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Abstract—Data poisoning is known as the goal of finding small
modifications of training data which make them not suitable
anymore for training a targeted model.

Recently, an efficient symmetric poisoning attack targeting
frozen deep features plus support vector machine has been found.
However, new experiments presented in this paper shows that this
attack is not symmetric anymore on unfrozen/real deep networks.

Then, several extensions of this attack are considered on CI-
FAR10/CIFAR100 with both VGG and ResNet backbone leading
to a symmetric attack. On VGG/CIFARI10 setting, this extended
attack makes performances moving by -60%,+5% from native
accuracy using perturbations invisible to human eyes. Code is
available at github.com/achanhon/AdversarialModel.

Index Terms—data poisoning, adversarial examples, deep
learning

I. INTRODUCTION

A. Adversarial examples

Deep learning (DL) which appears in computer vision
with [1] (see [2] for a review) is now a mature technology
for many digital application e.g. [3]. But, current DL can
be hacked. This could forbid application of DL for critical
applications including autonomous driving [4], health care [5],
or security (e.g. [6]). The most salient example of this fault
is adversarial examples [7]-[11] (which may exist with other
machine learning algorithms but which is a real issue for
DL). At test time, it is possible to design a specific invisible
perturbation such as a targeted network eventually predicts
different outputs on original and disturbed input. Computer
vision is especially concerned with accuracy of unprotected
network dropping close to 0% under state of the art attack [12]
but other fields are concerned (e.g. [13] highlights this issue in
cyber security context with performance of a malware detector
dropping from 87% to 66% on adversarial malwares). Worse,
producing adversarial examples does not require to have access
to the internal structure of the network [14], [15] and can have
physical implementation [16].

Mathematically, producing adversarial example is classi-
cally considered as the task of maximizing the cross-entropy
(CE) of a target network f with weights w on a data x thank
to a perturbation § constrained to be small (typically a L,
norm bounded by ¢€):

max

CE(f,w,x+0 1
6 / 118l <e (7 ) )

classical adversarial attack

data poisoning

Fig. 1. Illustrations of classical adversarial attack vs poisoning attack: goal
of the hacker is to have the red point classified as green and not orange, black
line is the targeted classifier.

B. poisoning

A smaller but non negligible issue is poisoning [17], [18].
Data poisoning (which also works [19] on support vector
machine SVM [20]) is known as the goal of finding small
modification of training data (testing data being unchanged)
changing the model behaviour on test (for example, changing
the testing accuracy). In other words, data poisoning hacks
training data (using or not knowledge on testing data and/or
model) while adversarial attack hacks testing ones (using or
not knowledge on the model): see Fig.1.

Mathematically if the targeted learning pipeline f is trained
with stochastic gradient descent [21] (SGD) or incremental
versions (e.g. [22]), the goal of poisoning is to solve:

minimize : Ey [Accuracy (f, w, Test)]
6/ 118l|<e 2)
st w ~ SGDy(f, Train + 9J)

where expectation is required as SGD relies on random vari-
able 6, and, ||.|| represents constraints on § the poison. Just for
highlighting the hardness of this problem, comparing Eq.1 and
Eq.2, one can see that adversarial attack is just optimization of
0 through a network while poisoning is optimization through
the training of a network.

C. Symmetric adversarial poisoning

Poisoning is a real issue typically when ¢ is constrained in
Ly pseudo norm [17]: an hacker may modify few samples of
a training database without being detected.

Now, poisoning is also a way to improve our understanding
of what and how deep networks learn: this paper focuses on
Ly-norm symmetric poisoning problem (SAP)



e constraint on § is a Lj-norm (taking advantage of adver-
sarial sensibility of the targeted network)

o the same attack is required to be able both decrease
or increase the accuracy (i.e. minimize or maximize in
Eq.(2))

This paper follows [18] which introduces a symmetric adver-
sarial poisoning attack (SAP) based on energetic landscape
hacking (see github.com/achanhon/AdversarialModel).

Precisely, [18] presents a SAP attacks on classical computer

vision benchmarks targeting a frozen DL + SVM pipeline (f is
a deep network but only last layer weights are updated during
training resulting in a pipeline sensible to small perturbation
but with convex training). This attack called energetic level at-
tack is based on the idea that the more a model w has high/low
training cross entropy CE(f,w,Train), the less/high is the
probability that w will be returned by SGD when trained
on Train. In practice, [18] offers to use a proxy Wyesired
(by training on the test wgesirea = SGD(f, Test)) and to
optimize ¢ to increase/decrease CE(f, Waesired, Train + §)
in the hope on decrease/increasing the probability of Wgcsired
to be returned.

Thus, [18] transforms Eq.2 in Eq.1 thank to the use of

a proxy, eventually leads to produce training adversarial
examples. Mathematically, this energetic level attack is the
combination of the two following equations:

minimize : Fy [CE(f, Wyesired, TTain + 6 3
minimize : Eo [CE(f, Waesired e

Waesired ~ SGDg(f,Test) or —SGDy(f, Test) (4)

with Waesirea ~ SGDg(f, Test) when goal is to minimize
accuracy and —SGDy(f, Test) when goal is to maximize
accuracy. Importantly, Eq.3 is almost exactly Eq.1 but the
critical difference is the use of specific weights wgesireq: UsSing
other weights does not lead to a SAP. Typically, using the
weights resulting from a standard training is just adversarial
retraining.

D. Contribution

The starting point of this paper is a set of experiments
described in section 2 which shows that this attack is not
symmetric anymore when targeting unfrozen/real deep net-
work. This intriguingly failure is interesting as it is due to
the difference between deep network and SVM training.

Then, the main contribution is to offer a modification of
the original attack which allows a SAP attack for real deep
network (i.e. extending [18] to real deep network). This is an
important improvement as using frozen DL + SVM is clearly
a deprecated practice for image classification. As a teasing of
section 3, attacks offered in this paper make accuracy changes
from 86% to 27% (minimizing) or 93% (maximizing) for VGG
on CIFARIO (a classical computer vision model/dataset).

In section 4, experiments are presented to highlight that
offered modification is not trivial especially by comparing it
with two other related attacks. Then, conclusion is presented
in section 5.

proxy used Eq.3 | testing accuracy | desired

SGDy (f, Test) 27% < 87% (31% in [18))

SGDy (f, Train) 34% ~ 87% (0% in [18])

—Wimagenet 4% ~87%
Wimagenet 58% ~ 8%

—SGDy(f, Train) 73% ~ 87% (-1% in [18])
—SGDg(f, Test) 7% > 87% (+7% in [18])
Original accuracy | 87% [ -

TABLE 1

TESTING ACCURACY OF VGG ON CIFAR10 UNDER DIFFERENT
POISONING CORRESPONDING TO EQ.3 WITH DIFFERENT PROXY:
RESULTING ACCURACY MATCHES EXPECTATION ONLY IN FIRST ROW.

II. ENERGETIC LEVEL ATTACK IS ASYMMETRIC ON REAL
DEEP NETWORKS

In this section, experiments show that energetic level attack
introduced in [18] is not symmetric anymore on real deep
network.

A. Experimental setting

The experimental setting is exactly the same as in [18]: same
data, same network, same pretraining, attack amplitude. Pre-
cisely, data are CIFAR datasets [23]. All attacks are designed
to produce a poisoning with average L; pixelwise distance
bounded by 3. Networks considered are VGG [24] and ResNet
[25] (cut when spatial dimension is less than convolution
kernel). In most experiments, weights are initialized from
IMAGENET [26] pretraining.

Only difference (which is significant) with [18] is that all
layers of deep network are updated during training, instead
of just the last one. By learning all layers, native (healthy)
performance are much higher. Typically, without poisoning,
accuracy of unfrozen pipeline is 87% against only 75% for
frozen one on CIFARIO [18]. This level of performance of
87% is standard [27] for a VGG without batch normalization
contrary to the 75% with frozen network. As optimizations are
not convex anymore (multiple runs lead to different results)
with real deep network, all accuracy measures reported in this
paper are averaged over several runs (typically 8 runs).

B. Results

Naive application of [18] algorithm corresponding to Eq.(3-
4) targeting an unfrozen deep network decreases performance
even when the attack is setup to increase accuracy. Worse,
Table.l shows that virtually any proxy leads to an accuracy
drop while using unrelated proxy should not impact the
resulting accuracy.

Level of accuracy dropping is impressive: from 87% to 27%.
But, the main interesting point is that the attack offered in [18]
is not symmetric anymore while data, network, pretraining are
all the same: the only change is that all the layers of the
networks are trained (against only the last one in [18]).

III. ENERGETIC DIFFERENCE IS SYMMETRIC

This section describes the new attack designed for symmet-
ric adversarial poisoning on real deep model.



setting vs accuracy CIFAR10 | CIFAR100
VGG no poison 87% 78%
RESNET no poison 81% 75%
VGG poisoned (min) 28% 34%
RESNET poisoned (min) 43% 33%
VGG poisoned (max) 93% 86%
RESNET poisoned (max) 85% 82%

TABLE II
PERFORMANCE OF VGG/RESNET oN CIFAR10/CIFAR100 WITH AND
WITHOUT POISONING EQ.(5-4). BOTH MINIMIZATION AND
MAXIMIZATION ARE EFFECTIVE MEANING THAT THIS IS A SYMMETRIC
ATTACK.

A. Offered attack

The dynamic of cross entropy curves during training on
healthy vs poisoned Eq.(3-4) data are very different: con-
vergence is much more fast on poisoned data. By trying
to force equivalent dynamic between both curves, it comes
that modifying the difference of CE(f, Waesired, Train + §)
and CE(f, wfqir, Train + 6), with wye, being the weights
corresponding to a standard poison-free training leads to
a SAP Precisely, it requires to average the cross entropy
over several wgegireq (different sampling over SGDy( f, Test)
or —SGDy(f,Test) depending on the goal of minimiz-
ing/maximizing).

Mathematically, the offered attack correspond to:

CE(fa Wdesired, Train + 6)

—CE(f,wyqir, Train + 0) ©)

minimize : Fy
5 / lI8lli<e
combined with Eq.4.
Importantly, designing this attack was not trivial despite
the close similitude with [18]. A discussion on this point is
presented in section 4.

B. Results

The experimental setting is the same than in previous
section, results are presented in Table.Il.

The results show that the offered attack is effective both
for minimization or maximization setting with the two back-
bones/datasets: for VGG on CIFARI10, performance drops to
28% when minimizing but jumps to 93% when maximizing
contrary to [18] attack which leads to 27% when minimizing
but only 77% when maximizing (see Table.I).

This is the main contribution of this paper: this is the first
known SAP targeting a deep network.

IV. DISCUSSION

This section presents a discussion on these results supported
by many complementary experiments. This section may also
emphasises the contribution which could otherwise seem lim-
ited seen the similarity between Eq.(3+4) and Eq.(5).

A. Comparison with other attacks

Several other attacks have been tested but where found to
be asymmetric like energetic level. Before presenting these
attacks, let recall the idea underlying energetic level attack:

minimizing energetic level of wgcs;req May increase the prob-
ability for wyesireq to be returned by SGD, and so the average
accuracy to increase/decrease depending on Wyesired-

Of course, this idea is false: there is no direct link between
energetic level and probability of being returned by SGD. Even
if the training is convex, only the lowest points are expected to
be returned (so probability of being returned by SGD is a dirac
regarding energetic level), and, in not convex optimization it
is known that global minimum are rarely reached.

But, one could still have hoped that decreasing energetic
level of desired weights may disturb the training toward those
weights. It currently works with deep feature + SVM [18] but
not with deep network as pointed by Table.l.

Now, there is two other idea which could lead to an
algorithm: first, that SGD tends to follow energetic valley, and,
then that SGD tends to return critical point.

1) Path based attack: 1f SGD tends to follow energetic
valley, then, one could be able to make the optimization to
reach wyesireq by decreasing the energetic level of a complete
path in weights space from initial weights to desired ones
instead of just the energetic level of the desired ones. This
attack can be implemented as:

mini%nize Eo[CE(f, Wparycentre, TTain + §)]

Waesired ~ SGD(loss, f, Test,0)

Wharycentre = AWdesired + (]- - a)wimagenet (6)
a~U(@0,1)

I6lls <€

U(0,1) is a uniform sampling on [0,1], thus, equation 6
offers to decreases the line (in weight space) between starting
weights and final ones.

2) Gradient based attack: If SGD tends to return critical
point, then, one can increase the probability of wgesireq t0 be
returned by forcing gradient (relatively to weight) to be null at
Wyesired (in addition to force energetic level to be low). This
leads to the following implementation (with p << 1):

. wCE(f, Waesired, Train + 0)+
s [Ihi<e™ | IV uCE(f, wacsirea, Train + )3 | 7
combined with Eq.4. It could be seen that this attack re-
quire 2nd order derivative hopefully implemented in Pytorch
(https://pytorch.org/).

3) Results: All those attacks are compared on
VGG/CIFAR10 and results are presented in Table.IIl.
Both path and gradient based attacks are not SAP: only
energetic level difference is.

It is important here to distinguish how algorithms really
work (which is unfortunately out of the scope of this paper)
and why they have been designed as it. All energetic level /
path based / gradient based attacks are designed around an
idea: the idea that there is a link between energetic value
and probability of being returned by SGD, the idea that SGD
follows energetic valley, and finally, the idea that SGD is
expected to return critical point.



poisoning max accuracy | intelligible
no poisoning 87%
Energetic level Eq.(3+4) 77% yes
Path based attack Eq.6 87% yes
Gradient based attack Eq.7 80% yes
Diff based attack Eq.5 93% no
GAN based attack Table.IV 92% no

TABLE III
TESTING ACCURACY WITH VGG/CIFAR 10 FOR DIFFERENT POISONING
ATTACK SETUP TO INCREASE ACCURACY: ONLY DIFFERENCE BASED
ATTACK WORKS HIGHLIGHTING HARDNESS TO DESIGN SAP FOR DEEP
NETWORKS.

Yet, even if both these 3 attacks works on deep feature +
SVM (.e. like in [18]), they does not work on deep network
as pointed by Table.IIl.

Inversely, there is no simple explanation about the success
of difference based attack. Yet, this is the only one which is
symmetric. This highlights the difficulty to design symmetric
attack despite the similarity between them.

B. Going deeper into attack failures

Even if the reason why some attacks fails is out of the
scope of this paper, one could make hypothesis to explain
these failures. Clearly Eq.6 could be a good idea (controlling
the behavior of the SG'D by creating a valley in the energetic
landscape) if there were only one start and one end. But,
there are multiples starting weights (random initialisation) and
multiples equally good ending weights. This way, it is not clear
anymore to understand what is the valley that the algorithm
tries to create in standard training.

Then, Eq.7 is based on the idea that SGD is expected to
return a critical point, but, deep networks are trained with early
stopping, thus, returned weights could be not critical point.

Finally, a global possible explanation is that as the energetic
landscape is badly modified, interesting points could become
unreachable from common initialization, thus, focusing only
on the energetic level of the target could create damaging side
effect breaking the idea that CE(f,w,Train) is correlated
with probability of w to be returned by SGD.

Currently, an experiment is possible to check this last hy-
pothesis that lowering the energetic level of a point (and/or of
it surrounding with gradient penalty and/or of the path leading
to it) is not sufficient as it could create side effect making
then unreachable from normal initialisation. This experiment
is to evaluate the accuracy from initial point being closer and
closer to the desired end. This way, only the effect of the
local energetic landscape modification is considered but not
the global ones (which could break the dynamic of SGD).

Typically, training on the normal CIFAR10 from w;magenet
leads to wyqi- with 87% of accuracy. And, training from
Wyqsr also leads to 87% of accuracy (weights are exactly
equal if wyq;, is a real critical point, in practice weights are
marginally modified but resulting accuracy is not - in average).
But, training on poisoned CIFAR10 leads to 93% from wy g,
and, only 77% from wWjmagenet- This fits with the idea that
SGD does not take advantage of energetic level change around

GANbasedAttack (f, Xtrain, Ytrain, Xtest, Ytest)
// compute discriminator
wD = SGD(f, Xtrain i Xtest, Yerain X {0} i Yiest X {1} )
// modify images according to wD
X' = 1]
for x,y in Xtrain,Ytrain:
gradient = grad[x] (CE(f(x,wD),y x {1}))
x' = x +/- sign(gradient) depending on the goal
X’ .append(x’)
return X’
By modifying x such that training images are closer (for D) to testing images,
hacker can hope that applying SGD on X’ , Ytrain will return weights more
adapted to testing set. Indeed, this attack leads to a significant testing accuracy
gap on CIFARI10 with VGG: from 87% to 92%.
TABLE IV
GAN BASED SAP ATTACK TARGETING DL.

Wiesired 1TOM Wimagenet, but, that the change are real (as it
takes advantage of them from wyq;r).

Unfortunately, this observation makes even harder to un-
derstand the energetic level difference mechanism. As w4
and wgesireq should be close (seeing this last experiment),
energetic level difference should put both these point on a
slope i.e. building a mountain in the energetic landscape. Yet,
despite this mountain, wWgesireq Seems still reachable from
Wimagenet Which is not the case with all 3 other differences.

C. About not energetic attack

To add element to the discussion, one can be interested by
attack which does not directly hack the energetic landscape.
Obviously, such attack has few chance to be intelligible. Yet,
previous sections show that intelligible attacks may not be the
better ones.

A good candidate is generative adversarial network (GAN)
based attacks. There is a tremendous literature for GAN see
[28]-[30] as examples and [31] as a review. Overall principle
of GAN is:

« one network G (generator) produces images

« one network D (discriminator) classifies images between

true or generated one

e D is trained with true images and images generated by

G (and should predict image source)

e G is trained to minimize D confidence

o G eventually will produces image that D is not able to

distinguish from true images.

In context of SAP, a possible implementation is to learn
a discriminator between training and testing images, and, to
setup the perturbation to be added to the image (9 in previous
equations) to minimize/maximize discriminator confidence.
Optimizing ¢ on all training images eventually produces a
poisoned dataset. Training on this poisoned dataset may result
in a model less/more testing set friendly as poisoned images
are expected to be between original images and testing images.
Pseudo code is presented in Table.IV.

As a result, GAN based attack leads to 92% of accuracy
instead of 86% on CIFARI0 (in maximization setting) and
44% (in minimization one). So, it is also a SAP. Now, this
attack seems limited to small dataset: assuming data are i.i.d.
in train and test dataset, the discriminator is learning a model



on a random labelling. Thus, on larger dataset, it should not
be able to learn (i.e. accuracy should be 50%). One could
claim that with very very large dataset, there is no reason
why wgesireq should be different than w ;. This is true (as
DL has finite dimension VC [32]), but not with the same
scale: overfitting exits even with the largest academic datasets
like [26], while learning random labelling should quickly be
impossible [33].

Yet, this attack (despite not directly designed to modify ac-
curacy) is a second SAP on small datasets like CIFAR10/100.

V. CONCLUSION

This paper offers symmetric adversarial attacks targeting
deep networks, not just deep features plus SVM. Several attack
related to the offered ones are showed asymmetric highlighting
that producing symmetric attack is not trivial.

Main results is that the best offered attack makes the

accuracy going from 87% to 27% / 93% when minimiz-
ing/maximizing (VGG on CIFARI10). Future works should
assess these attack behaviors on larger datasets.
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