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Abstract

In this paper, we propose a Distributed Graph Model
(DGM) and data structure to enable communication-
aware heuristics in distributed load balancers (LBs).
DGM is motivated by the desire to maintain and use
information related to the affinity between tasks (their
communication) in order to improve data locality while
scheduling tasks in a distributed fashion to avoid the cen-
tralization overhead. Results show that DGM is able to
achieve speedups of up to 50.4x with 40 virtual cores,
when compared to a centralized graph representation
with the same purpose. Additionally, we propose a proof-
of-concept distributed scheduler that uses DGM, named
Edge Migration, and its implementation in the Charm++
parallel programming model. These results show that, al-
though the communication analysis is much faster with
DGM, it is still the most relevant overhead in distributed
LBs. We also observe that Edge Migration has a de-
cision time in the same order of magnitude as other
communication-unaware decentralized algorithms. Thus,
DGM can be used in communication-aware distributed
LBs to improve load balancing decisions with a small im-
pact in the overall LB performance.

Index Terms — High Performance Computing; Load
Balancing; Distributed Algorithms; Scheduling; Commu-
nication Graph.

1 Introduction

High Performance Computing (HPC) deals with constant
power demand and efficiency issues as it moves towards
Exascale Computing [1]. HPC machines operate at their
peak efficiency when the use of resources is well-spread
and synchronizations between parallel tasks are correctly
handled. The process of assigning work units (or tasks)

to processing elements (PEs) is well-known and docu-
mented in scientific computing, and is referred to as
Global Scheduling [2], or Load Balancing; which is re-
garded as an NP-Complete problem [3].

Scientific applications that are iterative in nature may
take a long time to execute, even with perfect load bal-
ancing. Some of these applications, such as molecular dy-
namics [4], or wave propagation simulations [5], present
irregular workloads, that vary with time. This means that
even an apparently optimal task assignment may lead to
imbalanced scenarios in the future, causing parallel ma-
chines to run inefficiently. These situations demand for a
new mapping of work, a process of dynamic load balance.

The process of load balancing may be performed in
multiple ways. However, work in the literature suggests
three more relevant takes of the problem in the state of
the art: (i) topology-aware load balancers (LBs), which
seek to optimize the work unit distribution based on the
system architecture; (ii) distributed and hierarchical LBs,
which are more limited in access to information, but at-
tempt to leverage on the parallel nature of HPC platforms
to accelerate the scheduling process; and (iii) graph parti-
tioning techniques that model the application as a graph,
in which weighted vertices represent tasks and weighted
edges represent communication among them, and apply
partitioning algorithms in order to balance the load.

After migrating multiple tasks, dynamic LBs may cause
undesired communication overheads. Although applica-
tions tend to have an initial task distribution that opti-
mizes their communication based on a geometric decom-
position [4, 6, 7], the cost of communications can be con-
siderably increased when task migrations are needed to
balance the load. Thus, LBs should minimize the number
of task migrations when possible, avoiding extra commu-
nication overheads. Moreover, LBs should not incur in
decision times (i.e., the time they take to decide a new
mapping of tasks to PEs) that degrade the application



performance, overshadowing the benefits of load balanc-
ing.

We believe that communication-aware distributed LBs
are the key to achieve the desired performance in the
parallel platforms leading to the Exascale Era. In this
paper, we present the following contributions to the state-
of-the-art distributed LBs:

1. A distributed graph data structure to represent
application load and communication information
named Distributed Graph Model (DGM); and

2. A proof-of-concept implementation of a distributed
LB, named Edge Migration, that makes use of the
previously mentioned data structure to perform dy-
namic task rescheduling in the Charm++ runtime sys-
tem [8].

We show that our distributed graph data structure
achieved much higher performance than the one avail-
able in Charm++, being up to 4× faster with 8 PEs; and
up to 50.4×, 42.5×, and 21.5× with 40 PEs, depending
on the communication topology. Moreover, we show that
our proof-of-concept distributed LB achieves faster load
balancing decisions than other communication-aware LBs
considered in our study.

The remainder of our paper is divided as follows.
Section 2 presents a background on load balancing ap-
proaches and discusses the state of the art. Section 3
presents our distributed graph data structure for load
balancing. Section 4 presents our proof-of-concept LB.
Section 5 presents the performance evaluation of our con-
tributions. And finally, Section 6 concludes this work.

2 Background and Related Work

As HPC platforms increase in size, so does the potential
of load imbalance. In recent years, a number of parallel
runtime systems (RTSs) have implemented static and dy-
namic scheduling policies, mostly focused on shared mem-
ory platforms [9]. However, as applications seek scalabil-
ity in distributed memory scenarios, they need their own
optimal way to map and remap work to resources.

In Section 2.1, we present recent efforts in development
of scheduling and dynamic load balancing approaches for
HPC. Then, in Section 2.2, we discuss the limitations of
topology-specific algorithms (as well as topology discov-
ery overheads), and techniques used to represent applica-
tion and machine communication as graphs.

2.1 Efforts in Load Balancing

We may divide the behavior of load balancing algorithms
in three main categories, as depicted in Fig. 1. In this
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Figure 1: Three different load balancing mechanism or-
ganizations.

representation, computing resources (or PEs) communi-
cate through network hubs, and use rescheduling modules
(or LBs) to perform static or dynamic load balancing.
In the former case, the application must be partitioned
and communication edges established by the LBs before
execution. In the latter case, on the other hand, the appli-
cation is already executing, and LBs gather information
to perform dynamic migration of work units.

Fig. 1a exhibits the behavior of Centralized LBs. They
use absolute system information to perform load balanc-
ing, but may incur in high overheads and frequent bottle-
necks, due to its centralized nature. Meanwhile, Fig. 1b
represents Hierarchical (or Multilevel) LBs, that tend to
use different load balancing heuristics in different hier-
archy levels [10]. Many of these strategies still need to
start or finish as centralized approaches to gather their
data, which may lead to undesired bottlenecks. Finally,
Fig. 1c represents completely Distributed LBs, which fo-
cus on balancing local resources, without global informa-
tion.

Due to their decentralized nature, Distributed mech-
anisms are the most scalable of the presented ap-
proaches. Traditionally, these algorithms used a diffusive
approach [11], which consists of iteratively sending work
to neighbors that carry a lighter workload. This leads
to refinement-based approaches, which attempt to send
work units to underloaded resources using probabilistic
distributions (e.g., Grapevine [12]) or accumulating work
to mitigate communication increases after migration (e.g.,
PackDrop [13]).

Recent efforts on Centralized and Hierarchical LBs con-
sist mostly of machine topology-aware heuristics [14]. In
Non-Uniform Memory Access (NUMA) machines, cen-
tralized approaches that focus on topology and NUMA-
factor have been used in different levels to perform asymp-



totically optimal scheduling of tasks to resources (e.g.,
NuCo, HwTopo and Hierarchical [15]). In the same kind
of environment, decentralized Work Stealing (WS) mech-
anisms have been used to decrease migration overheads
with distance-aware WS [16]. Meanwhile, TreeMatch at-
tempts to match application communication graphs and
Fat Tree machine topologies to balance application work-
load [17].

Weighted-Hop and Max-Congestion [18] focus on opti-
mizing metrics that are more commonly available in dis-
tributed memory environments. The former attempts to
minimize the total hop count, while the latter aims at a
minimal maximum message congestion. Both strategies
were designed in a centralized fashion, but as they are an
initial greedy graph partition followed by a refinement-
method, they may be adapted to work in a hierarchi-
cal (or multilevel) fashion. Following the multilevel ap-
proach, some scheduling heuristics exploit multiple RTSs
(e.g., Charm++ and OpenMP [19]) to refine load balancing
in irregular applications.

2.2 Information Gathering and Repre-
sentation

Although the use of machine topology information posi-
tively impacts the application performance when schedul-
ing tasks to resources, this approach also has its lim-
itations. For instance, most of the aforementioned
algorithms (NuCo and HwTopo [15], TreeMatch [17],
Distance-Aware [16], and Max-Congestion [18]) are
topology-specific, so their heuristics may not be portable
to different machine configurations. Additionally, the
overhead of discovering and generating topology data
structures may be limiting in very large environments,
especially since recent works already present high costs
when applied to modern multi-core architectures, such as
Intel Knights Landing [20].

Precise representations of machine topology and ap-
plication communication usually come in the form of
graphs [18, 21] or hypergraphs [22]. Weighted-Hop and
Max-Congestion, for instance, are based on graph par-
titioning techniques. Zoltan [22] uses a multilevel hy-
pergraph partitioning scheme to perform both schedul-
ing and dynamic load balancing of parallel applications.
ParMETIS [21] is a multilevel implementation of METIS
k-way graph partitioning, which can also be used to op-
timize task assignment based on application communica-
tion [23].

Geometric decomposition and over-decomposition ap-
proaches have proven to improve the communication and
load balancing in several parallel applications [7, 4]. They
are usually applied in the initial scheduling, while dy-
namic LBs focus on refining previous assignments of tasks
to resources. With this in mind, we envision that the pre-

cise (hyper)graph representation of application communi-
cation may help schedulers that attempt to preserve pre-
viously assigned geometric partitions, which should have
already optimized the communication.

3 Distributed Graph Model

Distributed memory parallel systems are some of the most
scalable platforms in HPC today. Due to their elastic-
ity, increasing the amount of resources an application can
use to execute is simple, and may lead to great perfor-
mance gains. However, as parallel environments move
from shared to distributed memory, the communication
costs of applications rapidly increase, mostly because of
higher overheads in cluster nodes exchanging messages in
comparison with straight memory access. Decomposing
applications with these environments in mind demands
a minimal amount of remote communication in order to
minimize message-exchanging overheads.

Performing communication-aware load balancing in the
aforementioned models require some dynamic informa-
tion about the application communication. This means
that, in order to reschedule work, parallel systems need to
monitor the messages exchanged during application run-
time. As extra information may help load balancers, it
is still important to have low overheads when reassign-
ing application workload, since this process also incurs
in overheads. Fortunately, in geometrically decomposed
applications, the initial distribution of work usually at-
tempts to optimize communication among work units,
which may be preserved by dynamic load balancers.

With the aforementioned concepts in mind, LBs should
fulfill the following objectives to achieve the best possible
performance:

1. Evenly distribute work units to PEs to diminish ap-
plication makespan;

2. Attempt to preserve most of the initial work schedul-
ing to avoid undesired communication overheads;

3. Perform work reassignment as fast as possible to min-
imize load balancing overheads.

In this section, we propose a decentralized communica-
tion representation model called Distributed Graph Model
(DGM). This approach intends to portray the communi-
cation scheme locally for each resource, while still avoid-
ing most of the centralization effort that may incur in a
high overhead.

3.1 Definition

DGM intends to organize application communication and
task loads in a completely decentralized fashion, using the
information the RTS provides.
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Figure 2: Graphical Representation of Global (left)
and Local (right) perspectives of our Distributed Graph
Model. Weights are omitted for simplicity.

Consider an original centralized application graph rep-
resented as G = (V,E,WV ,WE), where V represents the
vertices (tasks), E their directed edges (communication),
WV represent the vertex weights (load of the tasks), and
WE is the edge weights (volume of communication). This
graph will be represented as p disjoint sub-graphs dis-
tributed over p resources, such that

⋃
i=1...pGi = G.

Gi = (Vi, V
o
i , Ei, E

o
i ,WV i,WEi,W

o
Ei) (1)

In DGM, each local sub-graph Gi can be described by
the components illustrated in Equation 1. Vi contains
the vertices local to this partition (Vi = {v | v ∈ V ∧
v /∈ Vj ,∀j 6= i}), Ei contains the internal edges (Ei =
{(u, v) | u, v ∈ Vi}), and WV i and WEi represent the
weights of local vertices and edges, respectively.

DGM also preserves information related to the edges
among different sub-graphs. Consider an outgoing edge
(u, v) ∈ E, where u ∈ Vi and v /∈ Vi. Instead of keeping
copies of all outgoing edges and external vertices, we sum-
marize this information with new sets of artificial vertices,
edges, and edge weights V oi , Eoi , and W o

Ei, respectively.

A vertex voj ∈ V oi represents all vertices in Vj that are a
tail of an edge coming from vertices in Vi. Using this idea,
we can define Eoi = {(u, voj ) | ∃ (u, v) ∈ E, u ∈ Vi∧v ∈ Vj}
as the set of edges going outside of the partition. Finally,
the weight of an outgoing edge (u, voj ) ∈ Eoi is equal to
the sum of the weights off all edges from u to vertices in
Vj , as illustrated in Equation 2.

w(u,voj )
=

∑
(u,v)∈E,v∈Vj

w(u,v) (2)

A graphical representation of our model is portrayed in
Fig. 2. The left side of the illustration represents the origi-
nal application decomposition in the form of tasks (num-
bered vertices), communication between them (straight
and dashed gray edges), and assigned resources (A-D), di-
vided by a red dashed line, representing graph partitions.

Meanwhile, the right side represents the local DGM rep-
resentation in resource A, where edges that reach remote
resources direct to virtual vertices (voB and voC).

3.2 Implementation Details

In order to optimize the use and construction of DGM,
we have chosen some specific data structures to store the
information, and techniques to produce them. We as-
sume a situation with two parameters: (i) G, which is a
local graph in the format of an unsorted array, describing
communication in the form of a pair (from, to), and the
existence of n vertices, and a total of m edges; and (ii) V ,
an array of vertex loads (with n elements). This repre-
sentation has high costs when it comes to finding specific
edges, especially if it is not sorted in any way. We also
assume that each PE will build their local representation
in a distributed fashion.

The data structures in which we intend to store our
local graph are:

• T : A hash-table with key equal to a task identifier
(id) and storing its load. The notation to access
element α in this table will be denoted as: Tα in our
algorithms;

• F : A map of sets, where the key is the identifier of
a neighbor PE, and the sets have the ids of all tasks
that communicate with this neighbor. We call this
concept a frontier, and the frontier of the local PE
with i will be denoted as Fi;

• H: An inverted heap with a tuple (id, load), sorted
by load (lower to higher). This will be a stub for our
inner edge representation at this point1.

We utilize this set of attributes to ensure a fast access to
elements needed in the load balancing step (O(1)). Addi-
tionally, these data structures have a considerably cheap
cost to be generated (O(n log n+m) in the worst case),
and should take a space of 2n to store, since every data
slice will be represented once on T , and another time on
each of the other data structures. In future implementa-
tions, the cost of considering the inner edges may increase
the overheads related to DGM. That is why, for this im-
plementation, since we only need the outer edges, we have
aggregated the inner vertices in a cost-saving fashion.

Algorithm 1 describes the process of generating a local
representation of system information with inputs G and
V , described above. For simplicity, the function call and
data-field access notations used in Algorithm 1 is detailed
in Table 1, data-fields src, id, and weight refer to vertex
resource, id and load, respectively. The first step of the

1Our proposed load balancing strategy, presented in Section 4,
focuses on the use of migration frontiers, so the internal represen-
tation is not as important for us at this point.



Algorithm 1: Create Local Graph

Input: G, communication graph as an array of
edges; V , list of local vertices with data
fields src, id and weight; Pself , local
resource.

Output: T , table of vertices; F , set of
neighbor frontiers; H, heap of
remaining vertices.

1 T ← ∅, F ← ∅, H ← ∅, U ← ∅
2 foreach v ∈ V do
3 Tv ← (vid, vweight)

4 foreach (u, v) ∈ G do
5 if vsrc 6= Pself then
6 γ ← vsrc, Fγ ← Fγ ∪ {u}
7 F ← F ∪ {Fγ}, U ← U ∪ {u}

8 H ← V \ U , H ← HeapSort(H)

Table 1: Distributed Algorithms Notation
Notation Meaning

vw Access to data-field w of vertex v.
Aα Access to data structure A at index α.
δ ← f() Assign the output of function f() to variable δ.
f()→ b Calling function f() in remote resource b.
g()⇒ B Calling multicast function g() on each element of B.
δ ← (g(a)⇒
B)

Assign the result of multicast g(a) to δ. Usually
used in reduction operations.

algorithm is to populate the table of tasks (lines 2 and 3).
Then, we parse through the graph (G), seeking the pairs
(u, v), in which one of the elements belongs to a remote
resource (our notation was simplified in Algorithm 1, lines
4-7). Whenever a remote communication is detected, the
remote resource (γ) has the local vertex (u) added to its
frontier (Fγ). Additionally, u is added to a temporary
set of tasks U , which will be used to separate remote
communication tasks of local ones. Finally, H receives
the local vertices that did not have remote communication
(line 8), and has its values sorted in ascending order.

4 Communication-Aware Load
Balancing

In this section we propose a distributed load balancing
algorithm as a proof-of-concept for the use and perfor-
mance analysis of DGM. Our execution environments
portray one instance of our distributed scheduler per PE,
and these instances communicate with each other asyn-
chronously to execute the scheduling algorithm. The dy-
namic load balancing steps occur after a synchronization
of all PEs, followed by a pause in the application runtime.
The RTS should then provide the algorithm with execu-

Algorithm 2: Edge Migration Scheduler

Input: G, V as in Algorithm 1; P , list of system
resources, where Pself refers to the local
resource.

Output: M, changes in work assignment in the
form {(vi, Pj)}.

1 M← ∅
2 T ,F ,H ← CreateLocalGraph(G,V, Pself )

// Alg. 1

3 β ← (AverageLoadReduction(loadset(T ))⇒ P )
4 if loadset(T ) < β then // Underloaded, Eq. 3

5 Pγ ← ChooseNeighbor(P,F) // Equation 4

6 RequestLoad(Pself , loadset(T ))→ Pγ // Alg. 3

7 — Wait Completion —
8 Submit(M)⇒ P

tion data and remap work units once the new mapping is
given by the schedulers.

The idea behind our approach is to first optimize com-
munication, and afterwards the distribution of load. Al-
though the second is the most relevant for overall sys-
tem balance, since we want to preserve communication
as much as possible, we prioritize the migration of com-
munication edges (frontiers), that is, tasks that already
communicate with remote resources. Our asynchronous
distributed algorithms will follow the notation described
in Table 1.

4.1 Distributed Edge Migration

We have followed a pull-based approach in the develop-
ment of our novel scheduling policy (Algorithm 2). Thus,
the Edge Migration Algorithm works from underloaded
to overloaded resources, much like Work-Stealing poli-
cies. The inputs to this policy are the same workload and
communication information shown in Algorithm 1 (G,V ),
and a list of system resources (P ). The output is a map-
ping of changes in work assignment, in the form of a set
of pairs (task, new resource), M.

Algorithm 2 starts by creating the local graph, de-
scribed in Algorithm 1 (line 2). Then, it performs a re-
duction to find the average load of resources in the system
(x). This result is multiplied by a threshold t, in the fol-
lowing form:

β = x× (1− t)

to achieve the value of β attributed in line 3. The objec-
tive behind this is to determine a lower threshold, where
we start considering resources underloaded. We also as-
sume that during this reduction operation the scheduler
is able to learn the load of its neighbor resources, which
is necessary for future steps of the algorithm.



The next step is to use Equation 3 to determine if the
resource is underloaded (line 4). If this is the case, then
we must choose a neighbor, based on Equation 4, from
which the scheduler will request extra work (lines 5 and
6). The chosen neighbor should be the one with maxi-
mum load, prioritizing those that share a communication
frontier with the current resource. Load requesting and
donation processes are explained further in Algorithm 3.

loadset(A) =
∑
a∈A

aweight (3)

ChooseNeighbor(P,F) = Pγ | γ ∈ arg max
Fγ∈F

loadγ (4)

At this point, we launch a Quiescence Detection pro-
cess, which will wait until no more requests have to be
answered (line 7). Finally, all remapping of workload is
done in Algorithm 3 and attributed toM, so all we need
to do is commit the changes performed by each scheduling
entity (line 8).

The parameters of Algorithm 3 are the requesting re-
source’s id and load (Pγ and loadγ). It is important to
note that it will be executed in the remote resource chosen
in lines 5-6 of Algorithm 2. Moreover, the RequestLoad
process manages data from variables defined in the main
execution branch of the scheduler. Collateral effects take
place in M, T ,F ,H and β for future calls of the algo-
rithm.

The first step of Algorithm 3 is to determine the load it
should migrate to the requesting resource Pγ (ϕ). This is
done through Equation 5. Then, it must extract ϕ from
the available workload contained in T , using the support-
ing data structures Fγ and H. It removes tasks from the
Fγ until it reaches the target load ϕ or the frontier is
exhausted. If the frontier is exhausted, subsequent tasks
will be removed from the inner vertices (H) until ϕ is
achieved in T .

DetermineLoad(x, y, z) =

{
x− z, if x+z

2 > y

x− y, otherwise
(5)

Once the migrating tasks are defined (L in line 2) a
message is sent to the requesting resource to update its
expected load after migrations (line 3). Then, M is up-
dated in order to account for the new migrations. Finally,
if the load of tasks in the local resource has led to an un-
derloaded state (loadset(T ) < β in line 5), the resource
must choose a new neighbor to request extra work (lines 6
and 7). Additionally, since this is a pull-based scheduler,
a stop criteria must be added as a maximum number of
requests in line 5 of Algorithm 3. This kind of criteria
is important to guarantee that the strategy will finish in
a timely fashion, and not get into request-donation (or
stealing, in Work-Stealing schedulers) cycles [24].

Algorithm 3: Request Load

Input: Pγ , loadγ , remote resource and its load.
Data: Local variables in Algorithm 2:

M, T ,F ,H, β.
1 ϕ← DetermineLoad(loadset(T ), β, loadγ) // Eq. 5

2 L← ExtractLoad(ϕ,Fγ , T ,H)
3 Confirm(loadset(L))→ Pγ
4 M←M∪ {(∃v ∈ L,Pγ)}
5 if loadset(T ) < β then // Underloaded resource

6 Pγ ← ChooseNeighbor(P,F) // Equation 4

7 RequestLoad(Pself , loadset(T ))→ Pγ // Alg. 3

4.2 Implementation

To implement our strategy using DGM, we have chosen
the Charm++ runtime system [8]. This is a message-driven
parallel programming environment, which portrays a dy-
namic load balancing framework among its features. Ad-
ditionally, it also presents benchmarks and implementa-
tions of other load balancing algorithms, with which we
may compare our approach. Communications performed
by our scheduler were implemented as asynchronous mes-
sages (entry methods) in the runtime system, and we have
used built-in Reduction and Quiescence Detection utili-
ties to implement the AverageLoadReduction and Wait
Completion functions, respectively, previously presented
in Algorithm 2. It is important to maintain most of
the algorithm behavior asynchronous to maximize per-
formance, so these two functions are the only synchro-
nization steps in algorithm runtime.

5 Performance Evaluation

DGM is a novel load balancing data representation that
was implemented within our Edge Migration load bal-
ancer in Charm++. To assess the performance of our
model and proposed scheduling policy, we have compared
our data structure to the standard ObjGraph data struc-
ture provided with the RTS’s load balancing framework,
which we will refer to as Charm Graph. Moreover, we
have compared the Edge Migration scheduling to other
communication-aware and distributed strategies available
in Charm++.

Our evaluation methodology divides this section in two
parts: (i) Section 5.1, which evaluates the data structure
generation times; and (ii) Section 5.2, which evaluates the
load balancing time and application performance. The
description of our experimental environment is portrayed
in Table 2. Both platforms used Charm++ version 6.8.1,
GCC 5.4.0, and were executed with simultaneous multi-
threading (hyperthreading or SMT) turned on.

We carried out experiments with LB Test, which is a



Table 2: Platforms Description

Characteristics Kaby Tesla

# of CPUs 4 (UMA) 2× 10 (NUMA)
CPU model Intel Core i7-7700 Intel Xeon E5-2640
CPU Freq. 3.60GHz 2.40GHz
RAM 8GB@1200GHz 128GB@1333GHz ECC
OS Linux Mint 18.2 Ubuntu 16.04

well-known benchmark shipped with the Charm++ RTS
and is largely adopted by the Charm++ community. LB
Test is able to simulate different communication topolo-
gies among tasks and workloads to evaluate the efficiency
and viability of load balancing algorithms. The user is
able to specify the limits of a uniform distribution of task
workloads, as well as the number of work units. Addi-
tionally, its communication topologies replicate those of
real-word applications, focusing from very low to high
communication volumes. These topologies may be por-
trayed as a one, two, or three dimensional torus networks
that could be seen as directed graphs in which every ver-
tex has the same in and out degree of one, two, or three,
respectively. We call these schemes Ring, Mesh2D, and
Mesh3D. The fourth possible topology is a Random Graph
that has 1% of all possible edges, which represents a more
communication intensive scenario than any of the other
three.

5.1 Graph Generation

The centralized Charm Graph consists of an array of ver-
tices, each of which contains an array of ingoing and out-
going edges. The asymptotic generation time of Charm
Graph should be of O(n+m) reads and writes (for each
1 read, 1 write) for n vertices and m edges. Additionally,
the cost to build this graph aggregates the time neces-
sary to perform a reduction of all load and communica-
tion data, which is collected independently in each vertex
during runtime. This adds a considerable communica-
tion overhead (O(log k), for k PEs), which is completely
avoided by our distributed approach during data struc-
ture generation time.

We have compared the time needed to generate the
Charm Graph and the DGM after 40 iterations of the
LB Test benchmark. In this experiment, the benchmark
had a total of 12K tasks, ranging from 60µs to 4,120µs
in duration. We varied this configuration through the 3
most structured configurations of the benchmark, Ring,
Mesh2D, and Mesh3D. This experiment was executed 20
times with 40 threads (one per virtual PE) on the Tesla
platform, and we have observed a maximum 5.08% stan-
dard deviation from the mean time.

Results of this experiment are portrayed in Figure 3.
These results show DGM achieved speedups of 21.5x,
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Figure 3: Graph data structure generation time in LBTest
on Tesla.

42.5x, and 50.4x for Ring, Mesh2D and Mesh3D, respec-
tively. This acceleration reflects both the parallelism of
our solution and the power of the distributed approach,
which does not require centralized information. Another
reason for this superlinear speedup is due to better use of
memory resources in the parallel machine. While a cen-
tralized approach stresses all cache levels in a single PE at
once, the distributed one will generate a lighter demand
on the cache of each individual PE.

5.2 Load Balancing

We have used three standard Charm++ load balancers in
order to evaluate the performance of our Edge Migra-
tion approach, as well as a control dummy algorithm, in
order to assess the data structure overhead of centralized
strategies. We give below a brief description of these LBs:

1. RefineComm is a centralized communication-aware
strategy that attempts to minimize the number of
migrations from overloaded to underloaded proces-
sors, while taking communication between tasks into
account [10];

2. GreedyComm is a centralized communication-aware
strategy that assigns the most loaded tasks to the
least loaded PEs, prioritizing those that it commu-
nicates with [10];

3. Distributed is the Charm++ implementation of the
Grapevine distributed algorithm [12]. It uses a gos-
sip protocol to assess partial system information and
then, performs a diffusive transfer of load, from
overloaded to underloaded PEs. Distributed uses a
probabilistic distribution to make educated random
choices of migration targets, guaranteeing higher
chances of choosing the least loaded PEs;



Table 3: Results of LB Test with multiple LB algorithms
on Kaby (x is the mean, σ is the standard deviation).
Load Balancer Application Time (s) LB Strategy Time (s)

EdgeMigration
x 409.29 0.15
σ 5.28 0.07

GreedyComm
x 527.56 3.18
σ 1.12 0.15

RefineComm
x 478.02 10.96
σ 8.97 24.18

Distributed
x 393.53 0.001
σ 6.02 0.000

Dummy
x 394.59 0.60
σ 1.43 0.06

4. Dummy, our placeholder data structure overhead
load balancer. It will simply generate the Charm
Graph and finish execution.

We have compared the performance of these LBs with
150 iterations of the LB Test benchmark, performing load
balance every 20 iterations, totalizing 7 LB calls per exe-
cution. The benchmark had a total of 21K tasks, ranging
from 1µs to 1,000µs in duration. In this experiment, we
have only evaluated the most communication intensive
topology, the Random Graph, which generated a total
of 4,409,790 communication edges. This experiment was
executed 10 times with 8 threads on the Kaby platform.

Table 3 shows the overall application time and LB strat-
egy time in seconds. The application time refers to the
average time one execution of the application takes to per-
form the 150 iterations, while the LB strategy time refers
to the time of one load balancing call, from the time the
application is synchronized to the moment it resumes ex-
ecution. Results obtained with Dummy suggest that, due
to the parallelism limitations of Kaby, the load imbalance
was not so relevant as to cause considerable impacts to the
application time. Disregarding the synchronization and
data structure generation overheads in Dummy (7×0.6s),
we see that even Distributed was not as effective as not
performing any load balancing at all. Nevertheless, when
comparing Edge Migration to the other 2 communication-
aware schedulers (RefineComm and GreedyComm), we
noticed that it achieved the best execution times.

When observing the load balancing strategy time, Edge
Migration overcomes the centralized approaches, and
even the Dummy LB. However, Distributed is still much
faster in comparison. Since both Edge Migration and
Distributed are decentralized approaches, this suggests
that the data structure generation time has a relevant
impact in this regard. Table 4 shows the breakdown of
the LB strategy times shown in Table 3 into the neces-
sary time to build the graph structure (Charm Graph or
DGM) and to take the LB decision. Since Distributed
does not take communication into account, its does not

Table 4: Communication and data structure evaluation
of LB Test ’s Random Graph topology on Kaby.
Load Balancer Build Graph Time (s) LB Decision Time (s)

EdgeMigration 0.15 0.002
GreedyComm 0.60 2.58
RefineComm 0.60 10.36
Distributed − 0.001

present this graph structure generation overhead.

Here, we observe that in Kaby, with the Random Graph
topology, the creation of DGM was 4x faster than Charm
Graph. We also observe that, excluding the DGM gener-
ation time, the decision time of our algorithm is in the
same order of magnitude as Distributed, which is ex-
pected, since both are decentralized approaches.

6 Conclusion

In this paper, we have presented a Distributed Graph
Model (DGM) to represent application communica-
tion in distributed memory scenarios. Since many
communication-aware scheduling algorithms are based on
graph partitioning, this is an important movement for-
ward in the development of informed decentralized load
balancing heuristics. Results presented in Section 5.1
highlight that this distributed approach is able to out-
perform a centralized graph representation in every ana-
lyzed scenario, while enabling the use of communication
information in decentralized load balancing algorithms.

Alongside DGM, we have presented and implemented
Edge Migration, a decentralized load balancer that works
as a proof-of-concept for the use of communication-
awareness in distributed schedulers. DGM and Edge
Migration were implemented in Charm++, and compared
to distributed and communication-aware LBs available
in this RTS. Results discussed in Section 5.2 show
that Edge Migration was the most efficient among all
communication-aware strategies considered in this study.
Additionally, the load balancing time shows that the com-
munication analysis to generate the data structure is ac-
countable for great part of the overhead in decentralized
strategies, while the scheduling heuristic is still able to
take decisions in times similar to other decentralized ap-
proaches.

The increasing performance demand of parallel appli-
cations in HPC environments creates a need for fast, re-
liable and efficient schedulers. Both our experiments and
the literature [10, 12, 13, 22] indicate that parallel and
distributed load balancers are the best candidate to ful-
fill this role, especially when dynamic rescheduling is re-
quired. We believe that DGM will bring more benefits
to communication-aware strategies in the future, helping



to achieve Exascale performance in distributed memory
environments.

6.1 Future Work

Future work in this field includes the use of classic
graph partitioning approaches from the literature such
as METIS [21, 23] or SCOTCH [25] to the internal por-
tion of DGM, instead of considering only the frontiers (in
Section 3.1: Vi\V oi of Gi). The use of graph partitioning
to create homogeneous clusters of communicating tasks
inside DGM may be used to migrate these aggregates
of tasks, which should preserve the most affinity among
them [26]. This approach would enhance the naive Batch
Task Migration [13], which could lead to even more effi-
cient communication-aware scheduling.

Another ramification of this work is the use of topol-
ogy information alongside communication-awareness. Al-
though incurring in additional overhead, these topology-
aware schedulers have recently shown great benefits in
increasing application performance [16, 17, 18].
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