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Features which are robust to adversarial attacks

are also robust to several poisoning attacks

Adrien CHAN-HON-TONG

September 8, 2021

Abstract

Most data poisoning methods target naive deep networks. Yet, it is
well known that those networks exhibit strong sensitivity to perturbations.

Inversely, in this paper, I show that several data poisoning attacks
(e.g. poison frog) are ineffective as soon as there are applied on features
made robust to adversarial attacks, on both CIFAR and MNIST datasets.

This result stresses that some state of the art data poisoning results
may have been corrupted by adversarial sensibility and should be further
checked on robust networks instead of naive ones.

Code is available at github.com/achanhon/AdversarialModel/V4.

1 Introduction

Deep learning (DL) which appears with [12] (see [14] for a review) is now at
the core of most computer vision pipelines. Yet, many challenges have to be
tackled before real life applications of deep learning for critical tasks: fairness,
privacy, explainability...

One of these challenge, which has received a very strong attention from
the community, is robustness. Indeed, it is known that naive deep learning is
vulnerable under adversarial attacks [18, 29, 23, 27, 22, 7]: at test time, it is
possible to design a specific invisible perturbation such as a targeted network
eventually predicts different outputs on original and disturbed input. Worse,
producing adversarial examples does not require to have access to the internal
structure of the network [4, 20] and can have physical implementation [13].

Typically, an hacker could modify a traffic signal such that it is wrongly
classified by a targeted autonomous driving model.

Another issue is data poisoning [19] where an hacker modifies the training
data to force the model to get a specific behavior. Figure 1 illustrates adversarial
attack and data poisoning ones.

Yet, training is done in a much more secure environment (typically, on pri-
vate data). And, there exists formal defense against poisoning. For example,
[16] stresses that if someone learn 5 classifiers on 5 disjoint set of a large dataset,
then, an hacker which would have modified a single training samples can only
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adversarial attack data poisoning

Figure 1: Illustrations of adversarial attack vs poisoning attack: goal of the
hacker is to have the red point classified as green and not orange, black line is
decision boundary of the classifier.

modify 1 over the 5 models. By performing majority vote over the 5 models,
one could be sure that as soon as 4 models agree, then, the decision is robust
to a data poisoning attacks.

For this reason, a real data poisoning attack against real life deep learning
may never happen. This may explain why data poisoning has received less
attention than adversarial attacks.

Yet, despite data poisoning is much less probable and can be virtually mit-
igated. It should still be considered as a threat. First, splitting the training
dataset in 5 to be robust to a single datum perturbation is quite unrealistic
with modern deep networks which are best on large training set. Then, a single
hacker can break the system for all users with data poisoning. Because, the
result of the attack is a bad model, which will have bad behavior everywhere
(inversely, with adversarial attacks, an hacker can only modify one traffic sign
at a times). Thus, poisoning attack can be much more harmful than adversarial
ones.

For these reasons, data poisoning should still be considered by the commu-
nity even if adversarial attacks may be a more urgent issue. Even more, the
motivation of this paper is that both issues may be related. Indeed, both data
poisoning and adversarial attacks are related with the idea of moving some data
in a feature space (despite adversarial attack moves in a frozen space while
feature space changes when poisoning perturbs training data).

Yet, adversarial defenses had never been considered as potential way to mit-
igate data poisoning in state of the art. The contribution of this paper is to
prove that deep features trained with adversarial defense are more robust to
poisoning attacks than naive ones. This result was not trivial because adver-
sarial defense is about to push the decision boundary far from training data,
while, poisoning is about diverting the decision boundary. Besides, this paper
does not claim that adversarial defenses prevent all poisoning attacks, but, at
least the selected ones.

Precisely, three poisoning attacks are considered: PoisonFrog [25], adver-
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sarialpoisoning [3] and a labelflip attack (related to [19]). The evaluations will
rely on classical computer vision datasets CIFAR10 and CIFAR100 [11], MNIST
[15], SVHN [21] with or without adversarial retraining (as adversarial defense).
Consistently with [25, 3], deep features rather than full deep networks are con-
sidered. A consistent trend in all those experiments is that adversarial defense
reduce poisoning effect.

Experimental framework is presented in section 3 after presentation of the state
of the art in section 2. Then, results and discussion are presented in section 4.

2 Related works

2.1 Adversarial defenses

As soon as adversarial attack appears [27], there were a lot of research to find way
to mitigate this issue. However, first methods like distillation [24] or gradient
masking cure the symptoms rather than the causes [2], and have been quickly
bypassed by new attacks.

Recent methods tends to increase the margin between each training data
and the decision boundary. Yet the computation of the exact margin is a hard
problem and requires the use of formal tools [10]. Thus, the two main ways are
either an overestimation or an underestimation of the margin.

The overestimation of the margin relies on the generation of adversarial
examples, this is the so called adversarial retraining, where, at each step of the
training time, adversarial examples are considered instead of original examples
to force the network to be margin aware. Currently, if the attack is strong, then,
this attack could lead to very robust model e.g. [17].

The underestimation of the margin is based on the idea to produce a convex
overestimation of the accessible space (in feature space) related to the pertur-
bation of the input. The pioneer work of this way is [28].

More formally, a network f (for binary classification) with weight w ad-
mits an ε adversarial example in x if ∃δ, ||δ|| ≤ ε, fw(x)fw(x + δ) < 0.
Thus, a way to increase robustness on x is to perform the backpropagation
not on x but on x∗ = arg min

z∈Bε(x)

fw(x)fw(z) where Bε(x) = {z, ||z − x|| ≤

ε}. But, as computing x∗ is hard, then, adversarial retraining relies on x̂ =
arg min

z∈ω⊂Bε(x)

fw(x)fw(z) where ω is a set defined by adversarial attack (e.g. [17]),

while [28] offers to compute x̃ = arg min
z∈Bε(x)

fw(x)gw(z) where gw is a convex

approximation of fw leading to fw(Bε(x)) ⊂ gw(Bε(x)). Recently, an other
way seems to emerge based on 1-Lipschitz networks [1] for which structurally
|fw(x)| > ε⇒ min

z∈Bε(x)
fw(x)fw(z) > 0.

However, [1] requires not standard deep networks (e.g. no relu), while meth-
ods related to [28] are still very expensive in computation. For those reasons,
this paper is based on adversarial retraining with 2 very classical attacks:
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• FSGM [8] which consists in generating an adversarial candidate with

x̂ = x+ ε× sign(∇xL(x, y))

where L is the loss function (typically a cross entropy) on x with class y
(y ∈ {−1, 1} for binary classification).

• PGD is a stronger attack introduced in [17] which consists in

x̂t+1 = Proj (x̂t + α× sign(∇xL(x̂t, y)), x)

where Proj(z, x) projects z such that ||Proj(z, x)− x|| ≤ ε.

2.2 Selected data poisoning attacks

Data poisoning consists in modifying some training samples to get a specific
behavior of the classifier after training on poisoned data. Yet, the underlying
idea is that the perturbation of the training data should not be easily detected
by the owner of the dataset. [19] considers heavy modification (image and label)
of a small subset of the data (hoping owner will not review all data) while [3, 25]
considers invisible perturbation of many images (harder to detect but require
to access more training data for [3]).

Precisely, [19] considers improved label flip (LF) attack: label of some images
are changed forcing the network to learn with label noise. Yet, deep networks
relies on stochastic gradient descent which is not global, and, quite able to deal
with label noise. So, [19] also introduces an image perturbation which enhances
the label flip effect (see [19] figure 4.a).

[25] offers a very different attack called poisonfrog (PF) which requires no
label modification, and, only invisible perturbation of a small subset of training
data (eventually only one). First, the attack targets deep features rather than
deep networks: only the last layer of the network is trained on clean/poisoned
data (all other layers have been trained before). This training of the last layer is
done with support vector machine (SVM) [5]. The objective of the attack is to
modify a training sample x with class y = −1 in order that the resulting model
will wrongly classify the targeted testing sample xt with class y = 1. The core
of the attack relies on the idea of poisoning the training sample x into z = x+ δ
such that xt has the same position in feature space than z. This way, when
trained on with (z,−1) in training set, the resulting model fw will probably
verify fw(z) = fw(xt) < 0 i.e. xt is wrongly classified.

Taking advantage of the fact that deep features are frozen, the poisoning
consists in solving

min
z, ||z−x||≤ε

||feature(xt)− feature(z)||

This problem is very close to the one of generating an adversarial example, and,
can be implemented in either FSGM fashion or PGD one.
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Again, this attack relies on the capacity to perform a large modification of
feature(x+ δ) with only a small perturbation δ. Thus, this attack may be less
efficient on robust features.

Finally, the last attack considered in this paper is adversarial poisoning
(AP) [3] which is similar than [25], but, based on the idea of directly modifying
the decision boundary (also taking advantage of frozen deep feature, and, also
without modifying label).

The first phase of the attack is to generate the clean model wc, and, a proxy
model wt. The objective of the hacker is to make wc rotates to reach wt. This
can be reached by rotating many training datum x with this rotation (indeed,
SVM commutes with rotation when data are linearly separable). At first order,
the poisoning consists in moving training as many datum x on the axis wt−wc

i.e. for any possible training x to solve:

max
z, ||z−x||≤ε

||(wt − wc)
T feature(z)||

Like for [25], this problem is very close to the one of generating an adversarial
example, and, can be implemented in either FSGM fashion or PGD one.

Again, this attack relies on the adversarial effect, and, should be evaluated
on robust features.

3 Adversarial defense against data poisoning

3.1 Overview

In order to evaluate the different poisoning attacks against the different features
with more or less robustness, I rely on the following framework illustrated by
figure 2. Importantly, the framework relies on frozen features following [25, 3].
Yet, both those papers have then been extended to poisoning against deep
networks. Thus, the fact to rely on frozen features may not restrict too much
the scope of the paper.

Classically, data poisoning is about comparing poisoned/clean behaviour re-
lated to poisoned/clean model where the poisoned model is trained on poisoned
data (and clean model on clean data). This is the right part of the figure 2.

Here, the objective is to see how those poisoning attacks behave as function
of the features (brown lozenge in figure 2). Those features are produced from
an external data (e.g. Imagenet [6] in [25, 3]). This is the left part of the figure
2 which corresponds to the classical training of a deep network with or without
adversarial defense.

So classically, data poisoning papers focus on the poisoning attack (the cyan
ellipsoid in figure 2). Inversely, in this paper, the attacks are selected from state
of the art. But, the contribution is to evaluate the impact of the adversarial
defense (purple ellipsoid in figure 2).
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Figure 2: Illustrations of the framework to evaluate the impact of adversarial
defense (and so feature robustness) on poisoning attacks.

3.2 Implementation details

Experiments are performed on CIFAR10 and CIFAR100 [11], MNIST [15],
SVHN [21]. Precisely, I consider two setting: CIFAR100 is used as external
data, then CIFAR 10 is used as train/test data - or - SVHN is used as external
data, then, MNIST is used as train/test data.

Importantly, one could have expected the use of Imagenet [6] as external
data. Yet, producing robust Imagenet features is already a challenging task.
This is why, CIFAR100 is used as external data to tackle CIFAR10 and SVHN
for MNIST. However, all poisoning attacks are first validated on Imagenet fea-
ture (see code in github.com/achanhon/AdversarialModel/V4) to ensure correct
implementation of the attacks.

Both VGG [26] and ResNet [9] are considered as feature backbones. The
training of those networks is realised classically (Adam solver, cross entropy,
... see the code on github), then, the last layer is removes to keep only the
feature part. The number of epochs is adapted to the adversarial defense (which
are known to slow down the convergence). Models (on top of deep features)
are trained using LinearSVC from scikit-learn from either clean or poisoned
training data. Currently, using up-to-date version of scikit-learn and pytorch is
important to recover similar results than the ones reported in the paper (means
are averaged at least over 3 runs - but variance is not negligible). Mainly VGG13
results are reported but ResNet ones follow similar trends.

As pointed in section 2.1, adversarial retraining with either FSGM or PGD
is considered as adversarial defense. And, as pointed in section 2.2, label flip
LF [19], poison frog PF [25] and adversarial poisoning AD [3] are considered for
poisoning attack. For poison frog, one has to recover a binary context. Thus,
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Dataset CIFAR MNIST

AD on naive feature 24% 68%
AD on FSGM feature 30% 93%
AD on PGD feature 34% 95%

Table 1: Features robustness has positive impact on the accuracy under adver-
sarial poisoning attack [3] on CIFAR and MNIST (here with VGG13).

classes 0 and 1 are considered (so it is airplane vs car on CIFAR contrary to
original paper with dog vs fish).

ε = 3
255 on CIFAR (except if specified) like in [3], resulting in an invisible

perturbation (for human eyes). But ε = 7
255 on MNIST which is known to be

less prone to adversarial sensibility (except if specified).

4 Results and discussion

4.1 Validation of the implementation

validation of the left part of figure 2: Training with and without adver-
sarial defense produces compatible results with published ones on CIFAR100
and SVHN. Typically, features learnt with adversarial defense are much more
robust to adversarial attacks with FSGM and PGD. Currently, there is a bias
as the effect of adversarial retraining with PGD is evaluated with PGD attack.
However, it is one of the most popular attack today.
validation of the right part of figure 2: The poisoning attacks PF and
AD on Imagenet features produces consistent results with [3, 25] (validation of
the right part of figure 2). Currently, the implementation of [25] is evaluated
in different parameter tuning. Thus, efficient is not directly comparable (73%
with the reimplementation against 99% but it is not even the same subset of
CIFAR).

4.2 Adversarial poisoning

The table 1 shows the accuracy after an AD attacks on VGG13 with features
learnt with or without adversarial defense (for both MNIST with SVHN feature
and CIFAR10 with CIFAR100 feature). This table shows that poisoning has
less influence on PGD than FSGM, and, less influence on FSGM than on naive
feature.

Currently, the clean performance of naive feature is higher than defended
ones on CIFAR: accuracy of PGD features on clean CIFAR10 is only 41% i.e.
poisoning has almost not effect but starting performances are much lower. How-
ever, it mainly show that transferring features from CIFAR100 to CIFAR10 is
not a good idea. Inversely, adversarial defenses provide a very efficient protec-
tion with a better poisoned accuracy (despite a much lower clean accuracy).

7



feature CIFAR
PF on naive feature 85%

PF on FSGM feature 53%
PF on PGD feature 16%

Table 2: Critical impact of features robustness on ratio of successful poison frog
attacks on CIFAR.

On MNIST, the result is very interesting with a very high accuracy under
poisoning with FSGM or PGD features: AD does not work at all on MNIST
with PGD feature.

So, adversarial defenses are a data poisoning defense against [3] on MNIST
(and mitigate the loss of accuracy related to [3] on CIFAR).

4.3 Poison frog

The table 2 shows the ratio of points (over 100 trial) on which poison frog attack
is successful on both naive, FSGM or PGD features on CIFAR with ε = 7

255 .
The number of trial is slower than in [25]. However, it has to be stressed that
each trial require to learn a SVM on the top of the features resulting in an
expensive process (in particular with 3 different types of features).

Currently, on MNIST, PF works from Imagenet feature, but, not from SVHN
features even with ε = 25

255 . So the MNIST results are not reported. Maybe,
the SVHN features are very robust on MNIST (even naive ones) making PF
completely ineffective.

Again, this experiment shows that adversarial defense strongly decreases the
impact of a data poisoning attack (PF here). Currently, PF is still active even
with PGD feature on CIFAR (16% is still an issue) but much less than when
targeting naive features (with 85% of successful attacks in this last case).

4.4 Label flip

Both previous subsections shows that adversarial defense improves robustness
to two poisoning attacks. Yet, those poisoning attacks are image-based.

Thus, it could be interesting to check if this results holds for label based
poisoning attacks. Indeed, as robust features tend to increase distance between
point in feature space, it could be even more sensible to label based attack.
Currently, [19] combines both label and image perturbation. Yet, image pertur-
bations are not bounded in [19] (see figure 5 and 6 of [19]), so there is no sense
to consider norm bounded adversarial defenses against [19]. This is why, I focus
on simple LF attack.

The table 3 shows the difference of accuracy (between clean model and poi-
soned one) after an LF attacks (2% of random label) on VGG13 with features
learnt on with or without adversarial defense. The result is that adversarial
defense does not increase the sensibility to label noise (accuracy gap is only
slightly larger with robust features).
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Dataset MNIST CIFAR

LF on naive feature -2% -7%
LF on PGD feature -2% -11%

Table 3: Robust features do not suffer more than naive ones under label flip
attack (here 2% of label is random) with VGG13.

Currently, in absolute value, robust features have much lower accuracy on
CIFAR (with or without label noise). On MNIST, performance is high for all
features i.e. robust features perform like naive ones with or without label noise:
accuracy is still 94% with 2% of label noise on MNIST with PGD features (96%
without label noise - against 95% and 97% for naive features).

4.5 Conclusion and future works

The main contribution of this paper is to prove that both poison frog and
adversarial poisoning lose most of their effectiveness when targeting robust deep
features (produced using adversarial defense).

This result is not surprising, but, not trivial because the robustness of the
feature could have been useless against poisoning attacks (which modify the
training data).

This invites the poisoning community to consider robust networks rather
than naive ones when designing poisoning attack (or defense).

The main limitation of this paper is to tackle deep feature instead of deep
networks. This is consistent with the selected attacks but should still be im-
proved in future works.
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