(
Ẽq

p−q, H̃
q
p−q

)
, 0 ≤ q ≤ p,(

Êq
p, Ĥ

q
p
)

= 0, p < 0 or q > p.
(A.13)

As a result, the singular part of the outer terms is linked with the decreasing part of the inner
terms and the increasing part of the inner terms is linked with the regular part of the outer terms.

Remark 7. In spherical geometries, modal decomposition of solutions can be used to determine
angular terms (Ẽq

p, H̃
q
p) and (Êq

p, Ĥ
q
p) and to make explicit the matching conditions (A.12)-(A.13)

through the spectral coefficients, see [28, Proposition 1].

Appendix A.4. Algorithm of construction

In this paragraph, we present the algorithm of construction of successive terms of the asymp-
totic expansions. Let p be a non-negative integer. Assuming that all the terms (Ẽk, H̃k) and
(Êk, Ĥk) are known up to the order p − 1, we show how to derive the inner and outer terms of
order p. This algorithm can be divided in two parts. On the one hand, the matching conditions
(A.12) allow to derive the singular part of the outer terms (Ẽp, H̃p). The regular part is then given
by solving (A.2) in R3, which is identically zero because of the Silver-Müller radiation condition.
On the other hand, the matching conditions (A.13) clarify the behavior towards the infinity of
the inner terms (Êp, Ĥp). These latter are then determined by solving the nested problems (A.4)
equipped with the boundary conditions (A.5) and the null-charge condition (A.8) for the electric
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terms. To summarize, the terms of order p into the asymptotic expansions are derived by solving
successively 

(
Ẽq

p, H̃
q
p
)

=
(
Êq

p+q, Ĥ
q
p+q

)
, −p ≤ q < 0,(

Ẽq
p, H̃

q
p
)

= 0, p ≤ 0 or q < −p,

 (i)

∇ × Ẽp − iκH̃p = 0 in Ω?,

∇ × H̃p + iκẼp = 0 in Ω?,

lim
r→∞

r
(
H̃p × x̂ − Ẽp

)
= 0 uniformly in x̂,

 (ii)

(
Êq

p, Ĥ
q
p
)

=
(
Ẽq

p−q, H̃
q
p−q

)
, 0 ≤ q ≤ p,(

Êq
p, Ĥ

q
p
)

= 0, p < 0 or q > p.

 (iii)

∇ × Êp = iκĤp−1 in Ω̂,

∇ · Êp = 0 in Ω̂,

n × Êp = −n × Êi
p on Γ̂,∫

Γ̂

n · Êp ds = 0,


(iv)

∇ × Ĥp = −iκÊp−1 in Ω̂,

∇ · Ĥp = 0 in Ω̂,

n · Ĥp = −n · Ĥi
p on Γ̂.

 (v)

(A.14)

Appendix A.5. First terms of the asymptotics

Step p = 0. Equations (i) of (A.14) imply that the zeroth-order outer terms (Ẽ0, H̃0) do not pos-
sess singularity at the origin. Since they satisfy the Silver-Müller radiation condition at infinity,
see (ii) of (A.14), (Ẽ0, H̃0) are identically zero. According to (iii) of (A.14), the behavior towards
the infinity of the inner terms of order 0 is given by

Ê0 = O
r→∞

(r−1) and Ĥ0 = O
r→∞

(r−1).

Hence, according to (iv)-(v) of (A.14), the zeroth-order terms Ê0 and Ĥ0 solve the following
problems,

∇ × Ê0 = 0 in Ω̂,

∇ · Ê0 = 0 in Ω̂,

n × Ê0 = −n × Ei(0) on Γ̂,

Ê0 = O
r→∞

(r−1) at infinity,∫
Γ̂

n · Ê0 ds = 0,



∇ × Ĥ0 = 0 in Ω̂,

∇ · Ĥ0 = 0 in Ω̂,

n · Ĥ0 = −n · Hi(0) on Γ̂,

Ĥ0 = O
r→∞

(r−1) at infinity.

(A.15)

These problems can be solved with the technique of separation of variables, see [23, Section 2.5]
for solutions to Laplace equation in spherical geometries or [28, Section C.3] for a more adapted
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framework to nested Maxwell equations. The unique solutions of (A.15) are given by (2.6). In
addition, we observe that

Ê0 = O
r→∞

(r−3) and Ĥ0 = O
r→∞

(r−3). (A.16)

Step p = 1. Equations (i) of (A.14) and (A.16) imply (Ẽq
1, H̃

q
1) = (0, 0) for any q < 0. Hence,

according to (ii) of (A.14), we deduce that

Ẽ1 = H̃1 = 0.

Equations (iii) of (A.14) imply (Êq
1, Ĥ

q
1) = (0, 0) for any q ≥ 0. Hence,

Ê1 = O
r→∞

(r−1) and Ĥ1 = O
r→∞

(r−1). (A.17)

According to (A.17) and (iv)-(v) of (A.14), the first-order terms Ê1 and Ĥ1 solve the following
nested Maxwell problems,

∇ × Ê1 = iκĤ0 in Ω̂,

∇ · Ê1 = 0 in Ω̂,

n × Ê1 = −n ×
(
JEi (0)x̂

)
on Γ̂,

Ê1 = O
r→∞

(r−1) at infinity,∫
Γ̂

n · Ê1 ds = 0,



∇ × Ĥ1 = −iκÊ0 in Ω̂,

∇ · Ĥ1 = 0 in Ω̂,

n · Ĥ1 = −n ·
(
JHi (0)x̂

)
on Γ̂,

Ĥ1 = O
r→∞

(r−1) at infinity.

According to (A.6), we decompose the vector fields Ê1 and Ĥ1 under the form

Ê1 = Ê1,0 + Ê1,1 and Ĥ1 = Ĥ1,0 + Ĥ1,1,

where Ê1,1 and Ĥ1,1 are particular solutions of the nested equations obtained by taking p = ` = 1
into (A.7),

∇ × Ê1,1 = iκĤ0 in Ω̂,

∇ · Ê1,1 = 0 in Ω̂,

Ê1,1 = O
r→∞

(r−1) at infinity,


∇ × Ĥ1,1 = −iκÊ0 in Ω̂,

∇ · Ĥ1,1 = 0 in Ω̂,

Ĥ1,1 = O
r→∞

(r−1) at infinity.

(A.18)

The terms Ê1,0 and Ĥ1,0 solve the static Maxwell problems obtained by taking p = 1 and ` = 0
into (A.7) by taking into account the boundary conditions (A.5) and the condition (A.8),

∇ × Ê1,0 = 0 in Ω̂,

∇ · Ê1,0 = 0 in Ω̂,

n × Ê1,0 = −n ×
(
JEi (0)x̂

)
− n × Ê1,1 on Γ̂,

Ê1,0 = O
r→∞

(r−1) at infinity,∫
Γ̂

n · Ê1,0 ds = −

∫
Γ̂

n · Ê1,1,

(A.19)
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and 

∇ × Ĥ1,0 = 0 in Ω̂,

∇ · Ĥ1,0 = 0 in Ω̂,

n · Ĥ1,0 = −n ·
(
JHi (0)x̂

)
− n · Ĥ1,1 on Γ̂,

Ĥ1,0 = O
r→∞

(r−1) at infinity.

(A.20)

These problems are solved with the technique of separation of variables. Particular solutions of
(A.18) are given by

Ê1,1(X) =
iκ

2r2 γ×[Hi(0)], Ĥ1,1(X) =
iκ
r2 γ×[Ei(0)], X ∈ Ω̂. (A.21)

The boundary conditions into (A.19) and (A.20) can be written as

n × Ê1,0 = −n ×
(
Js

Ei (0)x̂
)

and n · Ĥ1,0 = n ·
(
JHi (0)x̂

)
on Γ̂,

where Js
� denotes the symmetric part of the Jacobian matrix of �, given by Js

� = 1
2 (J� + J>� ).

Moreover, the last equation in (A.19) is also a null-charge condition,∫
Γ̂

n · Ê1,0 ds = −

∫
Γ̂

n · Ê1,1︸  ︷︷  ︸
= 0

ds = 0.

Then, the unique solutions of (A.19) and (A.20) are given by

Ê1,0(X) =
1
r4

(
−γt

[
Js

Ei (0)x̂
]

+
3
2
γn

[
JEi (0)x̂

]
x̂
)
, X ∈ Ω̂,

Ĥ1,0(X) =
1
r4

(
2
3
γt

[
Js

Hi (0)x̂
]
− γn

[
JHi (0)x̂

]
x̂
)
, X ∈ Ω̂.

(A.22)

From (A.21) and (A.22), we deduce that

Ê1,1 = O
r→∞

(r−2), Ĥ1,1 = O
r→∞

(r−2) Ê1,0 = O
r→∞

(r−4), Ĥ1,0 = O
r→∞

(r−4).

Step p = 2. Equations (i) of (A.14) imply (Ẽq
2, Ẽ

q
2) = (0, 0) for any q < 0. In addition, by (ii) of

(A.14), we deduce that
Ẽ2 = H̃2 = 0.

According to (iii), we deduce that (Êq
2, Ĥ

q
2) = (0, 0) for any q ≥ 0. As a consequence,

Ê2 = O
r→∞

(r−1) and Ĥ2 = O
r→∞

(r−1). (A.23)
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According to (iv)-(v) of (A.14) and (A.23), the second-order terms Ê2 and Ĥ2 solve the following
nested Maxwell problems,

∇ × Ê2 = iκĤ1 in Ω̂,

∇ · Ê2 = 0 in Ω̂,

n × Ê2 = −
1
2

n ×
(
x̂>HEi (0)x̂

)
on Γ̂,

Ê2 = O
r→∞

(r−1) at infinity,∫
Γ̂

n · Ê2 ds = 0,



∇ × Ĥ2 = −iκÊ1 in Ω̂,

∇ · Ĥ2 = 0 in Ω̂,

n · Ĥ2 = −
1
2

n ·
(
x̂>HHi (0)x̂

)
on Γ̂,

Ĥ2 = O
r→∞

(r−1) at infinity.

We decompose the vector fields Ê2 and Ĥ2 under the form

Ê2 = Ê2,0 + Ê2,1 + Ê2,2 and Ĥ2 = Ĥ2,0 + Ĥ2,1 + Ĥ2,2,

where Ê2,` and Ĥ2,` for ` > 0 are particular solutions of the nested equations obtained by setting
p = 2 into (A.6),

∇ × Ê2,` = iκĤ1,`−1 in Ω̂,

∇ · Ê2,` = 0 in Ω̂,

Ê2,` = O
r→∞

(r−1) at infinity,


∇ × Ĥ2,` = −iκÊ1,`−1 in Ω̂,

∇ · Ĥ2,` = 0 in Ω̂,

Ĥ2,` = O
r→∞

(r−1) at infinity.

(A.24)

while Ê2,0 and Ĥ2,0 solve the static Maxwell problems obtained by taking p = 2 and ` = 0 into
(A.7) and taking account of the boundary condition (A.5),

∇ × Ê2,0 = 0 in Ω̂,

∇ · Ê2,0 = 0 in Ω̂,

n × Ê2,0 = −n ×
(
x̂>HEi (0)x̂

)
− n ×

(
Ê2,1 + Ê2,2

)
on Γ̂,

Ê2,0 = O
r→∞

(r−1) at infinity,∫
Γ̂

n · Ê2,0 ds = −

∫
Γ̂

n ·
(
Ê2,1 + Ê2,2

)
ds,

(A.25)



∇ × Ĥ2,0 = 0 in Ω̂,

∇ · Ĥ2,0 = 0 in Ω̂,

n · Ĥ2,0 = −n ·
(
x̂>HHi (0)x̂

)
− n ·

(
Ĥ2,1 + Ĥ2,2

)
on Γ̂,

Ĥ2,0 = O
r→∞

(r−1) at infinity.

(A.26)

The problems (A.24) for ` = 1, 2, (A.25) and (A.26) are solved with the technique of separation
of variables. Particular solutions of (A.24) for ` = 1 are given by

Ê2,1(X) =
iκ

3r3 γ×
[
Js

Hi (0)x̂
]
, Ĥ2,1(X) =

iκ
3r3 γ×

[
Js

Ei (0)x̂
]
, X ∈ Ω̂.
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Particular solutions of (A.24) for ` = 2 read as

Ê2,2(X) =
κ2

2r

(
γt

[
Ei(0)

]
+ 2γn

[
Ei(0)

]
x̂
)
, X ∈ Ω̂,

Ĥ2,2(X) = −
κ2

4r

(
γt

[
Hi(0)

]
+ 2γn

[
Hi(0)

]
x̂
)
, X ∈ Ω̂.

Note that the gauge condition in (A.25) is actually a null-charge condition because n · Ê2,1 = 0
on Γ̂ and ∫

Γ̂

Ê2,2 · n = κ2
∫

Γ̂

n ·
[
Ei(0)

]
= κ2

∫
R3\Ω̂

∇ ·
[
Ei(0)

]︸ ︷︷ ︸
constant

= 0,

where R3 \ Ω̂ is a bounded domain. Hence, the unique solutions of (A.25) and (A.26) are given
by

Ê2,0(X) =
1
r5

{
−

1
2
γt

[
x̂>HEi (0)x̂

]
−

iκ
3
γ×

[
Js

Hi (0)x̂
]
−
κ2

5
γt

[
Ei(0)

]
−

4
3

(
−

1
2
γn

[
x̂>HEi (0)x̂

]
−
κ2

10
γn

[
Ei(0)

] )
x̂
}

+
3κ2

10r3

(
3γn

[
Ei(0)

]
x̂ − Ei(0)

)
,

and

Ĥ2,0(X) =
1
r5

{
−

3
4

(
−

1
2
γt

[
x̂>HHi (0)x̂

]
+

iκ
3
γ×

[
Js

Ei (0)x̂
]
−
κ2

5
γt

[
Hi(0)

] )
−

(1
2
γn

[
x̂>HHi (0)x̂

]
+
κ2

10
γn

[
Hi(0)

] )
x̂
}

+
3κ2

10r3

(
3γn

[
Hi(0)

]
x̂ − Hi(0)

)
,

for any X ∈ Ω̂.

Step p = 3. Equations (i) of (A.14) imply

(Ẽ−3
3 , H̃−3

3 ) = (Ê−3
0 , Ĥ−3

0 ), (Ẽ−2
3 , H̃−2

3 ) = (Ê−2
1 , Ĥ−2

1 ), (Ẽ−1
3 , H̃−1

3 ) = (Ê−1
2 , Ĥ−1

2 ). (A.27)

Since the outer terms (Ẽ3, H̃3) are O(r−3) when r tends to zero and they satisfy the time-harmonic
Maxwell problem (ii) of (A.14), we can seek (Ẽ3, H̃3) under the form

Ẽ3(x) = h(1)
1 (κr)ũ1(x̂) + h̃(1)

1 (κr)ũ2(x̂) +
h(1)

1 (κr)
iκr

ũ3(x̂),

H̃3(x) = h(1)
1 (κr)̃v1(x̂) + h̃(1)

1 (κr)̃v2(x̂) +
h(1)

1 (κr)
iκr

ṽ3(x̂),

see [22, 23]. In the vicinity of the origin, we obtain the following behavior
Ẽ3(x) =

1
(κr)3

(
ũ2 − ũ3

)
−

i
(κr)2 ũ1 −

1
2κr

(
ũ2 + ũ3

)
+ O

r→0
(1),

H̃3(x) =
1

(κr)3

(̃
v2 − ṽ3

)
−

i
(κr)2 ṽ1 −

1
2κr

(̃
v2 + ṽ3

)
+ O

r→0
(1).

(A.28)
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Finally, by identifying (A.27) and (A.28) with respect to the (κr)-powers, we obtain

ũ1 = −
κ3

2
γ×

[
Hi(0)

]
, ũ2 = −κ3γt

[
Ei(0)

]
, ũ3 = −2κ3γn

[
Ei(0)

]
x̂,

ṽ1 = −κ3γ×
[
Ei(0)

]
, ṽ2 =

κ3

2
γt

[
Hi(0)

]
, ṽ3 = κ3γn

[
Hi(0)

]
x̂.

Remark 8. Actually, only the knowledge of ũ1 and ṽ1 is needed to compute the third-order outer
terms (Ẽ3, H̃3). Indeed, properties of duality for outgoing solutions of time-harmonic Maxwell
equations imply that

ṽ2 = x̂ × ũ1 and ũ2 = ṽ1 × x̂.

Moreover, the last unknown vectors ũ3 and ṽ3 can be deduced from the identification with respect
to (κr)−3 of(A.27) with (A.28). As a consequence, the computation of (Ẽ4, H̃4) is reduced to 4
unknown vector fields, the computation of (Ẽ5, H̃5) is reduced to 6 unknown vectors fields and
so on. In particular, the outer terms (Ẽ4, H̃4) are entirely determined by the conditions extracted
from (i) of (A.14), given by

(Ẽ−3
4 , H̃−3

4 ) = (Ê−3
1 , Ĥ−3

1 ) = (0, 0) and (Ẽ−4
4 , H̃−4

4 ) = (Ê−4
0 , Ĥ−4

0 ) = (0, 0).

As a result, (Ẽ4, H̃4) = (0, 0). Likewise, the outer terms (Ẽ5, H̃5) are entirely determined by the
conditions extracted from (i) of (A.14), given by

(Ẽ−3
5 , H̃−3

5 ) = (Ê−3
2 , Ĥ−3

2 ) , (0, 0),

(Ẽ−4
5 , H̃−4

5 ) = (Ê−4
1 , Ĥ−4

1 ) , (0, 0),

(Ẽ−5
5 , H̃−5

5 ) = (Ê−5
0 , Ĥ−5

0 ) = (0, 0).

Appendix A.6. Error estimates
For any non-negative integer P ∈ N, we introduce the vector fields Ẽδ,P and H̃δ,P, respectively

Êδ,P and Ĥδ,P, reading as the truncated series made up of the P + 1 first terms of the outer
expansion, respectively of the inner expansion,

Ẽδ,P(x) =

P∑
p=0

δpẼp(x), H̃δ,P(x) =

P∑
p=0

δpH̃p(x), x ∈ Ω?, (A.29)

Êδ,P(X) =

P∑
p=0

δp Êp(X), Ĥδ,P(X) =

P∑
p=0

δpĤp(X) X ∈ Ω̂. (A.30)

In a further work, we will prove that the local approximations of solution to problem (2.1) are
subject to the following error estimates. There exists a positive δ0 such that for any r1 > r0 > δ0
there exists c > 0 such that for any positive δ < δ0, we have

‖Eδ − Ẽδ,P‖0,C(r0,r1) ≤ c δP+1, ‖Hδ − H̃δ,P‖0,C(r0,r1) ≤ c δP+1. (A.31)

There exists r? > δ0 such that for any r0 satisfying 1 < r0 < r
?, there exists c > 0 such that for

any positive δ < δ0, we have

‖Eδ(δ · ) − Êδ,P‖0,C(1,r0) ≤ c δP+ 5
2 , ‖Hδ(δ · ) − Ĥδ,P‖0,C(1,r0) ≤ c δP+ 5

2 . (A.32)
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Remark 9. In [19], Ammari et al. showed that estimate (A.32) holds for P = 0. In [12], the au-
thors used the method of multi-scale expansions to define an approximate solution of the electro-
magnetic scattering problem by a small obstacle and proved error estimates for the asymptotics
at any order. They set up a rigorous framework to make the asymptotic analysis of the time-
harmonic Maxwell problem including elliptic regularization and the time-dependent Maxwell
problem. Moreover, they consider either a condition of perfect conductor or an impedance con-
dition. Regarding of [11] and [28, Appendix C.2], we can state that the expansions provided by
the method of matched asymptotic expansions and the method of multi-scale expansions locally
coincide. As a result, error estimates from [12] hold for the matched asymptotic expansions.
However, the authors adopt a slightly different framework: the wave number κ has a positive
imaginary part and the domain of propagation Ωδ is bounded with smooth boundary. It seems
possible not only to adapt and generalize these estimates by considering a more general frame-
work, but also to improve their non-optimal estimates.
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