
HAL Id: hal-02139074
https://hal.science/hal-02139074v1

Preprint submitted on 24 May 2019 (v1), last revised 3 Nov 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adversarial poisoning and inverse poisoning against
deep learning

Adrien Chan-Hon-Tong

To cite this version:
Adrien Chan-Hon-Tong. Adversarial poisoning and inverse poisoning against deep learning. 2019.
�hal-02139074v1�

https://hal.science/hal-02139074v1
https://hal.archives-ouvertes.fr


Adversarial poisoning and inverse poisoning

against deep learning

Adrien CHAN-HON-TONG

May 24, 2019

Abstract

Efficient attacks for both adversarial poisoning and adversarial inverse
poisoning have recently been found on frozen deep feature plus support
vector machine. But, new experiments show that such attacks only works
for poisoning, but, not inverse poisoning when targeting deep networks.

Investigating this observation, this paper found that adversarial poi-
soning attacks based on energetic landscape modification outperforms pre-
vious ones based on energetic minimum modification. This way, this pa-
per shows that stochastic training is not sufficient defence against inverse
poisoning.

1 Introduction

1.1 Adversarial examples

Deep learning (DL) which appears in computer vision with [12] (see [14]
for a review) is now a mature technology for many web application e.g.
[27]. But, current DL can be hacked which is problematic for critical
applications including autonomous driving [3], health care [7], or security
(e.g. [10]).

The most salient example of this fault is adversarial examples [17, 29,
22, 26, 20]. At test time, it is possible to design a specific invisible pertur-
bation such as a targeted network eventually predicts different outputs on
original and disturbed input. Computer vision is especially concerned but
[8] highlights this issue in cyber security context. In [8], a deep learning
system is designed to detect malwares from large app repository (like an-
droid app). This network reaches state of the art detection performance
of 87%, but, detection performances drop to only 66% on adversarial mal-
wares. Let us stress that producing adversarial examples does not require
to have access to the internal structure of the network [2, 19] and can have
physical implementation [13].

From theoretical point of view, adversarial examples could exist for
other machine learning algorithms, but, as previous algorithms were both
much more robust and much less accurate, adversarial example was not a
threat like it is for DL.
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1.2 poisoning

A smaller but non negligible issue is poisoning [18, 1]. Contrary to adver-
sarial attacks, poisoning does not become critical with DL: other machine
learning algorithm like support vector machine [28] (SVM) were known
to be sensible to such attack [16]. Basically, to evaluate a learning pipeline
f , a judge should train the pipeline f on training data Train, and, com-
pute the accuracy of the resulting model on a testing data Test. Now,
poisoning scenario is that an hacker tries to pervert the evaluation using
the fact that he can both read and change training data, and, he can read,
but not change, testing data and f . For example, an hacker may want
to make an antivirus f ineffective on some known but not owned testing
data by modifying some of his malwares/softwares.

Let us assume that the targeted learning pipeline f is trained with
stochastic gradient descent [25] (SGD) or incremental versions [23]. Then,
the goal of the hacker is to solve:

minimize : Eθ [Accuracy (f, w, Test)]
st : w ∼ SGD(loss, f, T rain+ δ, θ)

||δ|| ≤ ε
(1)

where expectation is required as SGD relies on random variable θ, and,
||.|| represents constraint on δ.

A more generic formulation may replace SGD by a generic training
routine. This can even allow to remove the expectation if training is
deterministic. Also, as it will be a central in this paper, let stress that an
other version of this problem is inverse poisoning where the hacker wants
to increase the accuracy (i.e. maximize instead of minimizing in eq.1).

Classically, poisoning focus on modifying only few training samples,
this assumption is both realistic (no hacker can own all training data), and,
in addition, it forces the attack to hardly detectable for the judge. So, in
classical attack, ||.|| of eq.1 is a 0-norm (number of non null components).
In these cases, eq.1 can be approximated by considering candidates for
modification. Typically, if changing labels is possible, candidates may be
best classified samples (which suddenly should be oppositely classified)
[18]. If labels can not be changed, candidates may be samples which most
impact decision boundary (support vectors in SVM framework) [18, 16].

This way, [18] recently proves that DL is sensible to poisoning. In [18]
error jumps from 1.3% to 2% and 4% just by manipulating 3% and 6% of
the training dataset on MNIST with a classical deep network.

1.3 Adversarial poisoning

Independently, [1] introduces adversarial poisoning (AP) and adversarial
inverse poisoning (AIP): goal is to produce poisoning with only small
modification of training data instead of heavy modification of few training
samples. Names of these use case highlights that such attacks may take
advantage of adversarial example behaviour of the pipeline to be efficient.
So, in adversarial poisoning, ||.|| of eq.1 is typically a L2-norm, and, f
should be sensible to small perturbation (namely, f is a deep network).
Typical scenario of AIP may be a deep learning dieselgate.

2



Typically, [1] presents attacks on classical computer vision bench-
marks, for AP and AIP, targeting a frozen DL + SVM pipeline (f is
a deep network but only last layer weights are updated during training
resulting in a pipeline sensible to small perturbation but still convex).

As, optimizing δ through SGD(loss, f, T rain + δ) (see eq.1) is in-
tractable, [1] offers to use a proxy wdesired to approximate this prob-
lem. The underlying idea is that the more loss(f, wdesired, Data) is high
(relatively to others w), the less the probability that wdesired will be re-
turned by SGD when trained on Data, which is the goal of the hacker
in AP. So, instead of looking for optimizing δ through SGD, algorithm
just proceed in two steps. It computes the proxy wdesired for example
wdesired =∼ SGD(loss, f, Test) (this just corresponds to do a training on
testing data). Then, it optimize δ to increase loss(f, wdesired, T rain+ δ)
(respectively decrease for AIP) which can be done with adversarial ex-
ample tools and which eventually leads to produce training adversarial
examples:

maximize : Eθ[loss(f, wdesired, T rain+ δ)]
st : wdesired ∼ SGD(loss, f, Test, θ)

||δ|| ≤ ε
(2)

1.4 Problematic

Some new experiments presented in this paper show that this algorithm
eq.2 can be also applied against DL (unfrozen DL, all weights of all layers
are updated during training). But, one key point of this paper is to observe
that this algorithm is completely ineffective for AIP against DL.

One explanation of this failure is that using adversarial example tools
to modify relative energetic level of loss(f, wdesired, T rain+δ) could com-
pletely changes the energetic landscape when targeting DL. Such phe-
nomenon could not arise in [1] which work on frozen DL + SVM because
in this case energetic landscape is convex. But, for DL, it highly mod-
ifies SGD path and tends to strongly degrade generalisation. This way,
the approximation eq.(2) has a dramatic impact for AP as both energetic
shape modification, and, energetic level modification works together (see
following experiments accuracy drops from 86% to 27% on CIFAR10).
But, it is useless for AIP as energetic shape modification has a stronger
impact than energetic level modification.

The contribution of this paper is to extend [1] to DL for both AP and
AIP. The effortlessly extension of AP against DL and related experiments
are presented in section 2 with the overall data used in all the paper.
The hard extension of AIP against DL is presented in section 3, before
conclusion of section 4.
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2 Adversarial poisoning targeting deep
learning

2.1 Experimental setting

To provide results comparable to [1], the experimental setting is kept
unchanged. Like in [1], this paper focus on computer vision datasets:
precisely, on CIFAR10 and CIFAR100 datasets [11] (first introduce in
2009 in a technical report learning-features-2009-TR.pdf available from
www.cs.toronto.edu/ kriz/ ).

Targeted network is first layers of a classical network named VGG [24]
up to conv43 (stopping at conv43 is needed due to small size of CIFAR
images) without batch normalization. Weight are initialized from a clas-
sical model trained on IMAGENET [5] (which can be found for example
here: github.com/jcjohnson/pytorch-vgg).

All attacks are designed to produce poisoning with a pixel amplitude
bounded by 3: assuming v, v′ ∈ [0, 255] are the value of a pixel before and
after the poisoning, then |v− v′| ≤ 4. This results in a poisoning invisible
to human eyes (see [1]).

Main difference with [1] is that all layers of VGG are updated during
training, instread of just the last one. This result in a much more powerful
pipeline. Typically, without poisoning, accuracy of our pipeline is 87%
while it is 75% for [1] on CIFAR10. This level of performance is standard
[15] for a VGG without batch normalization. But, mostly, this pipeline
is much more realistic as using frozen DL + SVM is clearly a deprecated
practice (especially for image classification). Only disadvantage of this
new pipeline is that training is not convex, and, so, multiple runs may
lead to different results. To mitigate this issue, all accuracy reported in
this paper are averaged over several runs (typically 8 runs).

2.2 Breaking testing accuracy

Naive application of algorithm eq.2 from [1] with an unfrozen deep network
works. It produces a strong decrease of testing accuracy of the targeted
network after training on poisoned data.

Implementation detail important: expectation of eq.2 is approximated
by considering 5 different models trained by SGD (in [1], only one model
is considered as their problem is convex). This leads to a decrease of
accuracy from 87% to 41%.

A better attack consists to sum gradient sign instead of using the sign
of summed losses. This attack is described in pseudo code 1 and leads to
a dramatic decrease of accuracy from 87% to 27%.

2.3 Discussion

The results from previous subsection is already a contribution: it shows
that deep learning is very sensible to adversarial poisoning, typically im-
plemented by equation 2, or, even more by algorithm table1. Yet, it is a
very incremental contribution. But, mostly, it should be a false conclu-
sion to state that this drops of accuracy results from the increase of the
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energeticLevelModification(CNN,Xtrain,Ytrain,Xtest,Ytest)

// compute proxies

wDesired = []

for k from 1 to K:

wDesired[k] = SGD(CNN,Xtest,Ytest,crossentropy)

// modify energetic level of wDesired

X’ = []

for x,y in Xtrain,Ytrain:

gradient = []

for k from 1 to K:

gradient[k] = grad[x](crossentropy(CNN(x,wDesired[k]),y))

x’ = x + sum[k](sign(gradient[k]))

X’.append(x’)

return X’

Table 1: Code of an efficient adversarial poisoning attack against deep learning
By modifying x to increase crossentropy(CNN(x,wDesired[k]),y), hacker
can hope that applying SGD on X’,Ytrain will not return good weights like
wDesired. Indeed, this attack leads to a dramatic testing accuracy drop on
CIFAR10 with VGG network.

energetic level of the proxies. If it was, using unrelated weight as proxies
and/or using opposite proxy (like in AIP) should not lead to a decrease
in accuracy. Yet, it does. Table 2 shows that virtually any proxy leads to
an accuracy decrease.

The results from table 2 highlights the claim presented in introduction.
Modifying energetic level of wdesired does have side effect, and, in this case,
side effect are even stronger than desired ones: even minimizing energetic
level still decreases accuracy while it brings an increase in [1]. So, as
this side effect does not exist on convex problem, it should be due to the
modification of energetic landscape. This is also consistent with the fact
that optimization is sensible for DL.

At this point, this paper offers attacks for adversarial poisoning tar-
geting deep learning pipeline. But, this attack despite being efficient is
uncontrolled, and, will not work for adversarial inverse poisoning.

3 Adversarial inverse poisoning against
deep learning

Seeing the difficulties to produce AIP for DL, this paper offers to bench-
mark several kind of attacks on AIP. In addition, to highlight potential
threat of AIP, this section also provides information about training of a
deep network which is a very interesting topic.
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proxy used in algorithm Table1 resulting testing accuracy

SGD(CNN,Xtest,Ytest,crossentropy) 27%
SGD(CNN,Xtrain,Ytrain,crossentropy) 34%

-Imagenet weights 64%
Imagenet weights 58%

-SGD(CNN,Xtrain,Ytrain,crossentropy) 73%
-SGD(CNN,Xtest,Ytest,crossentropy) 77%

Original accuracy 87%

Table 2: Testing accuracy when changing the proxy used in algorithm table 1
Attack presented in table 1 has dramatic impact, but, not for the reason for
which it has been designed: if so, only first row should contains an accuracy
largely under 87% and least row should be largely above 87%.

3.1 Path based attacks

As seeing in previous section in table 2, energetic level modification (table
1) does not work for AIP. Indeed, minimizing energetic level of wdesired
should increase the probability for wdesired to be returned by SGD. So,
minimizing energetic level of wdesired should increase accuracy. Yet, it
decreases it.

An important point is that minimizing energetic level of wdesired leads
to 77% of accuracy when network is initialized with IMAGENET weights.
But it leads to 93% when initialised with wdesired and 89% when initialized
with wfair = SGD(CNN,Xtrain, Y train, crossentropy). Consistantly
with experiments from section 1, these results shows that energetic level
is modified as expected, but, that SGD has a problem to handle poisoned
images.

This last point invite to modify the algorithm table 1. In [1], as the
problem is convex, focusing on wdesired is sufficient, but, to produce AIP
against DL, it may be important to consider not only wdesired but a path
in weight space between wimagenet and wdesired. More formally, this idea
can be implemented as:

minimize : Eθ[loss(f, w, Train+ δ)]
st : w ∼ partialSGD(loss, f, Test, θ)

||δ|| ≤ ε
(3)

or

minimize : Eθ[loss(f, αwdesired + (1− α)wimagenet, T rain+ δ)]
st : wdesired ∼ partialSGD(loss, f, Test, θ)

α ∼ U(0, 1)
||δ|| ≤ ε

(4)

where partialSGD consists to train the network but to stop at different
stages. This way, w ∼ partialSGD represents a sampling on a path from
wimagenet to some wdesired. Alternatively, U(0, 1) is a uniform sampling
on [0,1]. Thus, eq.4 offers to decreases the line (in weight space) between
starting weights and final ones.
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From current results, these attacks are not very efficient. Currently,
it is not trivial to know SGD does not follow the designed path, or, if
modifying the energetic level of a complete path does even more distort
the energetic landscape, or, if the problem comes from the difficulties of
this type of attacks is to sample a path efficiently. Another option is that
there are multiple possible wdesired. Still, tested implementations do not
reach to interesting results.

3.2 Non energetic based attacks

Seeing the difficulties to design energetic level based attacks, one can be
interested by other kind of attack.

A good candidate is generative adversarial network (GAN) based at-
tacks. There is a tremendous literature for GAN see [6, 9, 21] as examples
and [4] as a review. Overall principe of GAN is:

• one network G (generator) produces images

• one network D (discriminator) classifies images between true or gen-
erated one

• D is trained with true images and images generated by G (ground
truth is image source)

• G is trained to minimize D confidence

• G eventually will produces good images or more precisely, image
that D is not able to distinguish from true images.

In context of AIP, a possible implementation is to consider the genera-
tor as δ from equations 1-4, and, discriminator as a network which should
classify between training and testing images. D is trained to distinguish
training and testing images. Then, δ is designed to fool D. Optimizing δ
on all training images eventually produces a poisoned dataset. Training
on this poisoned dataset may result in a model more close to wdesired as
poisoned images are expected to be closer than testing images. Pseudo
code is presented in table 3.

Indeed, GAN based attack leads to 93% of accuracy instead of 86%
on CIFAR10.

This result is a contribution by itself (extension of AIP to DL target).
Yet, the main disadvantage of this attack is that image modifications do
not target accuracy by design.

3.3 Energetic landscape based attacks

Attacks based on energetic level fails du to the sensibility of DL to ener-
getic landscape. Attacks based on energetic path does not mitigate the
previous issue (probably due to difficulty to sample wisely the path in
weight space). GAN based attack provides accuracy gap but not directly
in link with energetic consideration.

Now, in this subsection, I offer an other kind of attack linked to energy
consideration. In current experiments, this attack has reached highest
accuracy. The basic idea is to find an other way to distort energetic
landscape in order that SGD produces wdesired which is neither single
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GANbasedAttack(CNN,Xtrain,Ytrain,Xtest,Ytest)

// compute discriminator

wD = SGD(CNN, Xtrain ∪Xtest, Ytrain × {0} ∪ Ytest × {1} ,crossentropy)
// modify images according to wD

X’ = []

for x,y in Xtrain,Ytrain:

gradient = grad[x](crossentropy(CNN(x,wD),y x 1))

x’ = x + sign(gradient)

X’.append(x’)

return X’

Table 3: GAN based attack for AIP targeting DL.
By modifying x such that training images are closer (for D) than testing images,
hacker can hope that applying SGD on X’,Ytrain will return good weights like
wDesired. This attack leads to a testing accuracy gap on CIFAR10 with VGG
network equivalent to the one presented in [1] (but for a real network instead
of a frozen one in [1]). Main disadvantage of this algorithm is that image
modifications do not target accuracy by design.

level based or path based. One possibility can be based on gradient:
instead of forcing wdesired to have low energy, it is possible to force it to
be a local minimum (currently it can be a saddle point, but, as energy level
is also decreased this issue seems mitigated). This leads to the following
approximation (with µ� 1):

minimize : Eθ[µloss(f, wdesired, T rain+ δ)
+||∇wdesired loss(f, wdesired, T rain+ δ)||2]

st : wdesired ∼ SGD(loss, f, Test, θ)
||δ|| ≤ ε

(5)

This way, the attack tries to modify the landscape around wdesired
instead of focusing on this single point or focusing on an hypothetical
path from IMAGENET weights to this point.

Inconvenient of this attack is obviously to require second order deriva-
tive as the minimization of ||∇wloss(f, w, Train + δ)||2 assume to the
capacity to compute ∇δ

(
δ → ||∇wloss(f, w, Train+ δ)||2

)
while this last

function ∇wloss(f, w, Train+δ) is already derivative based. Yet, this can
be done with recent PYTORCH version using grad function (equivalent
function may exist in TENSORFLOW).

In current experiments, this attack have in average a low accuracy
about around 80%. Yet, variance is very high with several attack leading
to as much as 98% of accuracy on CIFAR10 (to be compared with 87%
for fair training and 92% for frozen deep pipeline).

3.4 Discussion

All experiments are summarize in table 4. Direct extension of [1] is com-
pletely inefficient on AIP when targeting DL (algorithm 1 but with min-
imisation instead of maximization). This failure seems due to the fact
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algorithm resulting testing accuracy

Energetic level minimization 77%
Energetic level path minimization 88%
Energetic gradient minimization 80%

GAN based attack 92%
Original accuracy 87%

Table 4: Testing accuracy for different kind of attack in adversarial inverse
poisoning context on CIFAR10
All attacks target an unfrozen VGG. Although the average accuracy of energetic
gradient minimization is low, this attack did jump as high as 98% of accuracy
in some experiments.

that modifying energetic level of a point may distort the energetic land-
scape in such way that desired point is even not reachable from SGD.
Extending this idea by considering path (eq.3-4) instead of point does not
work either. This failure is probably due to an inefficient sampling along
the path. GAN based attack are currently the attack with best average
performance reaching same accuracy than [1], but, on the harder situa-
tion of an unfrozen deep network. Finally, gradient based attack seems
promising as some experiments realized under this setting reach very high
accuracy. Yet, from current experiments average accuracy is still low.

4 Conclusion

This paper offers attacks targeting deep networks for both adversarial
poisoning and adversarial inverse poisoning.

These attacks are evaluated in computer vision context, precisely, on
CIFAR10 with a VGG network as target. In adversarial poisoning, offered
attack based on energetic level modification makes the accuracy dropping
from 87% to 27%. In adversarial inverse poisoning, offered attack on gen-
erative adversarial network makes the accuracy going from 87% to 92%.
Although these last results should be consolidated, energetic landscape
modification offers very promising attack for adversarial inverse poisoning
with some experiments having made accuracy jumping as high as 98%.

An other conclusion of this paper is that stochastic training is not a suf-
ficient defense against poisoning. This open the question of defense/attack
of deep learning in context of adversarial (inverse) poisoning.
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