
HAL Id: hal-02139074
https://hal.science/hal-02139074v2

Submitted on 23 Jun 2019 (v2), last revised 3 Nov 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symmetric adversarial poisoning against deep learning
Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Symmetric adversarial poisoning against deep learning. IPTA 2020, Nov
2020, Paris, France. �hal-02139074v2�

https://hal.science/hal-02139074v2
https://hal.archives-ouvertes.fr

Adversarial poisoning and inverse poisoning

against deep learning

Adrien CHAN-HON-TONG

June 23, 2019

Abstract

Efficient attacks for both adversarial poisoning and adversarial inverse
poisoning have recently been found on frozen deep feature plus support
vector machine. But, new experiments show that such attacks only works
for poisoning.

But, such attacks is completely inefficient for inverse poisoning when
targeting deep networks as stochastic training provides a natural defense.
However, new attacks are presented to overcome this defense.

This way, this paper shows that adversarial poisoning and inverse poi-
soning are possible against straightforward deep network.

1 Introduction

1.1 Adversarial examples

Deep learning (DL) which appears in computer vision with [12] (see [14]
for a review) is now a mature technology for many web application e.g.
[27]. But, current DL can be hacked which is problematic for critical
applications including autonomous driving [3], health care [7], or security
(e.g. [10]).

The most salient example of this fault is adversarial examples [17, 29,
22, 26, 20]. At test time, it is possible to design a specific invisible pertur-
bation such as a targeted network eventually predicts different outputs on
original and disturbed input. Computer vision is especially concerned but
[8] highlights this issue in cyber security context. In [8], a deep learning
system is designed to detect malwares from large app repository (like an-
droid app). This network reaches state of the art detection performance
of 87%, but, detection performances drop to only 66% on adversarial mal-
wares. Let us stress that producing adversarial examples does not require
to have access to the internal structure of the network [2, 19] and can have
physical implementation [13].

From theoretical point of view, adversarial examples could exist for
other machine learning algorithms, but, as previous algorithms were both
much more robust and much less accurate, adversarial example was not a
threat like it is for DL.

1

The red point is a testing sample with the same classes than orange ones.
Goal of attacks is to have it classified as green.

classical adversarial attack: data poisoning:
directly modifying the testing sample modifying training samples smartly

Figure 1: Illustrations of classical adversarial attack and poisoning attack.

1.2 poisoning

A smaller but non negligible issue is poisoning [18, 1]. Contrary to adver-
sarial attacks, poisoning does not become critical with DL: other machine
learning algorithm like support vector machine [28] (SVM) were known
to be sensible to such attack [16]. Basically, to evaluate a learning pipeline
f , a judge should train the pipeline f on training data Train, and, com-
pute the accuracy of the resulting model on a testing data Test. Now,
poisoning scenario is that an hacker tries to pervert the evaluation using
the fact that he can both read and change training data, and, he can read,
but not change, testing data and f . For example, an hacker may want to
make an antivirus f ineffective on some known but not owned testing data
by modifying some of his malwares/softwares. The figure 1 illustrates the
difference between adversarial attack (which occurs at testing time with
hacker owning the testing sample) and poisoning attack (which occurs at
training time with hacker owning some training data).

Let us assume that the targeted learning pipeline f is trained with
stochastic gradient descent [25] (SGD) or incremental versions (e.g. [23]).
Then, the goal of the hacker is to solve:

minimize : Eθ [Accuracy (f, w, Test)]
st : w ∼ SGD(loss, f, T rain+ δ, θ)

||δ|| ≤ ε
(1)

where expectation is required as SGD relies on random variable θ, and,
||.|| represents constraint on δ.

A more generic formulation may replace SGD by a generic training
routine. This can even allow to remove the expectation if training is
deterministic. Also, as it will be a central in this paper, let stress that an
other version of this problem is inverse poisoning where the hacker wants
to increase the accuracy (i.e. maximize instead of minimizing in eq.1).

Classically, poisoning focus on modifying only few training samples,
this assumption is both realistic (no hacker can own all training data), and,

2

in addition, it forces the attack to hardly detectable for the judge. So, in
classical attack, ||.|| of eq.1 is a 0-norm (number of non null components).
In these cases, eq.1 can be approximated by considering candidates for
modification. Typically, if changing labels is possible, candidates may be
best classified samples (which suddenly should be oppositely classified)
[18]. If labels can not be changed, candidates may be samples which most
impact decision boundary (support vectors in SVM framework) [18, 16].

This way, [18] recently proves that DL is sensible to poisoning. In [18]
error jumps from 1.3% to 2% and 4% just by manipulating 3% and 6% of
the training dataset on MNIST with a classical deep network.

1.3 Adversarial poisoning

Independently, [1] introduces adversarial poisoning (AP) and adversarial
inverse poisoning (AIP): goal is to produce poisoning with only small
modification of training data instead of heavy modification of few training
samples. So, in adversarial poisoning, ||.|| of eq.1 is a L2-norm and not a
L0-norm anymore. Name of this framework highlights that such attacks
may take advantage of adversarial example behaviour of the pipeline. In
other words, f should be sensible to small perturbation, let say a deep
network. Typical scenario of AIP may be a deep learning dieselgate.

Typically, [1] presents attacks on classical computer vision bench-
marks, for AP and AIP, targeting a frozen DL + SVM pipeline (f is
a deep network but only last layer weights are updated during training
resulting in a pipeline sensible to small perturbation but still with convex
training).

As, optimizing δ through SGD(loss, f, T rain + δ) (see eq.1) is in-
tractable, [1] offers to use a proxy wdesired to approximate this problem.
The underlying idea is that the more loss(f, wdesired, Data) is high (rela-
tively to others w), the less the probability that wdesired will be returned
by SGD when trained on Data, which is the goal of the hacker in AP. Let
stress that energetic landscape is bounded: any weights leading to uniform
outputs for all samples has an energetic value of log(Nbclasses), and, any
weights leading to perfect classification with Dirac outputs has an ener-
getic value of 0 (may not exist), both values being absolute bounds. Thus,
decreasing the energetic value of wdesired necessarily leads to no trivial
modification of the landscape: for example, it is not possible that all land-
scape is constantly decreased as worse weights keep their values, and, if en-
ergy of wdesired becomes 0 than wdesired has necessarily become the global
minima. So, instead of looking for optimizing δ through SGD, algorithm
[1] just proceed in two steps. It computes the proxy wdesired for example
wdesired =∼ SGD(loss, f, Test) (this just corresponds to do a training on
testing data). Then, it optimize δ to increase loss(f, wdesired, T rain+ δ)
(respectively decrease for AIP) which can be done with adversarial ex-
ample tools and which eventually leads to produce training adversarial
examples:

maximize : Eθ[loss(f, wdesired, T rain+ δ)]
st : wdesired ∼ SGD(loss, f, Test, θ)

||δ|| ≤ ε
(2)

3

1.4 Problematic

Now, in [1], this attack is only evaluated on frozen deep learning (only
last layer is trained). The contribution of this paper is to extend [1] to
DL for both AP and AIP.

Some new experiments presented in this paper show that the algorithm
[1] corresponding to eq.2 can be directly applied against DL (unfrozen
DL, all weights of all layers are updated during training i.e. real DL).
This effortlessly extension of AP against DL and related experiments are
presented in section 2 with the overall data used in all the paper. As a
teasing, accuracy drops from 86% to 27% on CIFAR10 i.e. resulting in a
very dramatic accuracy gap much larger than in [1].

But, the interesting point of this paper is to observe that this algorithm
is completely ineffective against DL for AIP. This failure is described in
section 3 with a set of algorithms which manage to produce AIP against
DL.

2 Adversarial poisoning targeting deep
learning

2.1 Experimental setting

To provide results comparable to [1], the experimental setting is kept
unchanged. Like in [1], this paper focus on computer vision datasets:
precisely, on CIFAR10 and CIFAR100 datasets [11] (first introduced in
2009 in a technical report learning-features-2009-TR.pdf available from
www.cs.toronto.edu/ kriz/).

Targeted network is first layers of a classical network named VGG
[24] up to conv43 (stopping at conv43 is needed due to small size of CI-
FAR images) without batch normalization. Weight are initialized from a
classical model trained on IMAGENET [5] (which can be found for exam-
ple here: github.com/jcjohnson/pytorch-vgg). Let stress that initializing
weights from IMAGENET ones is a quite common practice.

All attacks are designed to produce poisoning with a pixel amplitude
bounded by 3: assuming v, v′ ∈ [0, 255] are the value of a pixel before and
after the poisoning, then |v− v′| ≤ 4. This results in a poisoning invisible
to human eyes (see [1]).

Main difference with [1] is that all layers of VGG are updated during
training, instead of just the last one. This result in a much more powerful
pipeline. Typically, without poisoning, accuracy of our pipeline is 87%
while it is 75% for [1] on CIFAR10. This level of performance is standard
[15] for a VGG without batch normalization. But, mostly, this pipeline
is much more realistic as using frozen DL + SVM is clearly a deprecated
practice (especially for image classification).

2.2 Breaking testing accuracy

Naive application of algorithm eq.2 from [1] with an unfrozen deep net-
work works produces a strong decrease of testing accuracy of the targeted

4

energeticLevelModification(CNN,Xtrain,Ytrain,Xtest,Ytest)

// compute proxies

wDesired = []

for k from 1 to K:

wDesired[k] = SGD(CNN,Xtest,Ytest,crossentropy)

// modify energetic level of wDesired

X’ = []

for x,y in Xtrain,Ytrain:

gradient = []

for k from 1 to K:

gradient[k] = grad[x](crossentropy(CNN(x,wDesired[k]),y))

x’ = x + sum[k](sign(gradient[k]))

X’.append(x’)

return X’

Table 1: Code of an efficient adversarial poisoning attack against deep learning
By modifying x to increase crossentropy(CNN(x,wDesired[k]),y), hacker
can hope that applying SGD on X’,Ytrain will not return good weights like
wDesired. Indeed, this attack leads to a dramatic testing accuracy drop (87%
to 27%) on CIFAR10 with VGG network with only a low amplitude perturba-
tion.

network after training on poisoned data.
Implementation detail important: expectation of eq.2 is approximated

by considering 5 different models trained by SGD (in [1], only one model
is considered as their problem is convex). This leads to a decrease of
accuracy1 from 87% to 41%.

A better attack consists to sum gradient sign instead of using the sign
of summed losses. This attack is described in pseudo code 1 and leads to
a dramatic decrease of accuracy from 87% to 27%.

2.3 Discussion

The results from previous subsection is already a contribution: it shows
that deep learning is very sensible to adversarial poisoning, typically im-
plemented by equation 2, or, even more by algorithm table1. Yet, it should
be a false conclusion to state that this drops of accuracy results from the
increase of the energetic level of the proxies. If it was, using unrelated
weight as proxies and/or using opposite proxy (like in AIP) should not
lead to a decrease in accuracy. Yet, it does. Table 2 shows that virtually
any proxy leads to an accuracy decrease.

At this point, this paper offers attacks for adversarial poisoning target-
ing deep learning pipeline. But, this attack is efficient not for the correct
reason, and, will not work for adversarial inverse poisoning.

1As training is not convex, so, multiple runs may lead to different results. To mitigate this
issue, all accuracy reported in this paper are averaged over several runs (typically 8 runs).

5

proxy used in algorithm Table1 resulting testing accuracy

SGD(CNN,Xtest,Ytest,crossentropy) 27%
SGD(CNN,Xtrain,Ytrain,crossentropy) 34%

-Imagenet weights 64%
Imagenet weights 58%

-SGD(CNN,Xtrain,Ytrain,crossentropy) 73%
-SGD(CNN,Xtest,Ytest,crossentropy) 77%

Original accuracy 87%

Table 2: Testing accuracy when changing the proxy used in algorithm table 1
Attack presented in table 1 has dramatic impact, but, not for the reason for
which it has been designed: if so, only first row should contains an accuracy
largely under 87% and least row should be largely above 87%.

3 Adversarial inverse poisoning against
deep learning

3.1 Energetic level based attack

The assumption of energetic level attacks is that minimizing energetic level
of wdesired should increase the probability for wdesired to be returned by
SGD. So, minimizing energetic level of wdesired should increase accuracy.
But, it does not work: see table 1.

A possible explanation is that change in SGD behaviour produced by
change in wdesired energetic level (which modifies all the landscape) has
an higher influence that the (hypothetical) isolated effect of the change
in wdesired energetic level. This possible explanation is supported by the
fact that this phenomenon does not happen in [1] which work on convex
landscape (frozen DL + SVM) on which SGD will always perform as
expected, but, appears for DL where energetic landscape is known to be
hard for SGD. Modification of SGD behaviour may also explain table 2:
the dramatic impact for AP seems mainly due to modification on SGD
behaviour, and, thus is constant with different proxy, but, makes the
attack irrelevant for AIP.

Another experiment supporting this possible explanation is that at-
tack based energetic level modification (eq. 2 and 1) leads to 89% of
accuracy on CIFAR10 when network is trained after being initialized
with wfair (wfair being the result of the normal training mathemati-
cally SGD(CNN,Xtrain, Y train, crossentropy)). So, training on the
normal dataset from both wfair or wimagenet (network initialized with
IMAGENET weights) results in 87% of accuracy on CIFAR10. But,
training on poisoned dataset leads to 89% from wfair but only 77% from
wimagenet. This last result clearly fits with the idea that modifying the
level of wdesired produces some desired changes in the energetic landscape
(89% instead of 77%) but only locally around wdesired. Thus, from wfair,
the SGD takes advantage of these changes and moves toward wdesired.
But, from IMAGENET weights which may be far from wdesired, SGD

6

changes of behaviour and end in an other part of the energetic landscape
leading to a worse classifier.

Cross entropy curves also change under poisoning: curves decrease
much more quickly (and ends lower) on poisoned data than on raw data.
So, this confirms a change in SGD behaviour. Currently, SGD does not
perform poorly from optimization point of view, as the loss decreases
faster. But training leads to lower classifier i.e. to more overfitting.

The correct explanation of this failure is unfortunately out of the scope
of this paper. But, I can safely state that decreasing the energetic level of a
point in weight space may not increasing the probability of SGD to return
this point on convex DL training. Thus, energetic level based attacks
were relying on too coarse idea, forgetting that on non convex landscape,
behaviour of SGD does not depend on the minimum only. So, this failure
could have been expected.

3.2 Path based attack

From previous observation, an idea to force SGD to produce the desired
output could be to decrease the energetic level of a complete path in weight
space from initial weights to desired ones instead of just the energetic level
of the desired ones.

More formally, this idea should be implemented as:

minimize : Eθ[loss(f, w, Train+ δ)]
st : w ∼ partial SGD(loss, f, Test, θ)

||δ|| ≤ ε
(3)

or

minimize : Eθ[loss(f, αwdesired + (1− α)wimagenet, T rain+ δ)]
st : wdesired ∼ SGD(loss, f, Test, θ)

α ∼ U(0, 1)
||δ|| ≤ ε

(4)

where partial SGD consists to train the network but to stop at different
stages. This way, w ∼ partial SGD represents a sampling on a path from
wimagenet to some wdesired. Alternatively, U(0, 1) is a uniform sampling
on [0,1]. Thus, eq.4 offers to decreases the line (in weight space) between
starting weights and final ones.

Yet, I do not manage to reach interesting result with both these im-
plementations. Maybe this is du to the difficulty to sample wisely the
path between wimagenet and wdesired. Also, there is in reality multiples
wdesired (any training on testing data could be used as wdesired), and,
multiple wimagenet because when initializing layer from imagenet weights
last fully connected layer is still randomly initialized (this is a common
practice). In these conditions, relying on a path may not be not very
relevant.

3.3 Gradient based attack

An other idea to force SGD to produce the desired output could be to
force gradient (relatively to weight) to be null at wdesired (in addition to

7

force energetic level to be low). The underlying idea is that being a critical
point seems to be a good feature for being returned by SGD (currently it
can be a saddle point, but, as energy level is also decreased this issue seems
mitigated). This leads to the following approximation (with µ� 1):

minimize : Eθ[µloss(f, wdesired, T rain+ δ)
+||∇wdesired loss(f, wdesired, T rain+ δ)||2]

st : wdesired ∼ SGD(loss, f, Test, θ)
||δ|| ≤ ε

(5)

This attack tries to modify all the landscape around wdesired and not
just the point or the path. Inconvenient of this attack is obviously to re-
quire second order derivatives. Indeed, minimizing ||∇wloss(f, w, Train+
δ)||2 assumes to be able to compute∇δ

(
δ → ||∇wloss(f, w, Train+ δ)||2

)
while this last function∇wloss(f, w, Train+δ) is already derivative based.
Yet, this can be done with recent PYTORCH version using grad function
(equivalent function may exist in TENSORFLOW).

Although some runs of this attack produces interesting result, this
attack does not work better than previous one in average.

3.4 Miscellaneous energetic attacks

Surprisingly, interesting results have been reached just by minimizing
loss(f, wdesired, T rain+ δ)− loss(f, wfair, T rain+ δ):

minimize : Eθ[loss(f, wdesired, T rain+ δ)
−loss(f, wfair, T rain+ δ)]

st : wdesired ∼ SGD(loss, f, Test, θ)
||δ|| ≤ ε

(6)

It leads to 93% on CIFAR10 i.e. it increases accuracy by 5% compared
with the raw data. This increase of accuracy is lower than the one observed
in [1] (which goes from 76% to 94% of accuracy) but significant (and
consistent over large number of runs).

The original motivation of this attack is the observation that loss
curves decrease much more quickly on poisoned data than on original
data. Thus, adding −loss(f, wfair, T rain+ δ) has originally be tested to
make the loss curves more similar to original ones. However, it is hard to
understand clearly how this attack works: wfair and wdesired seems to be
close in weight space, as, modification on wdesired level does affect SGD
when initialized on wfair but not on wimagenet. But, here, the attack
makes wfair to have high energetic level, forcing SGD to keep the cur-
rent point far from wfair, while, on the same time, trying to make SGD
to be close to wdesired (whose energetic level is minimized). One could
have instead expected to try to lower both wfair and wdesired energetic
level (but it does not work). Using gradient value instead of direct value
produces similar results while seeming completely unrelated.

So, at this point, this paper offers a modest, but, significant adversarial
inverse poisoning targeting DL. Yet, it is hard to understand how this
attack works.

8

GANbasedAttack(CNN,Xtrain,Ytrain,Xtest,Ytest)

// compute discriminator

wD = SGD(CNN, Xtrain ∪Xtest, Ytrain × {0} ∪ Ytest × {1} ,crossentropy)
// modify images according to wD

X’ = []

for x,y in Xtrain,Ytrain:

gradient = grad[x](crossentropy(CNN(x,wD),y x 1))

x’ = x + sign(gradient)

X’.append(x’)

return X’

Table 3: GAN based attack for AIP targeting DL.
By modifying x such that training images are closer (for D) than testing images,
hacker can hope that applying SGD on X’,Ytrain will return weights more
adapted to testing set. This attack leads to a testing accuracy gap on CIFAR10
with VGG network equivalent to the one presented in [1] (but for a real network
instead of a frozen one in [1]). Main disadvantage of this algorithm is to not
targeting accuracy by design.

3.5 Non energetic based attacks

Seeing the difficulties to design energetic level based attacks, one can be
interested by other kind of attack.

A good candidate is generative adversarial network (GAN) based at-
tacks. There is a tremendous literature for GAN see [6, 9, 21] as examples
and [4] as a review. Overall principe of GAN is:

• one network G (generator) produces images

• one network D (discriminator) classifies images between true or gen-
erated one

• D is trained with true images and images generated by G (ground
truth is image source)

• G is trained to minimize D confidence

• G eventually will produces good images or more precisely, image
that D is not able to distinguish from true images.

In context of AIP, a possible implementation is to consider the genera-
tor as δ from equations 1-4, and, discriminator as a network which should
classify between training and testing images. D is trained to distinguish
training and testing images. Then, δ is designed to fool D. Optimizing δ
on all training images eventually produces a poisoned dataset. Training
on this poisoned dataset may result in a model more close to wdesired as
poisoned images are expected to be closer than testing images. Pseudo
code is presented in table 3.

GAN based attack leads to 92% of accuracy instead of 86% on CI-
FAR10. Yet, the main disadvantage of this attack is that image modifi-
cations do not target accuracy by design.

9

algorithm testing accuracy is straightforward ?

Original accuracy 87% -

Level based attack 77% yes
Path based attack 88% yes

Gradient based attack 80% yes
Diff based attack 93% no !

GAN based attack 92% no !

Table 4: Testing accuracy for different kind of attack in adversarial inverse
poisoning targeting a deep network on CIFAR10.
All attacks target an unfrozen VGG (see setting in section 2.1). Level based
attack is presented in equation 2 (with minimization instead of maximization),
path based attack is presented in equation 4, gradient based attack in equation
5. Then, diff based attack is presented in equation 6, it is more or less equation
2 but with an added term penalizing the fair weights. Finally, GAN attack are
presented in algorithm table 3.
An attack works if resulting testing accuracy is higher than fair accuracy. Hence,
both diff based attack and GAN based attack work. However, none of these
attacks can be clearly understood.

3.6 Discussion

All experiments are summarized in table 4. Direct extension of [1] (al-
gorithm 1 but with minimisation instead of maximization) is completely
inefficient on AIP when targeting DL. This failure seems due to the fact
that modifying energetic level of a point may distort the energetic land-
scape in such way that desired point is even not reachable from SGD.
Extending this idea by considering path (eq.3-4) instead of point does
not work either. This failure is probably due to an inefficient sampling
along the path. Using second order derivative to perform gradient based
attack does not work either. Surprisingly, just minimizing the difference
between loss(f, wdesired, T rain + δ) and loss(f, wfair, T rain + δ) works:
it increases accuracy from 87% to 93%. Yet, it is not trivial to understand
how this attack works. Finally, one other attack is based on GAN tools,
and, achieves 92% of accuracy (slightly less efficient poisoning than [1],
but, on the harder situation of an unfrozen deep network).

4 Conclusion

This paper offers attacks targeting deep networks for both adversarial poi-
soning and adversarial inverse poisoning. These attacks are evaluated in
computer vision context, precisely, on CIFAR10 with a VGG network as
target. In adversarial poisoning, offered attack based on energetic level
modification makes the accuracy dropping from 87% to 27%. In adversar-
ial inverse poisoning, some offered attack makes the accuracy going from
87% to above 92%.

10

Currently, no attack meet both efficiency and theoretical justification.
For adversarial poisoning, energetic level based attack leads to a dramatic
accuracy gap. But, this gap is mainly caused by some side effects. For
adversarial inverse poisoning, the three offered attacks with theoretical
support do not work. And, the two offered working attacks have strange
design.

Yet, the main conclusion of this paper which should be considered
by the community is that adversarial poisoning and adversarial inverse
poisoning is possible even on deep network.

References

[1] Adrien CHAN-HON-TONG. An algorithm for generating invisible
data poisoning using adversarial noise that breaks image classifica-
tion deep learning. Machine Learning and Knowledge Extraction,
1(1):192204, Nov 2018.

[2] Moustapha M Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet.
Houdini: Fooling deep structured visual and speech recognition mod-
els with adversarial examples. In Advances in Neural Information
Processing Systems, pages 6977–6987, 2017.

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene un-
derstanding. In Conference on Computer Vision and Pattern Recog-
nition, 2016.

[4] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath. Generative adversarial networks: An overview.
IEEE Signal Processing Magazine, 35(1):53–65, Jan 2018.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on, pages 248–255. IEEE, 2009.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information pro-
cessing systems, pages 2672–2680, 2014.

[7] Hayit Greenspan, Bram van Ginneken, and Ronald M Summers.
Guest editorial deep learning in medical imaging: Overview and fu-
ture promise of an exciting new technique. IEEE Transactions on
Medical Imaging, 35(5):1153–1159, 2016.

[8] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael
Backes, and Patrick McDaniel. Adversarial examples for malware
detection. In European Symposium on Research in Computer Secu-
rity, pages 62–79. Springer, 2017.

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Du-
moulin, and Aaron C Courville. Improved training of wasserstein

11

gans. In Advances in Neural Information Processing Systems, pages
5767–5777, 2017.

[10] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A
deep learning approach for network intrusion detection system. In
Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (formerly BIONET-
ICS), pages 21–26. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2016.

[11] Alex Krizhevsky and Geoffrey E Hinton. Using very deep autoen-
coders for content-based image retrieval. In ESANN, 2011.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[13] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversar-
ial examples in the physical world. In International Conference on
Learning Representations (ICLR), 2017.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[15] S. Liu and W. Deng. Very deep convolutional neural network based
image classification using small training sample size. In 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR), pages 730–
734, Nov 2015.

[16] Shigang Liu, Jun Zhang, Yu Wang, Wanlei Zhou, Yang Xiang, and
Olivier De Vel. A data-driven attack against support vectors of svm.
In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, ASIACCS ’18, pages 723–734, New York,
NY, USA, 2018. ACM.

[17] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal adversarial perturbations. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[18] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea
Paudice, Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. To-
wards poisoning of deep learning algorithms with back-gradient op-
timization. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 27–38. ACM, 2017.

[19] N. Narodytska and S. Kasiviswanathan. Simple black-box adversarial
attacks on deep neural networks. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pages
1310–1318, July 2017.

[20] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable im-
ages. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 427–436, 2015.

12

[21] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Train-
ing generative neural samplers using variational divergence minimiza-
tion. In Advances in neural information processing systems, pages
271–279, 2016.

[22] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep
learning in adversarial settings. In Security and Privacy (EuroS&P),
2016 IEEE European Symposium on, pages 372–387. IEEE, 2016.

[23] Tim Salimans and Durk P Kingma. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. In
Advances in Neural Information Processing Systems, pages 901–909,
2016.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[25] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
On the importance of initialization and momentum in deep learning.
In International conference on machine learning, pages 1139–1147,
2013.

[26] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing prop-
erties of neural networks. technical report arxiv:1312.6199, 2013.

[27] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face veri-
fication. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1701–1708, 2014.

[28] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learn-
ing theory, volume 1. Wiley New York, 1998.

[29] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie,
and Alan Yuille. Adversarial examples for semantic segmentation and
object detection. In The IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017.

13

