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Abstract—Data poisoning is known as the goal of finding small
modification of training data which make them not suitable
anymore for training the targeted model. Recently, an efficient
symmetric poisoning attack targeting frozen deep features plus
support vector machine has been found.

However, new experiments presented in this paper shows that
this attack is not symmetric anymore on unfrozen/real deep
networks.

Then, several extensions of this attack are considered on
CIFAR10/CIFAR100 with both VGG and ResNet backbone
leading to a symmetric attack. On VGG/CIFAR10 setting, this
extended attack makes performances moving by -60%,+5% from
native accuracy using perturbations invisible to human eyes.

A discussion on this success and on the failure of the 3 other
methods is also presented.

Index Terms—data poisoning, adversarial examples, deep
learning

I. INTRODUCTION

A. Adversarial examples

Deep learning (DL) which appears in computer vision
with [1] (see [2] for a review) is now a mature technology
for many digital application e.g. [3]. But, current DL can
be hacked. This could forbid application of DL for critical
applications including autonomous driving [4], health care [5],
or security (e.g. [6]). The most salient example of this fault
is adversarial examples [7]–[11] (which may exist with other
machine learning algorithms but which is a real issue for
DL). At test time, it is possible to design a specific invisible
perturbation such as a targeted network eventually predicts
different outputs on original and disturbed input. Computer
vision is especially concerned with accuracy of unprotected
network dropping close to 0% under state of the art attack [12]
but other fields are concerned (e.g. [13] highlights this issue in
cyber security context with performance of a malware detector
dropping from 87% to 66% on adversarial malwares). Worse,
producing adversarial examples does not require to have access
to the internal structure of the network [14], [15] and can have
physical implementation [16].

Mathematically, producing adversarial example is classi-
cally considered as the task of maximizing the cross-entropy
(CE) of a target network f with weights w on a data x thank
to a perturbation δ constrained to be small (typically a L1

norm bounded by ε):

max
δ / ||δ||1≤ε

CE(f, w, x+ δ) (1)

classical adversarial attack data poisoning
Fig. 1. Illustrations of classical adversarial attack vs poisoning attack: goal
of the hacker is to have the red point classified as green and not orange, black
line is the targeted classifier.

B. poisoning

A smaller but non negligible issue is poisoning [17], [18].
Data poisoning (which also works [19] on support vector
machine SVM [20]) is known as the goal of finding small
modification of training data (testing data being unchanged)
changing the model behaviour on test e.g. changing the testing
accuracy. In other words, data poisoning hacks training data
(using or not knowledge on testing data and/or model) while
adversarial attack hacks testing ones (using or not knowledge
on the model): see Fig.1.

As it will be a central in this paper, the symmetric poisoning
problem requires the same attack to be able both to decrease or
increase the accuracy. Mathematically if the targeted learning
pipeline f is trained with stochastic gradient descent [21]
(SGD) or incremental versions (e.g. [22]), the goal of sym-
metric poisoning is to solve:

modify :
δ / ||δ||≤ε

Eθ [Accuracy (f, w, Test)]

st : w ∼ SGDθ(f, Train+ δ)
(2)

where modify could be either minimize or maximize, and where
expectation is required as SGD relies on random variable
θ, and, ||.|| represents constraints on δ the poison. Just for
highlighting the hardness of this problem, comparing Eq.1 and
Eq.2, one can see that adversarial attack is just optimization of
δ through a network while poisoning is optimization through
the training of a network.

C. Adversarial poisoning

Importantly, constraint on δ are classically a L0 pseudo
norm in poisoning i.e. poisoning focus on modifying only few
training samples [17], this assumption is both more tractable



(it allows to focus on few samples) and more realistic (no
hacker can own all training data), and, ensures that the attack
to hardly detectable for human data reviewers.

But, adversarial examples and data poisoning can be com-
bined. δ is constrained by a L1 norm, and, goal of the hacker is
to take advantage of sensibility to small perturbation: goal is to
produce symmetric poisoning with only small modification of
all training data instead of heavy modification of few training
samples. Typically [18] introduces a symmetric adversarial
poisoning attack (SAP) based on energetic landscape hacking.

Precisely, [18] presents a SAP attacks on classical computer
vision benchmarks targeting a frozen DL + SVM pipeline
(f is a deep network but only last layer weights are up-
dated during training resulting in a pipeline sensible to small
perturbation but with convex training). This attack called
energetic level attack is based on the assumption that the more
CE(f, w, Train) is high/less, the less/high is the probability
that w will be returned by SGD when trained on Data. In
practice, [18] offers to use a proxy wdesired. It computes
the proxy wdesired = SGD(f, Test) by training on testing
data (training is convex in [18]). Then, it optimizes δ to
increase/decrease CE(f, wdesired, T rain + δ) to make both
increase/decrease the accuracy. Thus, [18] transforms Eq.2 in
Eq.1 thank to the use of a proxy, eventually leads to produce
training adversarial examples.

Mathematically, this energetic level attack is the combina-
tion of the two following equations:

minimize :
δ / ||δ||1≤ε

Eθ [CE(f, wdesired, T rain+ δ)] (3)

wdesired ∼ SGDθ(f, Test) or − SGDθ(f, Test) (4)

with wdesired ∼ SGDθ(f, Test) when goal is to minimize
accuracy and −SGDθ(f, Test) when goal is to maximize
accuracy. Importantly, Eq.3 is almost exactly Eq.1 but the
critical difference is the use of specific weights wdesired: using
other weights does not lead to a SAP. Typically, using the
weights resulting from a standard training is just adversarial
retraining.

D. Contribution

The starting point of this paper is a set of experiments
described in section 2 which shows that this attack is not sym-
metric anymore when targeting unfrozen/real deep network.

Then, the main contribution is to offer a modification
of the original attack which allows a SAP attack for real
deep network (i.e. extending [18] to real deep network). As
a teasing of section 3, attacks offered in this paper make
accuracy changes from 86% to 27% (minimizing) or 93%
(maximizing) for VGG on CIFAR10 (a classical computer
vision model/dataset).

In section 4, experiments are presented to highlight that
offered modification is not trivial especially by comparing it
with two other related attacks. Then conclusion is presented
in section 5.

proxy used Eq.3 testing accuracy desired
SGDθ(f, Test) (Eq.4) 27% � 87%

SGDθ(f, Train) 34% ≈ 87%
−wimagenet 64% ≈ 87%
wimagenet 58% ≈ 87%

−SGDθ(f, Train) 73% ≈ 87%
−SGDθ(f, Test) 77% � 87%

Original accuracy 87% -

TABLE I
TESTING ACCURACY OF VGG ON CIFAR10 UNDER DIFFERENT
POISONING CORRESPONDING TO EQ.3 WITH DIFFERENT PROXY:

RESULTING ACCURACY MATCHES EXPECTATION ONLY IN FIRST ROW.

II. ENERGETIC LEVEL ATTACK IS ASYMMETRIC ON REAL
DEEP NETWORKS

In this section, experiments show that energetic level attack
introduced in [18] is not symmetric anymore on real deep
network.

A. Experimental setting

To provide results comparable to [18], the experimental
setting is kept unchanged and focus on computer vision
datasets: precisely, on CIFAR datasets [23]. All attacks are
designed to produce a poisoning with average L1 pixelwise
distance bounded by 3. This leads to a poisoning invisible to
human eyes (see [18]).

Classical networks are considered as targets: VGG [24] and
ResNet [25] (cut when spatial dimension is less than convolu-
tion kernel). In most experiments, weights are initialized from
IMAGENET [26] pretraining.

Only difference with [18] is that all layers of VGG are
updated during training, instead of just the last one. This is
an important improvement as using frozen DL + SVM is
clearly a deprecated practice for image classification. Also,
by learning all layers native performance are much higher.
Typically, without poisoning, accuracy of unfrozen pipeline
is 87% against only 75% for frozen one on CIFAR10 [18].
This level of performance of 87% is standard [27] for a VGG
without batch normalization contrary to the 75% with frozen
network. As optimizations are not convex anymore (multiple
runs lead to different results) with real deep network, all
accuracy measures reported in this paper are averaged over
several runs (typically 8 runs).

B. Results

Naive application of [18] algorithm corresponding to Eq.(3-
4) targeting an unfrozen deep network decreases performance
even when the attack is setup to increase accuracy. Worse,
Table.I shows that virtually any proxy leads to an accuracy
drop while using unrelated proxy should not impact the
resulting accuracy.

Level of accuracy dropping is quite impressive and relevant
for some poisoning use case (from 87% to 27%). But, the
attack offered in [18] is not symetric anymore when going
from deep feature + SVM to real deep network as SAP is
required to be able to both increase/decrease performance.



setting vs accuracy CIFAR10 CIFAR100
VGG no poison 87% 78%

RESNET no poison 81% 75%
VGG poisoned (min) 28% 34%

RESNET poisoned (min) 43% 33%
VGG poisoned (max) 93% 86%

RESNET poisoned (max) 85% 82%

TABLE II
PERFORMANCE OF VGG/RESNET ON CIFAR10/CIFAR100 WITH AND

WITHOUT POISONING EQ.(5-4). BOTH MINIMIZATION AND
MAXIMIZATION ARE EFFECTIVE MEANING THAT THIS IS A SYMETRIC

ATTACK.

III. ENERGETIC DIFFERENCE IS SYMMETRIC

This section describes the new attack designed for symmet-
ric adversarial poisoning on real deep model.

A. Offered attack

The dynamic of cross entropy curves during training on
healthy vs poisoned Eq.(3-4) data are very different: con-
vergence is much more fast on poisoned data. By trying
to force equivalent dynamic between both curves, it comes
that modifying the difference of CE(f, wdesired, T rain + δ)
and CE(f, wfair, T rain + δ), with wfair being the weights
corresponding to a standard poison-free training, instead of
just Eθ [CE(f, wdesired, T rain+ δ)] leads to an efficient
SAP. Precisely, it requires to average the cross entropy
over several wdesired (different sampling over SGDθ(f, Test)
or −SGDθ(f, Test) depending on the goal of minimiz-
ing/maximizing).

Mathematically, the offered attack correspond to:

minimize :
δ / ||δ||1≤ε

Eθ

[
CE(f, wdesired, T rain+ δ)
−CE(f, wfair, T rain+ δ)

]
(5)

combined with Eq.4.
Importantly, designing this attack was not trivial despite

the close similitude with [18]. A discussion on this point is
presented in section 4.

B. Results

The experimental setting is the same than in previous
section, results are presented in Table.II.

The results show that the offered attack is effective both
for minimization or maximization setting with the two back-
bones/datasets: for VGG on CIFAR10, performance drops to
28% when minimizing but jumps to 93% when maximizing
contrary to [18] attack which leads to 27% when minimizing
but only 77% when maximizing (see Table.I).

This is the major contribution of this paper: this is the first
known SAP targeting a deep network.

IV. DISCUSSION

This section presents a discussion on these results supported
by many complementary experiments. This section may also
emphasises the contribution which could otherwise seem lim-
ited since data poisoning is weakly studied.

A. Comparison with other attacks

1) Designing landscape modification based attacks: Previ-
ous sections show that energetic level (Eq.3+4) is not a SAP
attack, but that energetic level difference is one (Eq. 5+4)
despite that both methods seems very close.

However several other similar attack has been tested, and,
are asymmetric like energetic level. Before presenting these
attacks, let stress that there is a simple underlying assumption
guiding energetic level attack. This assumption of Eq.3 is
that minimizing energetic level of wdesired should increase
the probability for wdesired to be returned by SGD, and
so the average accuracy to increase/decrease depending on
wdesired. Of course, this assumption is only true for convex
optimization, and, obviously false for DL optimization whose
energetic landscape is highly complex. Yet, one could still
have hoped that decreasing energetic level of desired weights
may disturb the training toward those weights. But,it does not
(as pointed by Table.I).

Now, there is two other simple assumption which could
lead to an algorithm: first, that SGD tends to follow energetic
valley, and, then that SGD tends to return critical point.

2) Path based attack: If SGD tends to follow energetic
valley, then, one could be able to make the optimization to
reach wdesired by decreasing the energetic level of a complete
path in weights space from initial weights to desired ones
instead of just the energetic level of the desired ones. This
attack can be implemented as:

minimize :
δ

Eθ[CE(f, wbarycentre, T rain+ δ)]

wdesired ∼ SGD(loss, f, Test, θ)
wbarycentre = αwdesired + (1− α)wimagenet
α ∼ U(0, 1)
||δ||1 ≤ ε

(6)

U(0, 1) is a uniform sampling on [0,1], thus, equation 6
offers to decreases the line (in weight space) between starting
weights and final ones.

3) Gradient based attack: If SGD tends to return critical
point, then, one can increase the probability of wdesired to be
returned by forcing gradient (relatively to weight) to be null at
wdesired (in addition to force energetic level to be low). This
leads to the following implementation (with µ� 1):

min :
δ / ||δ||1≤ε

Eθ

[
µCE(f, wdesired, T rain+ δ)+
||∇wCE(f, wdesired, T rain+ δ)||22

]
(7)

combined with Eq.4. It could be seen that this attack re-
quire 2nd order derivative hopefully implemented in Pytorch
(https://pytorch.org/).

4) Results: All attacks are compared on VGG/CIFAR10
and results are presented in Table.III. Surprisingly, both path
and gradient based attacks are not SAP: only energetic level
difference is.

It is important here to distinguish how algorithm really
works (which is unfortunately out of the scope of this paper)
and why they have been designed as it. Now, all energetic
level / path based / gradient based attacks are designed around



poisoning max accuracy intelligible
no poisoning 87%

Energetic level Eq.2 77% yes
Path based attack Eq.6 87% yes

Gradient based attack Eq.7 80% yes
Diff based attack Eq.5 93% no

GAN based attack Table.IV 92% no

TABLE III
TESTING ACCURACY WITH VGG/CIFAR10 FOR DIFFERENT POISONING

ATTACK SETUP TO INCREASE ACCURACY: ONLY DIFF BASED ATTACK
WORKS HIGHLIGHTING HARDNESS TO DESIGN SAP FOR DEEP NETWORK.

an idea: the link between energetic value and probability of
being returned by SGD, the assumption on SGD dynamic
about the energetic valley, and finally, the property of critical
point. Of course, all these assumptions are only true for convex
optimization. Indeed, both these 3 attacks works in convex
setting (i.e. like in [18]). But Table.III shows that they do not
work on DL energetic landscape.

Inversely, despite the similarity between all theses attacks
there is no simple underlying assumption which has guided
energetic level difference attack. Yet, this is the only one
which is symmetric. This highlights the difficulty to design
symmetric attack despite the similarity between them.

B. Going deeper into attack failures

Even if the reason why some attacks fails is out of the
scope of this paper, one could make hypothesis to explain
these failures. Clearly Eq.6 could be a good idea (controlling
the behavior of the SGD by creating a valley in the energetic
landscape) if there were only one start and one end: it works
in this case. But, there are multiples starting weights (random
initialisation) and multiples equally good ending weights. This
way, it is not clear anymore to understand what is the valley
the the algorithm tries to create in standard training.

Then, eq.7 is based on the idea that SGD is expected to
return a critical point, but, deep networks are trained with early
stopping and returned weights are not expected to be critical
point.

Finally, a global possible explanation is that as the energetic
landscape is badly modified, interesting points could become
unreachable from common initialization, thus, focusing only
on the energetic level of the target could create damaging side
effect breaking the idea that CE(f, w, Train) is correlated
with probability of w to be returned by SGD.

Currently, an experiment is possible to check this last hy-
pothesis that lowering the energetic level of a point (and/or of
it surrounding with gradient penalty and/or of the path leading
to it) is not sufficient as it could create side effect making
then unreachable from normal initialisation. This experiment
is to evaluate the accuracy from initial point being closer and
closer to the desired end. This way, only the effect of the
local energetic landscape modification is considered but not
the global ones (which could break the dynamic of SGD).

Typically, training on the normal CIFAR10 from wimagenet
leads to wfair with 87% of accuracy. And, training from
wfair also leads to 87% of accuracy (weights are exactly

equal if wfair is a real critical point, in practice weights are
marginally modified but resulting accuracy is not - in average).
But, training on poisoned CIFAR10 leads to 93% from wfair,
and, only 77% from wimagenet. This fits with the idea that
SGD does not take advantage of energetic level change around
wdesired from wimagenet, but, that the change are real (as it
takes advantage of them from wfair).

Unfortunately, this observation makes even harder to un-
derstand the energetic level difference mechanism. As wfair
and wdesired should be close (seeing this last experiment),
energetic level difference should put both these point on a
slope i.e. building a mountain in the energetic landscape. Yet,
despite this mountain, wdesired seems still reachable from
wimagenet which is not the case with all 3 other differences.

C. About not energetic attack

To add element to the discussion, one can be interested by
attack which does not directly hack the energetic landscape.
Obviously, such attack has few chance to be intelligible.
Yet, previous sections show that intelligible attacks ar not
symmetric.

A good candidate is generative adversarial network (GAN)
based attacks. There is a tremendous literature for GAN see
[28]–[30] as examples and [31] as a review. Overall principle
of GAN is:

• one network G (generator) produces images
• one network D (discriminator) classifies images between

true or generated one
• D is trained with true images and images generated by
G (and should predict image source)

• G is trained to minimize D confidence
• G eventually will produces good images, or more pre-

cisely, image that D is not able to distinguish from true
images.

In context of SAP, a possible implementation is to learn
a discriminator between training and testing images, and, to
setup the perturbation to be added to the image (δ in previous
equations) to minimize/maximize discriminator confidence.
Optimizing δ on all training images eventually produces a
poisoned dataset. Training on this poisoned dataset may result
in a model less/more testing set friendly as poisoned images
are expected to be between original images and testing images.
Pseudo code is presented in Table.IV.

As a result, GAN based attack leads to 92% of accuracy
instead of 86% on CIFAR10 (in maximization setting but
it also works on minimization one). Now, this attack seems
limited to small dataset: assuming data are i.i.d. in train and
test dataset, the discriminator is learning a model on a random
labelling. Thus, on larger dataset, it should not be able to
learn and should have a 50% accuracy. One could claim that
with very very large dataset, there is no reason why wdesired
should be different than wfair. This is true (as DL has finite
dimension VC [32]), but not with the same scale: overfitting
exits even with the largest academic datasets like [26], while
random labelling should quickly not be learnable [33].



GANbasedAttack(f,Xtrain,Ytrain,Xtest,Ytest)
// compute discriminator
wD = SGD(f, Xtrain :: Xtest, Ytrain × {0} :: Ytest × {1} )
// modify images according to wD
X’ = []
for x,y in Xtrain,Ytrain:

gradient = grad[x](CE(f(x,wD),y x {1}))
x’ = x +/- sign(gradient) depending on the goal
X’.append(x’)

return X’
By modifying x such that training images are closer (for D) to testing images,
hacker can hope that applying SGD on X’,Ytrain will return weights more
adapted to testing set. Indeed, this attack leads to a significant testing accuracy
gap on CIFAR10 with VGG: from 87% to 92%.

TABLE IV
GAN BASED SAP ATTACK TARGETING DL.

Yet, this attack (despite not directly designed to modify ac-
curacy) is a second SAP on small datasets like CIFAR10/100.

V. CONCLUSION

This paper offers symmetric adversarial attacks targeting
deep networks, not just deep features plus SVM. Several attack
related to the offered ones are showed asymmetric highlighting
that producing symmetric attack is not trivial.

Main results is that the best offered attack makes the
accuracy going from 87% to 27% / 93% when minimiz-
ing/maximizing (VGG on CIFAR10). Future works should as-
sess their behavior (in particular GAN one) on larger datasets.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Conference on Computer Vision
and Pattern Recognition, 2016.

[5] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest editorial
deep learning in medical imaging: Overview and future promise of
an exciting new technique,” IEEE Transactions on Medical Imaging,
vol. 35, no. 5, pp. 1153–1159, 2016.

[6] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proceedings of the 9th
EAI International Conference on Bio-inspired Information and Com-
munications Technologies (formerly BIONETICS). ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2016, pp. 21–26.

[7] S. M. Moosavi Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[8] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[9] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
technical report arxiv:1312.6199, 2013.

[11] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 427–436.

[12] C. Finlay, A.-A. Pooladian, and A. Oberman, “The logbarrier adversarial
attack: Making effective use of decision boundary information,” in The
IEEE International Conference on Computer Vision, October 2019.

[13] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in European Symposium
on Research in Computer Security. Springer, 2017, pp. 62–79.

[14] M. M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling
deep structured visual and speech recognition models with adversarial
examples,” in Advances in Neural Information Processing Systems,
2017, pp. 6977–6987.

[15] N. Narodytska and S. Kasiviswanathan, “Simple black-box adversarial
attacks on deep neural networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), July 2017.

[16] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in International Conference on Learning Represen-
tations (ICLR), 2017.
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