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FAST CONVEX OPTIMIZATION VIA TIME SCALING

OF DAMPED INERTIAL GRADIENT DYNAMICS

HEDY ATTOUCH, ZAKI CHBANI, AND HASSAN RIAHI

Abstract. In a Hilbert space setting, in order to develop fast first-order methods for convex optimization, we
study the asymptotic convergence properties (t→ +∞) of the trajectories of the inertial dynamics

ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0.

The function Φ to minimize is supposed to be convex, continuously differentiable, γ(t) is a positive damping
coefficient, and β(t) is a time scale coefficient. Convergence rates for the values Φ(x(t)) − min Φ and the
velocities are obtained under conditions involving only β(t) and γ(t). In this general framework (Φ is only
assumed to be convex with a non-empty solution set), the fast convergence property is closely related to the
asymptotic vanishing property γ(t) → 0, and to the temporal scaling β(t) → +∞. We show the optimality of
the convergence rates thus obtained, and study their stability under external perturbation of the system. The
discrete time versions of the results provide convergence rates for a large class of inertial proximal algorithms.
In doing so, we improve the classical results on the subject, including Güler’s inertial proximal algorithm.

Key words: Convex optimization, inertial gradient systems, inertial proximal algorithms, Lyapunov analysis,
Nesterov accelerated gradient method, time rescaling.
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1. Introduction

Unless specified, throughout the paper we make the following standing assumptions
H is a real Hilbert space;

Φ : H → R is a convex function of class C1, S = argmin Φ 6= ∅;
t0 > 0 is the origin of time;

γ and β : [t0,+∞[→ R+ are non-negative continuous functions.

We are interested in solving by (fast) first-order methods the convex optimization problem

min
x∈H

Φ(x).

To deal with large-scale problems, first-order methods have become very popular in recent decades. Their
direct link with gradient dynamics allows them to be approached with powerful tools from various fields such
as mechanics, control theory, differential geometry and algebraic geometry. With this respect, the object of our
study is the damped Inertial Gradient System

(IGS)γ,β ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0,

where ∇Φ : H → H is the gradient Φ. (IGS)γ,β involves two time-dependent parameters: γ(t) is a positive

viscous damping coefficient, and β(t) is a time scale coefficient. The optimization property of this system comes
from the viscous friction term γ(t)ẋ(t) which dissipates the global energy (potential + kinetic) of the system.
Linking the tuning of the parameters γ(t) and β(t) to the corresponding rates of convergence of the values
Φ(x(t))−minH Φ is a subtle question. We will answer this question in a general context and obtain at the same
time parallel results for the associated proximal algorithms. We will take advantage of the fact that proximal
algorithms (obtained by implicit time discretization) usually inherit the properties of the continuous dynamics
from which they come. Let us successively examine the role of the parameters γ(t) and β(t).
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1.1. The damping parameter γ(t). Let’s review some historical facts about the choice of γ(t) in

(IGS)γ,1 ẍ(t) + γ(t)ẋ(t) +∇Φ(x(t)) = 0,

in relation to convex minimization. B. Polyak initiated the use of inertial dynamics to accelerate the gradient
method. In [34] (1964), he introduced the Heavy Ball with Friction system

(HBF) ẍ(t) + γẋ(t) +∇Φ(x(t)) = 0,

which has a fixed viscous damping coefficient γ > 0 (the mass has been normalized equal to 1). In [1] (2000),
for a general convex function Φ, Alvarez proved that each trajectory of (HBF) converges weakly to a minimizer
of Φ. For a strongly convex function Φ, (HBF) provides the convergence of Φ(x(t)) to minH Φ at an exponential
rate by taking γ equal to 2

√
µ, where µ is the modulus of strong convexity of Φ. For general convex functions,

the asymptotic convergence rate of (HBF) is O( 1
t ) (in the worst case). It’s not better than the steepest descent.

A decisive step was taken in 2014 by Su-Boyd-Candès [39] who introduced the inertial system

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇Φ(x(t)) = 0.

For general convex functions, it provides a continuous version of the accelerated gradient method of Nesterov [28,
29] (described a little further). For α ≥ 3, each trajectory x(·) of (AVD)α satisfies the asymptotic convergence
rate of the values Φ(x(t))−minH Φ = O

(
1
t2

)
. As a specific feature, the viscous damping coefficient α

t vanishes
(tends to zero) as time t goes to infinity, hence the terminology. Its close relationship with the Nesterov
accelerated gradient method makes (AVD)α an interesting dynamic for convex optimization. As such, it has
been the subject of many recent studies, see [3], [5, 6], [7], [8], [9], [13], [15], [16], [19], [27], [39]. They allow to
better understand Nesterov’s method. Let’s explain why α

t is a clever tuning of the damping coefficient.

i) In [20], Cabot-Engler-Gaddat showed that the damping coefficient γ(·) in (IGS)γ,1 dissipates the energy, and

hence makes the dynamic interesting for optimization, as long as
∫ +∞
t0

γ(t)dt = +∞. The damping coefficient

can go to zero asymptotically but not too fast. The smallest which is admissible is of order 1
t . It is the one

which enforces the most the inertial effect with respect to the friction effect.

ii) The tuning of the parameter α in front of 1
t comes naturally from the Lyapunov analysis and the optimality

of the convergence rates obtained. Indeed, the case α = 3, which corresponds to Nesterov’s historical algorithm,
turns out to be critical. In the case α = 3, the question of the convergence of the trajectories remains an open
problem (except in one dimension where convergence holds [9]). As a remarkable property, for α > 3, it has
been shown by Attouch-Chbani-Peypouquet-Redont [8] and May [27] that each trajectory converges weakly to
a minimizer. Corresponding results for the algorithmic case have been obtained in [21] and [13]. Moreover for
α > 3, it is shown in [13] and [27] that the asymptotic convergence rate of the values is o( 1

t2 ). The subcritical case
α < 3 has been examined by Apidopoulos-Aujol-Dossal [3] and Attouch-Chbani-Riahi [9], with the convergence

rate of the values f(x(t))−minH f = O
(

1

t
2α
3

)
.

A unifying view on the subject, dealing with the case of a general damping coefficient γ(t) in (IGS)γ,1, has

been developed by Attouch-Cabot [5] and Attouch-Cabot-Chbani-Riahi [7].

1.2. The time scaling parameter β(t). Let’s illustrate the role of β(t) in the following model situation. Start
from the (AVD)α system with γ(t) = α

t and α ≥ 3. Given a trajectory x(·) of (AVD)α, as explained above

Φ(x(t))−min
H

Φ = O
(

1

t2

)
as t→ +∞.

Let’s make the change of time variable in (AVD)α: t = sp, where p is a positive parameter. Set y(s) := x(sp).
By the derivation chain rule, we have

(1) ÿ(s) +
αp
s
ẏ(s) + p2s2(p−1)∇Φ(y(s)) = 0,

where αp = 1 + (α− 1)p. The convergence rate of values becomes

(2) Φ(y(s))−min
H

Φ = O
(

1

s2p

)
as s→ +∞.

For p > 1, we have αp > α, so the damping parameters for (1) are similar to those of (AVD)α. The only major

difference is the coefficient s2(p−1) in front of ∇Φ(y(s)), which explodes when s → +∞. From (2) we observe
that the convergence rate of values can be made arbitrarily fast (in the scale of powers of 1

s ) with p large. The
physical intuition is clear. Fast optimization is associated with the fast parameterization of the trajectories
of the (AVD)α system. One of our objective is to transpose these results to the proximal algorithms, taking
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advantage of the fact that implicit discretization usually preserves the properties of the continuous dynamics.
The case γ(t) = α

t , and β(t) general, i.e.,

(IGS)α
t ,β

ẍ(t) +
α

t
ẋ(t) + β(t)∇Φ(x(t)) = 0.

has been analyzed by Attouch-Chbani-Riahi [10]. As explained above, the varying parameter t 7→ β(t) comes
naturally with the time reparametrization of the above dynamics, and plays a key role in the acceleration of its
asymptotic convergence properties (the key idea is to take β(t) → +∞ as t → +∞ in a controlled way). The
importance of the time scaling to accelerate algorithms was also stressed in [38], [41].

1.3. Linking inertial dynamics with first-order algorithms. Let’s first recall some classic results con-
cerning the algorithms associated with the continuous steepest descent. Given λ > 0, the gradient descent
method

xk+1 = xk − λ∇Φ(xk)

and the proximal point method

xk+1 = proxλΦ(xk) = (I + λ∂Φ)−1(xk) = argminξ∈H

{
λΦ(ξ) +

1

2
‖x− ξ‖2

}
are the basic blocks of the first-order methods for convex optimization. By interpreting λ as a fixed time step,
they can be respectively obtained as the forward (explicit) discretization of the continuous steepest descent

(3) ẋ(t) + λ∇Φ(x(t)) = 0,

and the backward (implicit) discretization of the differential inclusion

(4) ẋ(t) + ∂Φ(x(t)) 3 0.

The gradient method goes back to Cauchy (1847). The proximal algorithm was first introduced by Martinet [26]
(1970), and then developed by Rockafellar [36] who extended it to solve monotone inclusions. One can consult
[17], [31], [32], [33], [35], for a recent account on the proximal methods, that play a central role in nonsmooth
optimization as a basic block of many splitting algorithms.

Let’s now come with second-order evolution equations, and illustrate their link with algorithms. Time
discretization with a fixed time step h > 0 of (IGS)γ,β

ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0,

gives

(5)
1

h2
(xk+1 − 2xk + xk−1) + γ(kh)

1

h
(xk − xk−1) + β(kh)∇Φ(ξk) = 0.

Set αk = 1− h2γ(kh) and βk = h2β(kh). Following the choice of ξk, we obtain one of the following algorithms:

• Implicit: ξk = xk+1 gives the Inertial Proximal algorithm (Beck-Teboulle [18], Güler [24]):{
yk = xk + αk(xk − xk−1)

xk+1 = proxβkΦ(yk),

• Nesterov choice: ξk = xk + αk(xk − xk−1) gives the Inertial Gradient algorithm:{
yk = xk + αk(xk − xk−1)

xk+1 = yk − βk∇Φ(yk).

Nesterov’s scheme corresponds to replacing the proximal step by a gradient step. This is illustrated below.

yk = xk + αk(xk − xk−1)•

xk•

xk−1•

xk+1 = yk − βk∇Φ (yk)

S

yk = xk + αk(xk − xk−1)•

xk•

xk−1•

xk+1 = proxβkΦ(yk)

S

Figure 1. Inertial Gradient algorithm Inertial Proximal algorithm.
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For additive structured optimization, the combination of the two algorithms yields FISTA type proximal- gradi-
ent algorithms. Their study was initiated by Beck-Teboulle [18], see Attouch-Cabot [6] for recent developments.

1.4. Presentation of the results. We are interested in the joint setting of the parameters γ(t) and β(t)
providing a fast convergence of the values Φ(x(t)) − min Φ as t → +∞, and its algorithmic counterpart. In
addition to Güler’s accelerated proximal algorithm, our dynamic approach with general damping and scaling
coefficients gives rise to a whole family of proximal algorithms with fast convergence properties. We start with
the study of the continuous dynamic (sections 2 to 4), then consider the algorithmic aspects. In section 2, based
on Lyapunov analysis, we study the asymptotic behaviour of the trajectories for (IGS)γ,β . According to [5], the

description of our result uses the auxiliary function Γ : [t0,+∞[→ R+ defined by

Γ(t) = p(t)

∫ +∞

t

du

p(u)
where p(t) = e

∫ t
t0
γ(u) du

.

In our main result, Theorem 2.1, we show that, under the following growth condition on β(·)
(H)γ,β Γ(t)β̇(t) ≤ β(t) (3− 2γ(t)Γ(t)) ,

we have the convergence rate of values

Φ(x(t))−min
H

Φ = O
(

1

β(t)Γ(t)2

)
as t→ +∞.

In Theorems 2.2 and 4.2, we complete this result by showing that, under a slightly stronger growth condition
on β(·), we can pass from the capital O to the small o estimate both for the function values and the velocities:

Φ(x(t))−min
H

Φ = o

(
1

β(t)Γ(t)2

)
and ‖ẋ(t)‖ = o

(
1

Γ(t)

)
as t→ +∞.

Some special cases for γ(·) and β(·) of particular interest are examined in section 3. In section 4, we consider
a perturbed version of the initial evolution system (IGS)γ,β . Assuming that the perturbation term g satisfies∫ +∞
t0

Γ(t)‖g(t)‖dt < +∞ (which means that it vanishes fast enough), we obtain similar convergence rates of the

values (Theorem 4.1) and weak convergence of the trajectories (Theorem 4.2). In section 5, we make the link
with the Güler inertial proximal algorithm, and provide its continuous interpretation. In section 6 (see Theorem
6.1), we study the fast convergence of values for a class of inexact inertial proximal algorithms, which takes into
account a unified discretization of the damping term. We conclude with some Perspectives. In the Appendix
section, we prove the existence and uniqueness of the global solution of the Cauchy problem associated with
(IGS)γ,β,g, and complete with some technical lemmas.

2. Convergence rates for the (IGS) system.

Based on the right tuning of the damping coefficient γ(t) and of the scaling coefficient β(t), we will analyze the
convergence rate of the trajectories of the inertial dynamic (IGS)γ,β

(IGS)γ,β ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0.

We take for granted the existence of solutions to this system. The existence and uniqueness of a classical global
solution for the corresponding Cauchy problem is detailed in the Appendix, Theorem 8.2. In the elementary
case Φ ≡ 0, the direct integration of (IGS)γ,β makes appear the function

(6) p(t) = e
∫ t
t0
γ(u) du

.

In the sequel, we will systematically assume that the following condition (H)0 is satisfied

(H)0

∫ +∞

t0

du

p(u)
< +∞.

Under this assumption, we can define the function Γ : [t0,+∞[→ R+

(7) Γ(t) = p(t)

∫ +∞

t

du

p(u)
.

Note that the definition of Γ does not depend on the choice of the origin of time t0. The asymptotic properties
of the dynamic system (IGS)γ,β are based on the behavior of the functions t 7→ Γ(t) and t 7→ β(t) as t→ +∞.

By differentiating (7), we immediately obtain the relation

(8) Γ̇(t) = γ(t)Γ(t)− 1,

which plays a central role in Lyapunov’s analysis. Let us define the rescaled global energy function

(9) W (t) :=
1

2
‖ẋ(t)‖2 + β(t)

(
Φ(x(t))−min

H
Φ
)
,
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and the anchor function

h(t) :=
1

2
‖x(t)− z‖2,

where z ∈ argmin Φ is given. They are the basic constitutive blocks of the function E : [t0,+∞[→ R+

(10) E(t) := Γ(t)2W (t) + h(t) + Γ(t)ḣ(t)

that will serve for the Lyapunov analysis. We have

E(t) = Γ(t)2W (t) + h(t) + Γ(t)ḣ(t)

= Γ(t)2

(
1

2
‖ẋ(t)‖2 + β(t)

(
Φ(x(t))−min

H
Φ
))

+
1

2
‖x(t)− z‖2 + Γ(t)〈ẋ(t), x(t)− z〉,

which gives

(11) E(t) = Γ(t)2β(t)
(

Φ(x(t))−min
H

Φ
)

+
1

2
‖x(t)− z + Γ(t)ẋ(t)‖2.

Hence, E(·) is a non-negative function.

2.1. O-rate of convergence for the values. Based on the decreasing property of E(·), we are going to prove
the following theorem.

Theorem 2.1. Let Φ : H → R be a convex function of class C1 such that argmin Φ 6= ∅. Let us assume that
β : [t0,+∞[→ R+ is a continuous function which is positive. Suppose γ : [t0,+∞[→ R+ is a continuous function
that satisfies (H)0. Assume that the following growth condition (H)γ,β linking α(t) with β(t) is satisfied:

(H)γ,β Γ(t)β̇(t) ≤ β(t) (3− 2γ(t)Γ(t)) .

Then, for every solution trajectory x : [t0,+∞[→ H of

(IGS)γ,β ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0,

the following convergence rate of the values is satisfied:

(12) Φ(x(t))−min
H

Φ = O
(

1

β(t)Γ(t)2

)
as t→ +∞.

Moreover, the trajectory x(·) is bounded on [t0,+∞[.

Proof. Set briefly m := minH Φ. Let’s compute the time derivative of E(·), as formulated in (10). We first
compute the derivative of its main ingredients, namely, W and h. The classical derivation chain rule and
(IGS)γ,β give

Ẇ (t) = 〈ẋ(t), ẍ(t)〉+ β(t) 〈ẋ(t),∇Φ(x(t))〉+ β̇(t) (Φ(x(t))−m)

= 〈ẋ(t), ẍ(t) + β(t)∇Φ(x(t))〉+ β̇(t) (Φ(x(t))−m)

= −γ(t)‖ẋ(t)‖2 + β̇(t) (Φ(x(t))−m) .(13)

On the other hand, ḣ(t) = 〈ẋ(t), x(t)− z〉 and ḧ(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t)− z〉. It ensues that

ḧ(t) + γ(t)ḣ(t) = ‖ẋ(t)‖2 + 〈ẍ(t) + γ(t)ẋ(t), x(t)− z〉
= ‖ẋ(t)‖2 − β(t)〈∇Φ(x(t)), x(t)− z〉
≤ ‖ẋ(t)‖2 − β(t)(Φ(x(t))−m) ≤ ‖ẋ(t)‖2,(14)

where the above inequality follows from the convexity of Φ.
We have now all the ingredients to derivate E(·), as defined in (10). Collecting the above results we obtain

Ė(t) = Γ(t)2Ẇ (t) + 2Γ(t)Γ̇(t)W (t) + ḣ(t) + Γ̇(t)ḣ(t) + Γ(t)ḧ(t)

= Γ(t)2[−γ(t)‖ẋ(t)‖2 + β̇(t) (Φ(x(t))−m)] + 2Γ(t)Γ̇(t)

[
1

2
‖ẋ(t)‖2 + β(t) (Φ(x(t))−m)

]
+ḣ(t) + Γ̇(t)ḣ(t) + Γ(t)ḧ(t).

According to 1 + Γ̇(t) = γ(t)Γ(t) and (14), the above last line writes

ḣ(t) + Γ̇(t)ḣ(t) + Γ(t)ḧ(t) = Γ(t)
(
ḧ(t) + γ(t)ḣ(t)

)
≤ Γ(t)

(
‖ẋ(t)‖2 − β(t)(Φ(x(t))−m)

)
.
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Combining the above results, we obtain

Ė(t) ≤ Γ(t)2
[
−γ(t)‖ẋ(t)‖2 + β̇(t) (Φ(x(t))−m)

]
+ 2Γ(t)Γ̇(t)

[
1

2
‖ẋ(t)‖2 + β(t) (Φ(x(t))−m)

]
+Γ(t)

(
‖ẋ(t)‖2 − β(t)(Φ(x(t))−m)

)
≤ Γ(t)‖ẋ(t)‖2

[
1 + Γ̇(t)− γ(t)Γ(t)

]
+ (Φ(x(t))−m) Γ(t)

(
Γ(t)β̇(t) + 2Γ̇(t)β(t)− β(t)

)
.

Using again the relation 1 + Γ̇(t) = γ(t)Γ(t), we finally get

(15) Ė(t) ≤ (Φ(x(t))−m) Γ(t)
(

Γ(t)β̇(t) + 2Γ̇(t)β(t)− β(t)
)
.

According to 1 + Γ̇(t) = γ(t)Γ(t), this is equivalent to

(16) Ė(t) ≤ (Φ(x(t))−m) Γ(t)
(

Γ(t)β̇(t) + β(t)(2γ(t)Γ(t)− 3)
)
.

Therefore, by assumption (H)γ,β , we deduce that Ė(t) ≤ 0. Hence E(t) ≤ E(t0) on [t0,+∞[. According to the

formulation (11) of E(t), we deduce that, for all t ≥ t0

(17) Φ(x(t))−min
H

Φ ≤ E(t0)

β(t)Γ(t)2
.

In addition, let us show that the trajectory remains bounded. According to (11), and E(·) decreasing, we have

‖x(t)− z + Γ(t)ẋ(t)‖2 ≤ 2E(t) ≤ 2E(t0).

After developing the above inequality, we obtain

(18) ‖x(t)− z‖2 + 2Γ(t) 〈x(t)− z, ẋ(t)〉 ≤ 2E(t0).

Set h(t) := 1
2 ‖x(t)− z‖2, and q(t) :=

∫ +∞

t

ds

p(s)
. We have {q(t) : t ≥ t0} is bounded since

∫ +∞

t0

ds

p(s)
< +∞.

After dividing (18) by p(t), and noticing that Γ(t)
p(t) = q(t), we obtain, with C = E(t0)

1

p(t)
h(t) + q(t)ḣ(t) ≤ C

p(t)
, ∀t ∈ [t0,+∞[.

Since q̇(t) = − 1

p(t)
, we equivalently have q(t)ḣ(t)− q̇(t)(h(t)− C) ≤ 0. After dividing by q(t)2, we obtain

d

dt

(
h(t)− C
q(t)

)
=

1

q(t)2

(
q(t)ḣ(t)− q̇(t)(h(t)− C)

)
≤ 0.

Integration of this inequality gives h(t) ≤ C1(1 + q(t)) for some C1 > 0. Therefore, x(·) is bounded. �

Remark 1. Let us analyze the condition (H)γ,β . We return to its formulation (19)

(19) Γ(t)β̇(t) + 2Γ̇(t)β(t)− β(t) ≤ 0.

After multiplication by Γ(t), and by setting ξ(t) = β(t)Γ2(t) it writes equivalently as

(20) ξ̇(t)− 1

Γ(t)
ξ(t) ≤ 0.

Integration of this first-order differential equation immediately gives

(21) ξ(t) ≤ ξ(t0) exp

(∫ t

t0

1

Γ(s)
ds

)
on [t0,+∞[).

Therefore

(22) β(t) ≤ β(t0)
Γ2(t0)

Γ2(t)
exp

(∫ t

t0

1

Γ(u)
du

)
on [t0,+∞[.

Thus, the condition (H)γ,β imposes a growth limitation for β(·), which depends on γ(·).

Remark 2. The assumption argmin Φ 6= ∅ is crucial to guarantee that the trajectory remains bounded.
Otherwise when β ≡ 1, Φ is minorized and does not attain its infimum, i.e., argmin Φ = ∅, we may have
limt→+∞ Φ(x(t)) = infHΦ (see [8]). From this, we easily deduce that limt→+∞ ‖x(t)‖ = +∞.
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2.2. Rate of decay of the global energy. To obtain fast convergence of velocities to zero, we need to
introduce the following slightly strengthened condition (H)

+
γ,β : there exist t1 ≥ t0 and ρ > 0 such that for t ≥ t1

(H)
+
γ,β Γ(t)β̇(t) ≤ β(t)

(
3− ρ− 2γ(t)Γ(t)

)
.

Note that (H)γ,β corresponds to the case ρ = 0 in (H)
+
γ,β .

Let’s first establish an integral estimate for the rescaled global energy function W .

Proposition 1. Let Φ : H → R be a convex function of class C1 such that argmin Φ 6= ∅. Suppose that the
property (H)

+
γ,β is satisfied. Then, for any solution x(·) of (IGS)γ,β, the following integral energy estimate holds

(23)

∫ +∞

t0

Γ(t)W (t)dt < +∞,

where

W (t) :=
1

2
‖ẋ(t)‖2 + β(t)

(
Φ(x(t))−min

H
Φ
)
.

Equivalently ∫ +∞

t0

Γ(t)‖ẋ(t)‖2dt < +∞ and

∫ +∞

t0

Γ(t)β(t)
(

Φ(x(t))−min
H

Φ
)
dt < +∞.

Proof. Start from the energy estimate (13), and set m := minHΦ. After multiplication by the positive scalar
Γ(t)2, we get

Γ(t)2Ẇ (t) + γ(t)Γ(t)2‖ẋ(t)‖2 = β̇(t)Γ(t)2 (Φ(x(t))−m) .

After integration by parts on (t0, t) we obtain

Γ(t)2W (t)− Γ(t0)2W (t0)− 2

∫ t

t0

Γ(s)Γ̇(s)W (s)ds+

∫ t

t0

γ(s)Γ(s)2‖ẋ(s)‖2ds =

∫ t

t0

β̇(s)Γ(s)2 (Φ(x(s))−m) ds.

Replace W (s) by its formulation W (s) := 1
2‖ẋ(s)‖2 + β(s) (Φ(x(s))−minHΦ) in the third term of the left

member of the above formula. After simplification, we get

Γ(t)2W (t)+

∫ t

t0

Γ(s)[Γ(s)γ(s)−Γ̇(s)]‖ẋ(s)‖2ds = Γ(t0)2W (t0)+

∫ t

t0

[2Γ(s)Γ̇(s)β(s)+β̇(s)Γ(s)2] (Φ(x(s))−m) ds.

By (8), we have γ(s)Γ(s)γ(s)− Γ̇(s) = 1.

By (H)γ,β and (8), we have
d

ds

(
Γ(s)2β(s)

)
= 2Γ(s)Γ̇(s)β(s) + β̇(s)Γ(s)2 ≤ Γ(s)β(s).

Collecting the above results, we obtain

(24) Γ(t)2W (t) +

∫ t

t0

Γ(s)‖ẋ(s)‖2ds ≤
∫ t

t0

Γ(s)β(s) (Φ(x(s))−m) ds+ Γ(t0)2W (t0).

In order to estimate the second member of (24), we return to (16)

Ė(t) ≤ Γ(t)
(

Γ(t)β̇(t) + β(t)(2γ(t)Γ(t)− 3)
)

(Φ(x(t))−m) .

According to the property (H)
+
γ,β , that we rewrite as follows

(25) Γ(t)β̇(t) + β(t)
(

2γ(t)Γ(t)− 3
)
≤ −ρβ(t),

we get

Ė(t) + ρΓ(t)β(t) (Φ(x(t))−m) ≤ 0.

Integrating this inequality, and using that E(t) is non-negative, we obtain

(26)

∫ +∞

t0

Γ(s)β(s) (Φ(x(s))−m) ds ≤ E(t0)

ρ
< +∞.

Combining this inequality with (24), we obtain

(27) Γ(t)2W (t) +

∫ t

t0

Γ(s)‖ẋ(s)‖2ds ≤ E(t0)
ρ + Γ(t0)2W (t0).

Hence

(28)

∫ +∞

t0

Γ(s)‖ẋ(s)‖2ds ≤ E(t0)
ρ + Γ(t0)2W (t0).
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By adding the inequalities (26) and (28), and using the definition of W , we finally get∫ +∞

t0

Γ(s)W (s)ds ≤ 3

2

E(t0)

ρ
+

1

2
Γ(t0)2W (t0),

which gives (23). �

2.3. From O to o convergence rate of the values. According to Attouch-Peypouquet [13] and Attouch-
Cabot [5], let us improve the convergence rates obtained in the previous sections by passing from capital O to
small o estimates.

Theorem 2.2. Let Φ : H → R be a convex function of class C1 such that argmin Φ 6= ∅. Suppose that the
property (H)

+
γ,β is satisfied.

(i) If

∫ +∞

t0

1

Γ(t)
dt = +∞, then

Φ(x(t))−min
H

Φ = o

(
1

β(t)Γ(t)2

)
and ‖ẋ(t)‖ = o

(
1

Γ(t)

)
as t→ +∞.

(ii) If

∫ +∞

t0

β(t)Γ(t)dt = +∞ and 2γ(t)β(t) + β̇(t) is nonnegative on [t0,+∞[, then

Φ(x(t))−min
H

Φ = o

(
1∫ t

t0
β(s)Γ(s)ds

)
and ‖ẋ(t)‖2 = o

(
β(t)∫ t

t0
β(s)Γ(s)ds

)
as t→ +∞.

Proof. We examine successively the two cases:∫ +∞

t0

1

Γ(t)
dt = +∞ and

∫ +∞

t0

β(t)Γ(t)dt = +∞.

(i) Using the classical derivation chain rule, the definition of W , and the formula (13) for Ẇ , we obtain

d

dt

(
Γ(t)2W (t)

)
= Γ(t)

(
2Γ̇(t)W (t) + Γ(t)Ẇ (t)

)
= Γ(t)

(
2Γ̇(t)β(t) + Γ(t)β̇(t)

)
(Φ(x(t))−m) + Γ(t)

(
Γ̇(t)− γ(t)Γ(t)

)
‖ẋ(t)‖2.

According to Γ̇(t)− γ(t)Γ(t) = −1, and to the property (H)γ,β , i.e.,
d

dt

(
Γ(t)2β(t)

)
≤ Γ(t)β(t), we obtain

d

dt

(
Γ(t)2W (t)

)
≤ Γ(t)β(t) (Φ(x(t))−m) .

According to Proposition 1, we have
∫ +∞
t0

Γ(t)β(t) (Φ(x(t))−minHΦ) dt < +∞. The non-negative function

k(t) := Γ(t)2W (t) verifies

(
dk

dt

)+

∈ L1(t0; +∞). This implies that the limit of k exists, as t→ +∞, that is,

lim
t→+∞

Γ(t)2W (t) exists.

Let’s show that, under the assumption

∫ +∞

t0

dt

Γ(t)
= +∞, this implies

lim
t→+∞

Γ(t)2W (t) = 0.

Otherwise, there would exist some c > 0 such that Γ(t)W (t) ≥ c

Γ(t)
for t sufficiently large. According to (23)∫ +∞

t0
Γ(t)W (t) < +∞, this would imply

∫ +∞

t0

dt

Γ(t)
< +∞, a contradiction. Thus we have obtained

Φ(x(t))−m = o

(
1

β(t)Γ(t)2

)
and ‖ẋ(t)‖ = o

(
1

Γ(t)

)
as t→ +∞.

(ii) Let’s define the functions u, v : [t0,+∞[→ R+ by

u(t) :=

∫ t

t0

β(s)Γ(s)ds and v(t) :=
W (t)

β(t)
.
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Using the classical derivation chain rule, the definition of W , and the formula (13) for Ẇ , we obtain

dv

dt
(t) = − β̇(t)

β(t)2
W (t) +

1

β(t)
Ẇ (t)

= − β̇(t)

β(t)2

(
1

2
‖ẋ(t)‖2 + β(t) (Φ(x(t))−m)

)
+

1

β(t)

(
−γ(t)‖ẋ(t)‖2 + β̇(t) (Φ(x(t))−m)

)
= −2γ(t)β(t) + β̇(t)

2β2(t)
‖ẋ(t)‖2.

By assumption, 2γ(t)β(t)+ β̇(t) is non-negative on [t0,+∞[. Therefore
dv

dt
(t) ≤ 0, which gives that the function

v(·) is non-increasing on [t0,+∞[.

By assumption,

∫ +∞

t0

β(s)Γ(s)ds = +∞. Therefore, the function u is an increasing bijection from [t0,+∞[ onto

[0,+∞[. Set r(t) := u−1(δu(t)) where δ ∈]0, 1[ is fixed and t ∈ [t0,+∞[. In view of the increasing property of
u, we have r(t) ≤ t for all t ∈ [t0,+∞[. By definition of u and of r(t), we have∫ r(t)

t0

β(s)Γ(s)ds = u(r(t)) = δu(t) = δ

∫ t

t0

β(s)Γ(sds.

Therefore, ∫ t

r(t)

β(s)Γ(s)ds =

∫ t

t0

β(s)Γ(s)ds−
∫ r(t)

t0

β(s)Γ(s)ds = (1− δ)
∫ t

t0

β(s)Γ(s)ds.

Recalling that v is non-increasing, we deduce that∫ t

r(t)

Γ(s)W (s)ds =

∫ t

r(t)

β(s)Γ(s)v(s)ds

≥ v(t)

∫ t

r(t)

β(s)Γ(s)ds = (1− δ)W (t)

β(t)

∫ t

t0

β(s)Γ(s)ds.

Since

∫ +∞

t0

Γ(t)W (t)dt < +∞, we deduce that

0 ≤ lim
t→+∞

W (t)

β(t)

∫ t

t0

β(s)Γ(s)ds ≤ 1

1− δ
lim

t→+∞

∫ t

r(t)

Γ(s)W (s)ds = 0.

We conclude that W (t) = o

(
β(t)∫ t

t0
β(s)Γ(s)ds

)
. Equivalently

Φ(x(t))−min
H

Φ = o

(
1∫ t

t0
β(s)Γ(s)ds

)
and ‖ẋ(t)‖2 = o

(
β(t)∫ t

t0
β(s)Γ(s)ds

)
.

�

Remark 3. Note that the nonnegativity condition on 2γ(t)β(t) + β̇(t) implies, after integration,

(29) β(t) ≥ β(t0)e
−2

∫ t
t0
γ(s)ds

=
β(t0)

p(t)2
.

Remark 4. The convergence of the trajectories generated by the dynamic system (IGS)γ,β will be analyzed in
section 4, in the more general case where additional perturbations are taken into consideration.

3. Particular cases

3.1. Case β(t) = 1, γ(·) general. The asymptotic convergence properties of the dynamical system (IGS)γ,1
are based on the behavior of Γ(t) as t→ +∞. In this case, the condition (H)γ,β reduces to

(H)1 γ(t)Γ(t) ≤ 3

2
,

which is the condition introduced by Attouch-Cabot in [5]. Thus, we recover Corollary 3.4. in [5], that is,
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Corollary 1. Let Φ : H → R be a convex function of class C1 such that argmin Φ 6= ∅. Let us assume
that γ : [t0,+∞[→ R+ is a continuous function satisfying (H)0 and (H)1. Then, every solution trajectory
x : [t0,+∞[→ H of (IGS)γ,β satisfies the following convergence rate of the values:

(30) Φ(x(t))−min
H

Φ = O
(

1

Γ(t)2

)
as t→ +∞.

The condition (H)
+
γ,β , which means ∃t1 ≥ t0,∃ρ > 0 such that 2γ(t)Γ(t)− 3 + ρ ≤ 0 for every t ≥ t1, becomes

(H)
+
1 lim sup

t→+∞
γ(t)Γ(t) <

3

2
.

This condition is equivalent to existence of m < 3
2 such that γ(t)Γ(t) ≤ m on [t1,+∞[. Therefore, the assertion

(ii) of Theorem 2.2 gives

Corollary 2. ([5, Theorem 3.6]) Suppose that the conditions of Corollary 1 are satisfied, together with∫ +∞
t0

Γ(t)dt = +∞ and (H)
+
1 . Then, as t→ +∞

(31) Φ(x(t))−min
H

Φ = o

(
1∫ t

t0
Γ(s)ds

)
, and ‖ẋ(t)‖2 = o

(
1∫ t

t0
Γ(s)ds

)
.

The assertion (i) of Theorem 2.2, in the case β(t) = 1, is new and can be formulated as follows.

Corollary 3. Suppose that the conditions of Corollary 1 are satisfied together with
∫ +∞
t0

1
Γ(t)dt = +∞ and

(H)
+
1 . Then, as t→ +∞

(32) Φ(x(t))−min
H

Φ = o

(
1

Γ(t)2

)
and ‖ẋ(t)‖ = o

(
1

Γ(t)

)
.

3.2. Case β(·) general, γ(t) = α
t , α > 1. In this case, the inertial dynamic (IGS)γ,β writes

(33) ẍ(t) +
α

t
ẋ(t) + β(t)∇Φ(x(t)) = 0.

Elementary computation gives p(t) =
(
t
t0

)α
. Hence

∫ +∞
t0

du
p(u) < +∞ for α > 1, and condition (H)0 is satisfied.

From this, we readily obtain Γ(t) = t
α−1 . Condition (H)γ,β reduces to

(H)2 tβ̇(t) ≤ (α− 3)β(t) for t ≥ t0.
As a consequence of Theorem 2.1 we recover the convergence rate of values of [10, Theorem 8.1], which can be
formulated as follows:

Corollary 4. Let Φ : H → R be a convex function of class C1 such that argmin Φ 6= ∅. Let us assume that
β : [t0,+∞[→ R+ is a continuous function, and that condition (H)2 is satisfied. Then every solution trajectory
x : [t0,+∞[→ H of (33) satisfies the following convergence rate of the values:

(34) Φ(x(t))−min
H

Φ = O
(

1

t2β(t)

)
as t→ +∞,

Similar computation gives the following formulation of condition (H)
+
γ,β :

(H)
+
2 tβ̇(t) ≤ β(t) (α− 3− ρ(α− 1)) ⇐⇒ lim sup

t→+∞

tβ̇(t)

β(t)
< α− 3.

Noticing that

∫ +∞

t0

1

Γ(t)
dt = +∞, a direct application of Theorem 2.2 gives the following result:

Corollary 5. (i) Under the condition (H)
+
2 , every solution trajectory x : [t0,+∞[→ H of (33) satisfies the

following convergence rate of the values:

(35) Φ(x(t))−min
H

Φ = o

(
1

t2β(t)

)
as t→ +∞.

(ii) Suppose moreover that

(36)

∫ +∞

t0

tβ(t)dt = +∞ and 2αβ(t) + tβ̇(t) ≥ 0, ∀t ∈ [t0,+∞[,

then

(37) Φ(x(t))−min
H

Φ = o

(
1∫ t

t0
sβ(s)ds

)
and ‖ẋ(t)‖2 = o

(
β(t)∫ t

t0
sβ(s)ds

)
as t→ +∞.
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Remark 5. a) When β(t) ≡ 1 we get the classical results for the evolution equation

ẍ(t) +
α

t
ẋ(t) +∇Φ(x(t)) = 0,

which can be seend as a continuous version of the Nesterov method. In this case, the condition (H)2 simply

writes α ≥ 3. As a result, for α ≥ 3, we get Φ(x(t)) −minH Φ = O
(

1
t2

)
, and for α > 3 Φ(x(t)) −minH Φ =

o
(

1
t2

)
as t→ +∞, see [5], [8], [27], [39].

b) When β(t) = tp, we readily obtain that the condition (H)2 is equivalent to α ≥ 3 + p.

3.3. Case β(t) = β0t
a ln(t)b, γ(t) = α

t . In this case, we readily obtain

t2β(t) = O
(
ta+2 ln(t)b

)
and

∫ t

t0

sβ(s)ds = O
(
ta+2 ln(t)b

)
.

By specializing Corollary 4 and Corollary 5 to this situation, we obtain the following statement.

Corollary 6. Let x : [t0,+∞[→ H be a solution trajectory of (33) with β(t) = β0t
a ln(t)b, and α > 1.

(i) If a ≤ α− 3 and b ≤ 0, then Φ(x(t))−minHΦ = O
(

1

ta+2 ln(t)b

)
as t→ +∞.

(ii) If a < α− 3, then Φ(x(t))−minH Φ = o

(
1

ta+2 ln(t)b

)
as t→ +∞.

Proof. To show assertions (i) and (ii), we need to examine conditions (H)2 and (H)
+
2 , respectively. For t ≥ t0 > 0,

tβ̇(t)

β(t)
− α+ 3 = a− α+ 3 +

b

ln(t)
.

(i) If a ≤ α− 3 = 0 and b ≤ 0, then
tβ̇(t)

β(t)
− α+ 3 ≤ 0 for every t ≥ t0 and (H)2 is satisfied.

(ii) If a < α− 3 < 0, then have lim sup
t→+∞

(
tβ̇(t)

β(t)
− α+ 3

)
< 0, and (H)

+
2 is satisfied. �

3.4. Optimality of the results. Let us show the optimality of the convergence rate obtained in Theorem 2.1.
This will result from the following example showing that when γ(t) = α

t , and β(t) = tδ, O(1/t2+δ) is the worst
possible case for the convergence rate of values. The following example was obtained by rescaling the example
of [8]. Take H = R and Φ(x) = c|x|r, where c and r are positive parameters. We consider the evolution equation

(IGS)α
t ,δ

ẍ(t) +
α

t
ẋ(t) + tδ∇Φ(x(t)) = 0,

and look for nonnegative solutions of the form x(t) = 1
tθ

, with θ > 0. This corresponds to trajectories that are
completely damped. We begin by determining the values of c, r,θ providing such solutions. On the one hand,

ẍ(t) +
α

t
ẋ(t) = θ(θ + 1− α)

1

tθ+2
.

On the other hand, ∇Φ(x) = cr|x|r−2x, which gives

tδ∇Φ(x(t)) = cr
1

tθ(r−1)−δ .

Thus, x(t) = 1
tθ

is solution of (IGS)α
t ,δ

if and only if,

i) θ + 2 = θ(r − 1)− δ, which is equivalent to r > 2 and θ = 2+δ
r−2 ; and

ii) cr = θ(α− θ − 1), which is equivalent to α > r+δ
r−2 and c = 2+δ

r(r−2) (α− r+δ
r−2 ).

We have min Φ = 0 and

Φ(x(t)) =
2 + δ

r(r − 2)

(
α− r + δ

r − 2

)
1

t
r(2+δ)
r−2

.

The convergence rate of Φ(x(t)) to 0 depends on the parameter r. When r goes to infinity, the exponent
r(2+δ)
r−2 > 2 + δ tends to 2 + δ. This limit situation is obtained by taking a function Φ which becomes very flat

around the set of its minimizers. Therefore, without other geometrical hypotheses on Φ, we cannot expect a
convergence rate better than O(1/t2+δ). It is precisely the convergence rate provided by Theorem 2.1, since
t2β(t) = t2+δ in this situation.
Without rescaling, the optimality of the convergence rate of the values for the damped inertial gradient systems
has been analyzed in a recent work of Apidopoulos-Aujol-Dossal-Rondepierre [4].
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3.5. Numerical examples. The following examples have been implemented with the Scilab opensource soft-
ware version 5.5.2. In the context of convex optimization, we consider successively the strongly convex case
with different conditionings, then the strictly convex case without strong convexity, and finally the case of a
convex function with a continuum of solutions. The initial time t0 has been taken equal to one.

3.5.1. Example 1. (Strongly convex). We consider the strongly convex functions

Φ1(x1, x2) := 5 · 10−3x1
1 + x2

2 (ill-conditioned)

Φ2(x1, x2) := 5x1
1 + x2

2 (well-condioned),

which respectively illustrate the ill-conditioned case, and the well-conditioned case.
We investigate numerically the convergence behaviour of ‖x(t) − x̄‖2 and |Φi(x(t)) − Φi(x̄)| (i = 1, 2) where
x(·) is the solution of the dynamical system (IGS)γ,β , with the initial conditions (x1(1), x2(1)) = (1, 2) and

(ẋ1(1), ẋ2(1) = (0, 0). Three choices of γ and β are considered:

• γ(t) ≡ 2
√
µ
i

and β(t) ≡ 1, where µi is the smallest eigenvalue for ∇2Φi. This choice is in accordance
with the linear convergence results for the heavy ball method in the strongly convex case,
• γ(t) = 5

t and β(t) ≡ 1,

• γ(t) = 5
t and β(t) = t2.

Figure 2. Graphical view of of ‖x(t)− x̄‖2 and |Φi(x(t))− Φi(x̄)| for different values of γ(t) and β(t).

The functions Φi reach their infimum which is equal to zero uniquely at (0, 0). According to our theoretical
results, we have the asymptotic convergence of values to zero. Compared results are shown in Figure 2. For the
ill-conditioned function Φ1, the convergence of the values is faster for γ(t) = 5

t than for γ(t) constant.
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3.5.2. Example 2. (Strictly convex, not strongly convex). Let’s analyze the convergence properties, as
t → +∞, of the trajectories of the dynamical system (IGS)γ,β in the case where Φ is defined on ]0,+∞[2 by

Φ(x1, x2) = x1 + x2
2 − ln(x1x2). We can easily verify that Φ is a strictly convex (not strongly convex) function,

and that x̄ = (1,
√

2/2) is the unique global minimum point of Φ. We take γ(t) = α
t and β(t) = tp so as to

satisfy condition (H)2, which in this case is equivalent to α ≥ 3 + p. Specifically we compare the convergence
rates for the solutions u1, u2, u3 of the system (IGS)γ,β for (α1 = 4, β1(t) = t0.5), (α2 = 5, β2(t) = t1.5)

and (α3 = 6, β3(t) = t2). This is illustrated in Figure 3, where the corresponding trajectories are displayed
on the same screen with their optimal end point x̄. We observe that the numerical examples illustrated in
Figure 3 are in agreement with the convergence rates predicted in Corollary 4. Precisely, in accordance with

Φ(x(t))−minHΦ = O
(

1
t2β(t)

)
= O

(
1

t2+p

)
as t→ +∞, we have, with δi ≥ 2 + pi,

max
i=1,2,3

max
1≤t≤2000

[
tδi(|Φ(ui(t))−min Φ|)

]
≤ 0.5.

Figure 3.

3.5.3. Example 3. (Non unique global solution). Take Φ : R2 → R+ defined by Φ(x) = (x1 + x2)
2
. The

function Φ is convex but non strongly convex. Its solution set is the whole line argmin Φ = {(x1, x2) ∈ R2 :
x2 = −x1}. Depending on the initial data, we observe the convergence of the trajectories to different equilibria
belonging to argmin Φ. In Figure 4 (left) are represented the trajectories of (IGS)γ,β corresponding to the initial

position (x1(1), x2(1)) = (1, 2) and various initial velocity vectors (ẋ1(1), ẋ2(1)). In Figure 4 (right) we observe
a similar phenomenon when we change the initial point (x1(1), x2(1)) while keeping the same initial velocity
vector (ẋ1(1), ẋ2(1)) = (15, 0).
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Figure 4.

4. Existence and stability with respect to perturbations

Consider the perturbed version of the initial evolution system (IGS)γ,β

(IGS)γ,β,g ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = g(t),

where the second member g(·) can be interpreted as an external action on the system, a perturbation or a
control term. For the existence and uniqueness of classical global solution of the Cauchy problem associated
with the evolution system (IGS)γ,β,g, we refer to Theorem 8.2.
In this section, we show that the results of the previous sections remain satisfied if the perturbation g is
sufficiently small asymptotically.

Theorem 4.1. Let Φ : H → R be a C1 convex function with argmin Φ 6= ∅. Take β : [t0,+∞[→ R∗+ a continuous
function. Suppose that γ : [t0,+∞[→ R+ is a continuous function that satisfies (H)0. Suppose that the function
g : [t0,+∞[→ H is locally integrable and verifies

(H)g

∫ +∞

t0

Γ(t)‖g(t)‖dt < +∞.

Then, for any solution x : [t0,+∞[→ H of (IGS)γ,β,g, the following statements are satisfied:

(i) Under the condition (H)γ,β, x(t) and Γ(t)ẋ(t) are bounded on [t0,+∞[, and we have the convergence rate
of the values:

(38) Φ(x(t))−min
H

Φ = O
(

1

β(t)Γ(t)2

)
as t→ +∞.

(ii) Moreover, under condition (H)
+
γ,β, we have :

(39)

∫ +∞

t0

β(t)Γ(t)
(

Φ(x(t))−min
H

Φ
)
dt < +∞.

Proof. The guiding idea of the proof is the same as in the Theorem 2.1. As a Lyapunov function, we use the
same energy function E(·), which is defined for t ≥ t0 by

E(t) = β(t)Γ(t)2
[
Φ(x(t))−min

H
Φ
]

+
1

2
‖x(t)− z + Γ(t)ẋ(t)‖2.

The time derivative of E(·) is given by

(40)
Ė(t) =

d

dt

(
β(t)Γ(t)2

)
(Φ(x(t))−minHΦ) + β(t)Γ(t)2〈∇Φ(x(t)), ẋ(t)〉

+

〈
d

dt
(x(t)− z + Γ(t)ẋ(t)) , x(t)− z + Γ(t)ẋ(t)

〉
.
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Then, according to (8), note that the dynamical system (IGS)γ,β,g can be formulated as

(41)
d

dt
(Γ(t)ẋ(t) + x(t)− z) = Γ(t)g(t)− β(t)Γ(t)∇Φ(x(t)).

From (40) and (41) we deduce that

Ė(t) =
d

dt

(
β(t)Γ(t)2

)
(Φ(x(t))−minH Φ) + β(t)Γ(t)2〈∇Φ(x(t)), ẋ(t)〉

+ 〈Γ(t)g(t)− β(t)Γ(t)∇Φ(x(t)), x(t)− z + Γ(t)ẋ(t)〉

=
d

dt

(
β(t)Γ(t)2

)
(Φ(x(t))−minH Φ) + 〈Γ(t)g(t), x(t)− z + Γ(t)ẋ(t)〉

− 〈β(t)Γ(t)∇Φ(x(t)), x(t)− z〉 .
Using the Cauchy-Schwarz inequality and the convexity of Φ, that is,

〈∇Φ(x(t)), x(t)− z〉 ≥ Φ(x(t))− Φ(z),

we obtain

(42) Ė(t) ≤
[
d

dt

(
βΓ2

)
(t)− (βΓ)(t)

](
Φ(x(t))−min

H
Φ
)

+ Γ(t)‖g(t)‖ · ‖x(t)− z + Γ(t)ẋ(t)‖.

Using the condition (H)γ,β and the definition of E , we deduce that

(43) Ė(t) ≤ Γ(t)‖g(t)‖ · ‖x(t)− z + Γ(t)ẋ(t)‖ ≤
√

2Γ(t)‖g(t)‖
√
E(t),

By integrating the differential inequality (43) and using the assumption (H)g, we obtain√
E(t) ≤

√
E(t0) +

1√
2

∫ +∞

t0

Γ(s)‖g(s)‖ds = Cte < +∞,

which gives the claim (38). In addition, we obtain that ‖x(t)− z + Γ(t)ẋ(t)‖2 is bounded, which gives

‖x(t)− z‖2 + 2Γ(t) 〈x(t)− z, ẋ(t)〉 ≤ C.

Set h(t) := 1
2 ‖x(t)− z‖2. The above inequality gives

h(t) + Γ(t)ḣ(t) ≤ 1

2
C.

By an argument similar to that of the unperturbed case, the integration of the above differential inequality gives
that the trajectory x(·) is bounded. Returning to the boundedness of ‖x(t) − z + Γ(t)ẋ(t)‖, we also conclude
that Γ(t)ẋ(t) is bounded on [t0,+∞[. To prove the second affirmation of the theorem, let us return to the
relation (42). Since x(t)− z + Γ(t)ẋ(t) is bounded on [t0,∞[, there exists some C > 0 such that

Ė(t) ≤
[
d

dt

(
βΓ2

)
(t)− (βΓ)(t)

](
Φ(x(t))−min

H
Φ
)

+ CΓ(t)‖g(t)‖.

Integrating on [t0,+∞[, and using condition (H)
+
γ,β , we finally get∫ +∞

t0

β(t)Γ(t)
(

Φ(x(t))−min
H

Φ
)
dt ≤ 1

ρ

(
E(t0) + C

∫ +∞

t0

Γ(t)‖g(t)‖dt
)
< +∞,

which completes the proof. �

As in the unperturbed case, we can now pass from capital O estimates to small o estimates under the slightly
stronger hypothesis (H)

+
γ,β . In addition, we obtain the convergence of trajectories.

Theorem 4.2. Let Φ : H → R be a convex continuously differentiable function such that argmin Φ is nonempty.
Suppose that the properties (H)

+
γ,β and (H)g are satisfied. Let x : [t0; +∞[→ H be a global solution of (IGS)γ,β,g.

Then x(t) converges weakly, as t→ +∞ to a point in argmin Φ.

If moreover

∫ +∞

t0

1

Γ(t)
dt = +∞, we obtain

Φ(x(t))−min
H

Φ = o

(
1

β(t)Γ(t)2

)
and ‖ẋ(t)‖ = o

(
1

Γ(t)

)
as t→ +∞.

Proof. For the weak convergence, the proof is based on Opial’s Lemma 8.3. By elementary calculus, convexity
of Φ, and equation (IGS)γ,β,g, one can first establish, as in (14), that for any z ∈ argmin Φ, the function

hz(t) := 1
2‖x(t)− z‖2 satisfies

ḧz(t) + γ(t)ḣz(t) ≤ ‖ẋ(t)‖2 + 〈g(t), x(t)− z〉.
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Taking the norm of each member and using the boundedness of x(t), see Theorem 4.1, we deduce that

(44) ḧz(t) + γ(t)ḣz(t) ≤ ‖ẋ(t)‖2 +M‖g(t)‖.
By multiplying this differential inequality by p(t), using p(t)γ(t) = ṗ(t) and integrating, we obtain

(45) ḣz(t) ≤
1

p(t)

∫ t

t0

(
‖ẋ(s)‖2 +M‖g(s)‖

)
ds+

p(t0)

p(t)
ḣz(t0).

Set L :=
∫ +∞
t0

dt
p(t) . By integrating (45) and applying Fubini theorem, we obtain∫ +∞

t0

[
ḣz

]+
(t)dt ≤

∫ +∞

t0

(
1

p(t)

∫ t

t0

(
‖ẋ(s)‖2 +M‖g(s)‖

)
ds

)
dt+ p(t0)ḣz(t0)L

=

∫ +∞

t0

(
‖ẋ(s)‖2 +M‖g(s)‖

)(∫ +∞

s

dt

p(t)

)
ds+ p(t0)ḣz(t0)L

=

∫ +∞

t0

Γ(s)
(
‖ẋ(s)‖2 +M‖g(s)‖

)
ds+ p(t0)ḣz(t0)L.

It remains to prove the estimate

∫ +∞

t0

Γ(t)‖ẋ(t)‖2dt < +∞. As in the proof of Proposition 1, multiplying

(IGS)γ,β,g by the vector ẋ and by Γ(t)2, integrating on (t0, t) and using (H)γ,β , we obtain∫ t

t0

Γ(s)‖ẋ(s)‖2ds ≤
∫ t

t0

Γ(s)β(s) (Φ(x(t))−m) ds+W (t0)−W (t) +

∫ t

t0

Γ(s)2〈g(s), ẋ(s)〉ds

≤
∫ +∞

t0

Γ(s)β(s) (Φ(x(t))−m) ds+W (t0) + sup
s∈[t0,+∞]

Γ(s)‖ẋ(s)‖
∫ +∞

t0

Γ(s)‖g(s)‖ds.

Using (H)g, the boundedness of Γ(s)‖ẋ(s)‖ on [t0,+∞], and (39), we obtain

(46)

∫ +∞

t0

Γ(t)‖ẋ(t)‖2dt < +∞,

and consequently
[
ḣz

]+
∈ L1(t0,+∞). Since hz is nonegative, this implies the convergence of hz(t) as t→ +∞.

The second item of Lemma 8.3 is a direct consequence of the minimizing property (12) of the trajectory, and
the weak lower semicontinuity of the convex function Φ.
Following the lines of the proof of the first statement of Theorem 2.1, we can show that∫ +∞

t0

d

dt

(
Γ(t)2W (s)

)
dt ≤

∫ +∞

t0

Γ(t)β(t) (Φ(x(s))−m) dt+

∫ +∞

t0

Γ(t)2‖g(t)‖ · ‖ẋ(t)‖dt

≤
∫ +∞

t0

Γ(t)β(t) (Φ(x(s))−m) dt+ sup
t≥t0

Γ(t)‖ẋ(t)‖
∫ +∞

t0

Γ(t)‖g(t)‖dt < +∞.

From (39) and (46) we have ∫ +∞

t0

Γ(t)W (s)dt < +∞.

In addition, by using

∫ +∞

t0

dt

Γ(t)
= +∞, we obtain that lim

t→+∞
Γ(t)2W (t) = 0, which ends the proof. �

5. Continuous modeling of Güler’s Inertial Proximal Point Algorithm

In [23], Güler first studied the convergence rate of the proximal point algorithm without inertia. Then, in
[24], he introduced the so-called Inertial Proximal Point Algorithm, which combines the ideas of Nesterov and
Martinet as follows:

• Initialization of ν0 and A0 > 0.

• Step k :

• Chooseβk > 0, and calculate gk > 0 by solving
• g2

k + gkAkβk −Akβk = 0.

• yk = (1− gk)xk + gkνk;

• xk+1 = proxβkΦ(yk);

• νk+1 = νk + 1
gk

(xk+1 − yk);

• Ak+1 = (1− gk)Ak.

(47)
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Let us show that Güler’s proximal algorithm (47) can be written as:

(IP)αk,βk

{
yk = xk + (1− αk)(xk − xk−1)

xk+1 = proxβkΦ(yk).

This result was first obtained by the authors in [10]. We reproduce it here briefly for the convenience of the
reader. First verify that, for all k ≥ 1

(48) νk = xk−1 +
1

gk−1
(xk − xk−1) .

For this, we use an induction argument. Suppose (48) is satisfied at step k, then show that it will be at step
k + 1. Using successively (47) and (48), we obtain

νk+1 = νk +
1

gk
(xk+1 − yk) = xk−1 +

1

gk−1
(xk − xk−1) +

1

gk
(xk+1 − yk)

=
1

gk
xk+1 + xk−1 +

1

gk−1
(xk − xk−1)− 1

gk
((1− gk)xk + gkνk)

=
1

gk
xk+1 −

1− gk
gk

xk = xk +
1

gk
(xk+1 − xk) ,

which shows that (48) is satisfied at step k + 1. Then, combining onesmore (47) with (48), we obtain

yk = (1− gk)xk + gkνk = (1− gk)xk + gk

(
xk−1 +

1

gk−1
(xk − xk−1)

)
= xk +

(
gk
gk−1

− gk
)

(xk − xk−1) .

Hence, Güler’s proximal algorithm can be written as (IP)αk,βk with

(49) αk = gk

(
1

gk−1
− 1

)
.

By construction of gk, we have gk = 1
2

(
−Akβk +

√
(Akβk)2 + 4Akβk

)
, which, by elementary calculation, gives

0 ≤ gk < 1. According to (49), we deduce that αk > 0. As a result, this makes Güler’s algorithm (47) as an
inertial proximal algorithm (IP)αk,βk . From (47), we also get:

(50) Ak = A0

k−1∏
j=0

(1− gj) and g2
k = Akβk(1− gk) = βkAk+1;

and then, we obtain the following relation between βk and gk:

(51) βk =
g2
k

A0

∏k
j=0(1− gj)

.

According to (49)–(51), we have obtained that all the parameters entering into Güler’s algorithm can be ex-
pressed according to the single parameter gk.
Let’s come with the dynamic interpretation of Güler’s algorithm, as formulated in (IP)αk,βk . According to the

formulation (49) of αk we get

xk+1 + βk∂Φ(xk+1) 3 yk = xk + gk

(
1

gk−1
− 1

)
(xk − xk−1).

Equivalently,

(52) xk+1 − 2xk + xk−1 + (gk −
gk − gk−1

gk−1
)(xk − xk−1) + βk∂Φ(xk+1) = 0.

This can be interpreted as a backward time discretization of the second-order evolution equation (when Φ is
smooth)

(53) ẍ(t) +

(
g(t)− ġ(t)

g(t)

)
ẋ(t) + β(t)∇Φ(x(t)) = 0.

So, modeling the Güler’s accelerated Backward algorithm (IP)αk,βk , we derive a second-order ordinary differ-
ential equation

(IGS)γ,β ẍ(t) + γ(t)ẋ(t) + β(t)∇Φ(x(t)) = 0.
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where the damping coefficient is expressed as

(54) γ(t) = g(t)− ġ(t)

g(t)
= g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
.

The algorithm (IP)αk,βk features a new optimal convergence rate than Nesterov’s method and also can be

applied for non-smooth convex function Φ. The terminology (IGS)γ,β refers to the Inertial Gradient System

with damping coefficient γ(t) and time scale coefficient β(t). Indeed, the parameter β(·) comes naturally with
the time scaling of these dynamics.
Taking w := 1

g , then (54) is equivalent to solve the non-autonomous linear differential equation

ẇ(t)− γ(t)w(t) = −1.

Set p(t) := exp
(∫ t

t0
γ(τ)dτ

)
for t ≥ t0, then, following [5, Proposition 2.1] and assuming that

∫ +∞
t0

ds
p(s) < +∞,

we obtain Γ(t) = p(t)
∫∞
t

1
p(s)ds as the unique solution satisfying the limit condition limt→+∞

Γ(t)
p(t) = 0. Hence

the general solution of (54) is g(t) = 1
Cp(t)+Γ(t) with 1

C = lim
t→+∞

p(t)g(t).

When β(t) ≡ β > 0 is fixed, fast convergence of the values is obtained in [5, Corollary 3.4] under the condition
γ(t)Γ(t) ≤ 3

2 . According to (54), in terms of g(t), this condition takes the equivalent form

g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
1

g(t)
= 1 +

d

dt

(
1

g

)
(t) ≤ 3

2
.

So, the condition γ(t)Γ(t) ≤ 3
2 becomes d

dt

(
1
g

)
(t) ≤ 1

2 , with the corresponding convergence rate of the values

(55) Φ(x(t))−min
H

Φ = O
(
g(t)2

)
.

This shows the obvious interest in formulating the damping coefficient in the form g(t)
(

1 + d
dt

(
1
g

)
(t)
)

. There

is no loss of generality, and the conditions for obtaining rapid convergence results can be formulated directly on
the data g. For example, let’s start with g(t) = α−1

t . From (54), we immediately obtain γ(t) = α
t . Then, (55)

shows that the well-known condition α ≥ 3 provides the O
(

1
t2

)
convergence rate of values (see [5, 39]).

Following [6, Theorem 1], when βk ≡ β > 0 is fixed, we obtain a fast convergence of the values under the

condition ∀k ≥ 1, t2k+1 − t2k ≤ tk+1 where tk := 1 +
∑+∞
i=k

∏i
j=k αj . This condition can be equivalently

formulated in terms of gk as

(56) gk ≥ 1−
(

gk
gk−1

)2

,

with the corresponding convergence rate of the values

(57) Φ(xk)−min
H

Φ = O
(
g2
k

)
.

Starting from gk = α−1
k , (54) immediately gives γk = α

k . Then (56)-(57) shows that the well-known condition

α ≥ 3 provides the O
(

1
k2

)
convergence rate of values, a classical result (see [8, 13, 21, 39]).

6. A class of Inexact inertial proximal algorithms

Motivated by the results above, we consider the proximal algorithms that can be obtained (when Φ is smooth)
by various temporal discretizations of the second-order evolution equation

(58) ẍ(t) + g(t)

(
1 +

d

dt

(
1

g

)
(t)

)
ẋ(t) + λ(t)∇Φ(x(t)) = 0.

We’ll see that the convergence analysis for the inertial proximal algorithm can be developed within this setting.
As a major advantage, the convergence results can be expressed directly on the parameters describing the
algorithm.

6.1. A parametrized family of proximal inertial algorithms. Let us start from the second-order evolution
equation (58) and introduce various temporal discretizations. When considering the implicit discretization for
the potential term, which gives proximal algorithms, we can take a general convex lower semicontinuous proper
function Φ. As novelty, we introduce a parameter θ ∈ [0, 1] which takes into account different discretizations of
the damping term: for k ≥ 1,

(xk+1 − 2xk + xk−1) + gk(1− θ)
(

1 +
1

gk+1
− 1

gk

)
(xk+1 − xk)

+gkθ

(
1 +

1

gk
− 1

gk−1

)
(xk − xk−1) + λk∂Φ(xk+1) 3 0.
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After dividing by gk, we obtain(
1

gk
+ (1− θ)

(
1 +

1

gk+1
− 1

gk

))
(xk+1 − xk)

−
(

1

gk
+ θ

(
1

gk−1
− 1

gk
− 1

))
(xk − xk−1) +

λk
gk
∂Φ(xk+1) 3 0.

Set, for k ≥ 1, θk := 1
gk

+ θ
(

1
gk−1

− 1
gk
− 1
)
, then

1

gk
+ (1− θ)

(
1 +

1

gk+1
− 1

gk

)
= 1 + θk+1.

So, we can reformulate the above algorithm in the condensed form

(59) xk+1 +
λk

gk(1 + θk+1)
∂Φ(xk+1) 3 xk +

θk
1 + θk+1

(xk − xk−1).

For numerical reasons, it is important to allow approximate computation of the proximal mappings, which are
not always available in close form. The following formulation of the algorithm (59) combines additive errors
with the use of ε-subgradients. It extends the framework of the Inertial Proximal algorithm studied in [11]. One
can consult [37] and [40] for related results concerning the introduction of errors in proximal based algorithms.

Inexact Inertial Proximal algorithm.

(IP)αk,βk,εk

{
yk = xk + αk(xk − xk−1)

xk+1 ≈ proxεkβkΦ(yk − rk),

αk := θk
1+θk+1

; rk := − 1
gk(1+θk+1)ek;

βk := λk
gk(1+θk+1) ; θk := 1

gk
+ θ

(
1

gk−1
− 1

gk
− 1
)
.

(60)

By definition of the inexact proximal operator, the iteration at step k of (IP)αk,βk,εk can be written as

1

βk
(yk − xk+1 − rk) ∈ ∂εkΦ(xk+1),

where ∂εkΦ(x) := {u ∈ H : Φ(x) ≤ Φ(y)− 〈u, y − x〉+ εk, ∀y ∈ H}.

6.2. Convergence rates. The objective of this section is to study the rapid convergence of values for sequences
generated by the algorithm (IP)αk,βk,εk .

Theorem 6.1. Consider the algorithm (IP)αk,βk,εk and suppose that 0 < gk ≤ 1, 0 ≤ θ ≤ 1, and the parameters

(gk), (λk) and θ satisfy the growth condition: there exists k1 ∈ N such that for all k ≥ k1

(Kgk,λk,θ) λk+1 ≤
gk+1

gk

θk+1 + 1

θk+2
λk.

Suppose that the sequences (rk) ⊂ H, (εk) ⊂ R+ satisfy the summability properties

(61)
∑

(1 + θk+1)‖rk‖ < +∞ and
∑

(1 + θk+1)
λkεk
gk

< +∞.

Then, for any sequence (xk) generated by the algorithm (IP)αk,βk,θ, we have
(i) Φ(xk)−minH Φ = O

(
gk−1

λk−1(1 + θk)

)
, as k → +∞;

(ii)
∑
k≥1 βk,θ (Φ(xk)−minH Φ) < +∞

where βk,θ := λk−1

gk−1
(1 + θk)− λk

gk
θk+1 is non-negative by (Kgk,λk,θ).

Proof. To make the presentation simpler, without loss of generality, we take k1 = 1. By definition of the
proximal operator, the iteration at step k of the algorithm (IP)αk,βk,θ writes

1

βk
(yk − xk+1 − rk) ∈ ∂εkΦ(xk+1).
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Equivalently, we have the following subdifferential inequalities: for any x ∈ H

(62) Φ(x) + εk ≥ Φ(xk+1) +
1

βk
(〈x− xk+1, yk − xk+1〉 − 〈x− xk+1, rk〉) .

Let us write successively inequality (62) at x = xk and x = x∗ ∈ argmin Φ. We obtain the two inequalities

Φ(xk) + εk ≥ Φ(xk+1) +
1

βk
(〈xk − xk+1, yk − xk+1〉 − 〈xk − xk+1, rk〉),(63)

Φ(x∗) + εk ≥ Φ(xk+1) +
1

βk
(〈x∗ − xk+1, yk − xk+1〉 − 〈x∗ − xk+1, rk〉).(64)

Using xk − xk+1 = xk − yk + yk − xk+1 in (63) and x∗ − xk+1 = x∗ − yk + yk − xk+1 in (64) we obtain

Φ(xk) + εk ≥ Φ(xk+1) +
1

βk
(〈xk − yk, yk − xk+1〉 − 〈xk − xk+1, rk〉+ ‖yk − xk+1‖2),(65)

Φ(x∗) + εk ≥ Φ(xk+1) +
1

βk
(〈x∗ − yk, yk − xk+1〉 − 〈x∗ − xk+1, rk〉+ ‖yk − xk+1‖2).(66)

Multiplying (65) by
θk
αk
− 1 ≥ 0, then adding (66), we derive that

εkθk
αk

+

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ θk

αk
(Φ(xk+1)− Φ(x∗)) +

θk
αkβk

‖yk − xk+1‖2

+
1

βk

〈
xk+1 − yk,

(
θk
αk
− 1

)
(yk − xk) + yk − x∗

〉
+

1

βk

〈(
θk
αk
− 1

)
(xk+1 − xk) + xk+1 − x∗, rk

〉
.(67)

By definition of yk we have(
θk
αk
− 1

)
(yk − xk) + yk =

(
θk
αk
− 1

)
αk(xk − xk−1) + xk + αk(xk − xk−1)

= xk + θk(xk − xk−1) = zk

where zk := xk + θk(xk − xk−1). Moreover(
θk
αk
− 1

)
(xk+1 − xk) + xk+1 = θk+1(xk+1 − xk) + xk+1 = zk+1.

We then deduce from (67) that

εkθk
αk

+

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ θk

αk
(Φ(xk+1)− Φ(x∗))

+
1

βk
〈xk+1 − yk, zk − x∗〉+

1

βk
〈rk, zk+1 − x∗〉+

θk
αkβk

‖yk − xk+1‖2.

Equivalently, after multiplication by βk

εkθkβk
αk

+ βk

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ βkθk

αk
(Φ(xk+1)− Φ(x∗))

+ 〈xk+1 − yk, zk − x∗〉+ 〈rk, zk+1 − x∗〉+
θk
αk
‖yk − xk+1‖2.(68)

To write (68) in a recursive form, we use zk+1 − zk = (1 + θk+1) (xk+1 − yk) . It ensues that

‖zk+1 − x∗‖2 = ‖zk − x∗‖2 + 2(1 + θk+1)〈xk+1 − yk, zk − x∗〉+ (1 + θk+1)2‖xk+1 − yk‖2,

which gives

〈xk+1 − yk, zk − x∗〉 =
1

2(1 + θk+1)

(
‖zk+1 − x∗‖2 − ‖zk − x∗‖2

)
− (1 + θk+1)

2
‖xk+1 − yk‖2.

Using this equality in (68), we obtain

εkθkβk
αk

+ βk

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) ≥ βkθk

αk
(Φ(xk+1)− Φ(x∗)) + 〈rk, zk+1 − x∗〉

+
1

2(1 + θk+1)

(
‖zk+1 − x∗‖2 − ‖zk − x∗‖2

)
+

(1 + θk+1)

2
‖xk+1 − yk‖2,
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where we have used θk
αk
− (1+θk+1)

2 = (1+θk+1)
2 (a consequence of the definition of αk). After multiplication by

(1 + θk+1), and neglecting the non-negative term (1+θk+1)
2 ‖xk+1 − yk‖2, we obtain

εkθkβk
αk

(1 + θk+1) + βk(1 + θk+1)

(
θk
αk
− 1

)
(Φ(xk)− Φ(x∗)) +

1

2
‖zk − x∗‖2

≥ βk(1 + θk+1)θk
αk

(Φ(xk+1)− Φ(x∗)) +
1

2
‖zk+1 − x∗‖2 + (1 + θk+1)〈rk, zk+1 − x∗〉.(69)

According to βk(1 + θk+1) = λk
gk

, and θk
αk
− 1 = θk+1 we have

βk(1 + θk+1)

(
θk
αk
− 1

)
=
λk
gk
θk+1.

Hence, (69) can be equivalently written as

λk
gk

(1 + θk+1)εk +
λk
gk
θk+1(Φ(xk)− Φ(x∗)) +

1

2
‖zk − x∗‖2

≥ λk
gk

(1 + θk+1)(Φ(xk+1)− Φ(x∗)) +
1

2
‖zk+1 − x∗‖2 + (1 + θk+1)〈rk, zk+1 − x∗〉.

This naturally leads us to introduce the sequence (Ek)

(70) Ek =
λk−1

gk−1
(1 + θk)(Φ(xk)− Φ(x∗)) +

1

2
‖zk − x∗‖2.

Thus, we have obtained the following inequality

Ek +
λk
gk

(1 + θk+1)εk ≥ Ek+1 +

(
λk−1

gk−1
(1 + θk)− λk

gk
θk+1

)
(Φ(xk)−min

H
Φ)

+(1 + θk+1)〈rk, zk+1 − x∗〉.(71)

Under condition (Kgk,λk,θ) we have λk−1

gk−1
(1 + θk)− λk

gk
θk+1 ≥ 0. Hence,

(72) Ek+1 ≤ Ek + (1 + θk+1)‖rk‖ · ‖zk+1 − x∗‖+
λk
gk

(1 + θk+1)εk.

By summing inequalities (72) from j = 1 to k − 1, we obtain

(73) Ek ≤ E1 +

k−1∑
j=1

(1 + θj+1)‖rj‖ · ‖zj+1 − x∗‖+

k−1∑
j=1

(1 + θj+1)
λjεj
gj

.

Since Ek ≥ 1
2‖zk − x

∗‖2 and A :=
∑

(1 + θj+1)
λjεj
gj

< +∞, we deduce that

(74) ‖zk − x∗‖2 ≤ 2E1 + 2A+

k∑
j=1

2(1 + θj)‖rj−1‖ · ‖zj − x∗‖.

Let us apply the Gronwall Lemma 8.4 with aj = ‖zj−x∗‖, bj = 2(1+θj)‖rj−1‖, and c =
√

2(E1 +A). According
to assumption (61), we obtain

‖zk − x∗‖ ≤ c+

∞∑
j=1

2(1 + θj)‖rj−1‖ < +∞.

Returning to (73), we deduce from the convergence of the series B :=
∑

(1 + θj+1)‖rj‖ that

(75) Ek ≤ C := E1 +B (c+B) +A < +∞.
By definition of Ek, we obtain, for all k ≥ k1

λk−1

gk−1
(1 + θk)(Φ(xk)− Φ(x∗)) ≤ Ek ≤ C,

which gives the claim. The last item follows directly by summing (71). �

Depending on the choice of the parameter θ, we obtain a specific algorithm, with its convergence rate. Let’s
consider the following cases of particular interest:

a) Case θ = 1 corresponds to the explicit discretization of the damping term:

(76) (xk+1 − 2xk + xk−1) + gk

(
1 +

1

gk
− 1

gk−1

)
(xk − xk−1) + βk∂εkΦ(xk+1) 3 − gkgk−1

1− gk−1
ek,
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since, for θ = 1 in the formula giving the parameters, we have

θk :=
1

gk
+

(
1

gk−1
− 1

gk
− 1

)
=

1

gk−1
− 1, θk+1 + 1 =

1

gk
and βk = λk.

So, the formula (Kgk,λk,θ) in Theorem 6.1 becomes

(77) βk+1 ≤
gk+1

gk

1
gk

1
gk+1

− 1
βk =

gk+1

g2
k( 1
gk+1

− 1)
βk.

So we recover the same growth condition as in [11, Theorem 4]. Let us now compare the convergence rates.
Theorem 6.1 gives

Φ(xk)−min
H

Φ = O
(

gk−1

λk−1(1 + θk)

)
.

From θk + 1 = 1
gk−1

we get gk−1

λk−1(1+θk) =
g2k−1

λk−1
= 1

t2kβk−1
, and then we recover the same convergence rate as in

[11, Theorem 4].

b) Case θ = 0 corresponds to the implicit discretization of the damping term

(78) (xk+1 − 2xk + xk−1) + gk

(
1 +

1

gk+1
− 1

αk

)
(xk+1 − xk) + βk∂Φ(xk+1) 3 − gkgk−1

1− gk−1
ek.

We have θk = 1
gk

, αk = gk+1

gk(1+gk+1) and βk = λkgk+1

gk(1+gk+1) , which by Theorem 6.1 give that, under the condition

(Kgk,λk,θ), i.e., λk+1 ≤ (1+gk+1)gk+2

gk
λk, we have

Φ(xk)−min
H

Φ = O
(

gkgk−1

λk−1(1 + gk)

)
, as k → +∞.

Consider the case gk = α−1
k−1 . This gives αk = k−1

k+α−1 , which corresponds to a variant of the Nesterov acceleration

scheme considered by several authors (see [8], [21], [39]). An elementary calculation shows that the growth
condition above and the corresponding convergence rate give results comparable to those of the explicit case.

7. Perspectives

In general, the presence of oscillations is not a desirable property for optimization problems. In this respect, in
order to improve the inertial methods, various strategies have recently been developed. It would be interesting
to combine them with time scaling. Let us list some of them.

• To overcome the presence of wild oscillations (which may occur for ill-conditioned minimization prob-
lems), one has to consider a damping which takes into account the geometry of Φ. In this direction, the
Hessian-driven damping

(79) ẍ(t) +
α

t
ẋ(t) +∇2Φ(x(t)ẋ(t) +∇Φ(x(t)) = 0,

combines the Nesterov acceleration with the Newton method, see [2], [14]. At first glance, the presence
of the Hessian may seem like a numerical difficulty. The crucial point is that the Hessian comes in
the form ∇2Φ(x(t))ẋ(t), which is equal to the derivative of ∇Φ(x(t)). As a consequence, the temporal
discretization of this dynamics provides first-order algorithms. Time scaling in this context would lead
to consider the Hessian-driven damping dynamics

ẍ(t) + γ(t)ẋ(t) + β(t)∇2Φ(x(t)ẋ(t) + b(t)∇Φ(x(t)) = 0.

• To avoid oscillations, while retaining the advantage of the inertial effect, the restarting method considers
the damping coefficient as a control variable. The strategy is to maintain a high speed along the orbit
by stopping the dynamic when the speed begins to decrease. After stopping, restart with zero speed,
see Su-Boyd-Candès (2016). As well, time scaling in this framework is an interesting subject to study.

• In [22] Ghisi-Gobbino-Haraux consider t 7→ γ(t) as a pulsating function that alternates big and small
values in a suitable way. They prove the effectiveness of the method for quadratic minimization, and
apply it to ordinary differential equations and partial differential equations of hyperbolic type.

• In the above approaches, the damping is considered as a control variable. In this respect, it would
be interesting to consider the damping as a closed-loop control, as opposed to the open-loop approach
developed in most of the papers devoted to inertial methods in optimization.
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• In our study of the continuous dynamic, the potential function Φ to minimize has been assumed to
be continuously differentiable. Indeed, the entire study can be performed to deal with non-smooth
functions, simply replacing Φ with its Moreau envelopes. This operation preserves the optimal value
and optimal set, and leads to relaxed proximal algorithms whose numerical complexity is the same.
Without time scaling, this approach has been recently developed by Attouch-Peypouquet [12].

8. Appendix

In what follows, we prove the existence and the uniqueness of a global solution to the Cauchy problem associated
with the evolution system (IGS)γ,β,g. We will use the following lemma.

Lemma 8.1. ([25, Prop. 6.2.1]) Let F : I×X → X where I = [t0,+∞[ and X is a Banach space. Assume that

(i) for every x ∈ X , F (·, x) ∈ L1
loc(I,X );

(ii) for a.e. t ∈ I, for every x, y ∈ X ,

‖F (t, x)− F (t, y)‖ ≤ K(t, ‖x‖+ ‖y‖)‖x− y‖, where K(·, r) ∈ L1
loc(I),∀r ∈ R+;

(iii) for a.e. t ∈ I, for every x ∈ X ,

‖F (t, x)‖ ≤ P (t)(1 + ‖x‖), where P ∈ L1
loc(I).

Then, for every s ∈ I, x ∈ X , there exists a unique solution us,x ∈W 1,1
loc (I,X ) of the Cauchy problem:

u̇s,x(t) = F (t, us,x(t)) for a.e. t ∈ I, and us,x(s) = x.

For simplicity, we give a short proof in the case where the gradient of Φ is Lipschitz continuous.

Theorem 8.2. Suppose that Φ : H → R is convex, C1, with Lipschitz continuous gradient ∇Φ. Assume that
β, γ : [t0,+∞[→ R∗+ and g : [t0,+∞[→ H are locally integrable. Then, the evolution system (IGS)γ,β,g, with

initial condition (x(t0), ẋ(t0)) = (x0, ẋ0) ∈ H ×H, admits a unique global solution x : [t0,+∞[→ H.

Proof. To prove the existence and uniqueness for (IGS)γ,β,g with initial condition (x(t0), ẋ(t0)) = (x0, ẋ0), we

formulate it in the phase space. Set I = [t0,+∞[, and define F : I ×H×H → H by

F (t, x, y) = (y, g(t)− β(t)∇Φ(x)− γ(t)y).

Set u(t) = (x(t), y(t)). The Cauchy problem for (IGS)γ,β,g can be equivalently formulated as

(80)

{
u̇(t) = F (t, u(t)) for a.e. t ∈ I,
u(t0) = (x0, ẋ0).

Let us verify the three conditions of Lemma 8.1.

(i) For each (x, y) ∈ H ×H, F (·, x, y) ∈ L1
loc(I,H), since the functions g, β and γ are so.

(ii) Denote by L the Lipschitz constant of ∇Φ. For every u = (x, y), u′ = (x′, y′) ∈ H ×H and a.e. t ∈ I
‖F (t, u)− F (t, u′)‖ = ‖y − y′‖+ ‖β(t)(∇Φ(x)−∇Φ(x′)) + γ(t)(y − y′)‖

≤ (1 + Lβ(t) + γ(t)) (‖x− x′‖+ ‖y − y′‖)
= (1 + Lβ(t) + γ(t))‖(x, y)− (x′, y′)‖

and then the second condition is verified, since the real function t 7→ 1 + Lβ(t) + γ(t) belongs to L1
loc(I,R).

(iii) For every u = (x, y) ∈ H ×H and a.e. t ∈ I
‖F (t, u)‖ = ‖y‖+ ‖β(t)(∇Φ(x)−∇Φ(x0)) + β(t)∇Φ(x0) + γ(t)y + g(t)‖

≤ (1 + γ(t))‖y‖+ Lβ(t)‖x− x0‖+ β(t)‖∇Φ(x0)‖+ ‖g(t)‖
≤ max (1 + γ(t), Lβ(t), β(L‖x0‖+ ‖∇Φ(x0)‖+ ‖g(t)‖) (1 + ‖x‖+ ‖y‖)
= r(t)(1 + ‖u‖),

where r(t) = max (1 + γ(t), Lβ(t), β(L‖x0‖+ ‖∇Φ(x0)‖+ ‖g(t)‖). Since r(·) ∈ L1
loc(I,R), we conclude that all

the conditions of Lemma 8.1 are satisfied. So, there exists a unique global solution of (IGS)γ,β,g satisfying the

initial condition (x(t0), ẋ(t0)) = (x0, ẋ0). �

Lemma 8.3. ([30]) Let S be a nonempty subset of H and let x : [t0,+∞[→ H. Assume that
(i) for every z ∈ S, limt→∞ ‖x(t)− z‖ exists;
(ii) every weak sequential cluster point of x(t), as t→∞, belongs to S.
Then x(t) converges weakly as t→∞ to a point in S.

Lemma 8.4 ([8, Lemma 5.14]). Let (ak) be a sequence of nonnegative numbers such that, for all k ∈ N,

a2
k ≤ c2 +

∑k
j=1 bjaj, where (bj) is a summable sequence of nonnegative numbers, and c ≥ 0. Then, for all

k ∈ N, ak ≤ c+
∑∞
j=1 bj .
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