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ABSTRACT
We explore a separable resolution-of-the-identity (RI) formalism built on quadratures over limited sets of real-space points designed for all-
electron calculations. Our implementation preserves, in particular, the use of common atomic orbitals and their related auxiliary basis sets.
The setup of the present density fitting scheme, i.e., the calculation of the system specific quadrature weights, scales cubically with respect to
the system size. Extensive accuracy tests are presented for the Fock exchange and MP2 correlation energies. We finally demonstrate random
phase approximation (RPA) correlation energy calculations with a scaling that is cubic in terms of operations, quadratic in memory, with a
small crossover with respect to our standard RI-RPA implementation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090605

I. INTRODUCTION

The resolution-of-the-identity (RI)1–7 stands as a central tech-
nique in quantum chemistry, relying on the expansion of �n�m
codensities over an auxiliary atomic basis set {β} that scales lin-
early with the number of atoms. Even though the auxiliary basis
sets are typically three times larger than the corresponding atomic
orbital (AO) basis sets supporting the �n Hartree-Fock or Kohn-
Sham molecular orbitals, this represents a considerable saving both
in terms of memory and number of operations to be performed,
which comes at the price of a moderate accuracy loss.

While RI was introduced initially to facilitate the calculation of
2-electron 4-center (mn|kl) Coulomb integrals, operators that find
an exact expression in the product space between the occupied and
virtual eigenstates can also be expressed more compactly using aux-
iliary bases. As such, the independent-electron density-density sus-
ceptibility χ0(r, r′;ω) is of central importance to the present study.
In particular, the scaling of the related random phase approximation
(RPA) approach,8–10 a popular low-order perturbative approach to
correlation energies beyond density functional approximations, can
be reduced from O(N6) to O(N4).11

The computational efficiency and accuracy of RI techniques
strongly depend on the scheme adopted to build the appropri-
ate coefficients expressing the �n�m codensities on the auxiliary
basis. The original density-fitting (RI-SVS) approach2,4,5 expresses
these coefficients as a direct overlap ⟨�m�n|β⟩, requiring the cal-
culation of the sparse ⟨αα′|β⟩ coefficients, with {α} being the AO
basis set used to expand the molecular orbitals �n. The now widely
adopted Coulomb-fitting (RI-V) approximation3,6 requires, on the
other hand, the calculation of the denser 3-center Coulomb inte-
grals (αα′|β), displaying much less sparsity than ⟨αα′|β⟩ inte-
grals due to the long-range nature of the Coulomb operator. The
Coulomb-fitting formalism is known to be more accurate than the
density-fitting scheme for auxiliary basis sets of similar sizes,12,13

bringing to the standard issue of the trade-off between accuracy
and computational/memory costs. The use of short-range or atten-
uated Coulomb operators,14–17 or corrective techniques such as
“multipole-preserving” constraints to the density-fitting scheme,4,13

allows one to tune the accuracy-to-cost ratio between these two
standard RI approximations.

In conjunction with other powerful techniques, such as the
Laplace transform (LT),18 exploiting the sparsity of the RI-SVS
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density-fitting ⟨αα′|β⟩ coefficients in the limit of large systems was
shown to allow cubic-scaling RPA calculations.19 As a trade-off
between accuracy and efficiency, a Coulomb-attenuated variation of
the Coulomb-fitting (RI-V) RPA was recently explored to obtain a
low-scaling formulation,20 exploiting further the decay properties in
real-space (RS) of the Laplace-transformed “pseudo” density matri-
ces expressed in the AO basis.21–24 The efficiency of this latter family
of approaches depends on the electronic properties of the system of
interest, which are different in nature from the sparsity associated
with specific RI formalisms.

In this study, we explore an alternative approach for reduc-
ing computational and memory loads by assessing on a large set of
molecules the merits of a separable RI formalism relying on a den-
sity fitting scheme over compact sets of real-space points {rk}. Our
approach preserves the use of standard Gaussian atomic orbitals and
auxiliary basis sets for all-electron calculations, targeting the accu-
racy of the Coulomb-fitting (RI-V) formalism. The setup of the fit-
ting procedure scales cubically with system size. The accuracy of our
approach is first validated by an extensive benchmark of the Fock
exchange and MP2 correlation energies over a large set of molecules.
Combined with the Laplace transform technique, and following the
so-called space-time approach for calculating the susceptibility oper-
ator,25,26 the calculation of the RPA correlation energy within the
present real-space quadrature approach is shown to scale cubically
in terms of operations and quadratically in terms of memory, with-
out invoking any system dependent sparsity or weak localization
properties.27 The accuracy of the present real-space RI-RPA formal-
ism is further shown to match that of the standard quartic-scaling
Coulomb-fitting RI-RPA calculations for a large set of molecules
including the oligoacenes, C60, and a larger octapeptide angiotensin
II molecule (146 atoms including 71 H atoms) proposed by Eshuis
and co-workers in the early days of RI-RPA implementations.11

II. THEORY
In this section, we briefly outline the standard RI-V and RI-

SVS approximations, introducing the notations used throughout the
paper. We then discuss separable RIs and present our specific imple-
mentation preserving the use of standard atomic and auxiliary basis
sets. The present approach relies on weighted real-space δ(r − rk)-
functions to express the density fitting coefficients, relating codensi-
ties to auxiliary basis functions through real-space quadratures. The
scheme to optimize the distribution of rk and related weights is pre-
sented and compared to other real-space quadrature formalisms. We
demonstrate, in particular, that the computational cost associated
with the setup of the present RI approach scales cubically with the
system size. We show then how such a separable RI allows us to
obtain cubic-scaling RPA with low crossover with respect to stan-
dard quartic RI-RPA formalism when combined with the Laplace
transform technique. We conclude this section by presenting the
technical details and parameters adopted in this study to perform
the calculations illustrating the accuracy and scaling properties of
the present approach.

A. Standard resolution of the identity
The RI approximation1–7 relies on the expansion of molecular

orbital codensities ��′ over an auxiliary basis set {β}, namely,

�(r)�′(r) ≃ ∑
β
Fβ(��′) β(r)

∶= F(��′; r). (1)

The fit F is realized through an ensemble of measures {Fβ}, map-
ping the ��′ product-space to the β auxiliary subspace defined so as
to scale linearly with the number of atoms. Typical examples of such
procedures are the standard RI-V and RI-SVS fitting approaches that
use, respectively,

FV
β (��′) =∑

β′
[V−1]ββ′ (β′∣��′), (2)

FSVS
β (��′) =∑

β′
[S−1]ββ′ ⟨β′∣��′⟩, (3)

where V and S represent the Coulomb (β|β′) and overlap ⟨β|β′⟩
matrices associated with the auxiliary basis set, respectively, and
[X−1]ββ′ denotes the (β, β′) entry of the X inverse matrix. To
explicitly define our ⟨⋅|⋅⟩ and (⋅|⋅) notations, we write

(β∣��′) =∬ drdr′
β(r)�(r′)�′(r′)

∣r − r′∣ ,

⟨β∣��′⟩ = ∫ dr β(r)�(r)�′(r).

As shown in Ref. 13, both fitting techniques can be combined, pre-
serving the Coulomb-fitting RI-V approach for low angular momen-
tum auxiliary β atomic orbitals. As emphasized here above, the num-
ber of ⟨β|αα′⟩ overlap matrix elements in the RI-SVS approximation
scales linearly with system size, offering a first strategy for reducing
computational cost and memory, thanks to sparsity. On the con-
trary, the number of (β|αα′) Coulomb integrals scales quadratically
so that sparsity, or sparse tensor algebra, is difficult to exploit within
the more accurate Coulomb-fitting (RI-V) approach.

B. Separable RI
A separable expression for the RI can be obtained through a set

of separable measures {⟨ f k|} on the codensities, namely,

Fβ(��′) =∑
k
[M]βk ⟨ fk∣��′⟩

=∑
k
[M]βk ⟨ fk∣�⟩ ⟨ fk∣�′⟩, (4)

where the coefficients of M have yet to be defined. Trivially sepa-
rable and generic measures are provided by δ(r − rk) distributions
centered on a set of Nk real-space locations {rk}. Working with real-
space (RS) measures, the FRS density fitting procedure then takes the
simple form

FRS
β (��′) =∑

k
[M]βk⟨δ(r − rk)∣��′⟩

=∑
k
[M]βk �(rk) �′(rk). (5)

The clear advantage of the separability is that the two molecular
orbitals ��′, originally entangled in, e.g., the FV

β (��′) RI-V fitting
coefficients through the (β|��′) Coulomb integrals, are now disen-
tangled. This will prove crucial in the calculation of linear-response
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or perturbation theory related quantities where summations over
occupied/virtual pairs have to be performed as shown below in the
case of the calculation of the RPA correlation energy. We empha-
size, however, that, while relying on discrete values of the molecular
orbitals in real-space, the present approach remains a RI in the sense
that physical continuous quantities such as the codensities, linear-
response operators (e.g., susceptibility), etc., are defined everywhere
in space in terms of the β auxiliary basis functions.

Amongst existing formalisms adopting real-space quadrature
strategies, several studies focused directly on 2-electron Coulomb
integrals. The chain-of-sphere (COSX) seminumerical approach to
exchange integrals,28 building on Friesner’s pioneering pseudospec-
tral approach,29 develops only one of the two codensities forming
2-electron Coulomb integrals over a real-space grid. Alternatively,
the Least Square Tensor Hypercontraction (LS-THC) formalism30

fully develops the 2-electron integrals as a quadrature over real-space
grid points, with an O(N4) computational complexity associated
with the establishment of the quadrature.

On the other hand, the Interpolative Separable Density Fitting
(ISDF) from Lu and co-workers provides a O(N3 log(N)) separa-
ble fit tensor by using Fourier transform and random projection
techniques to select the rk points and define the corresponding aux-
iliary densities,31,32 with a recent extension to cubic scaling RPA33

and a proof-of-concept application to a simple model system. This
work adopts as well a separable form for the fit tensor [Eq. (5)]
through separable measures along real-space positions, but differs
in the way the real-space locations rk and their associated weights
[M]βk are constructed, leading to a O(N3) quadrature determina-
tion process. We preserve, in particular, the use of the standard
auxiliary basis sets optimized by the quantum chemistry commu-
nity (e.g., cc-pVTZ-RI), targeting the well-documented accuracy of
the RI-V associated with such well known basis sets. Furthermore,
the flexibility provided by combining self-adjusted real-space grid
points with standard auxiliary basis sets allows us to improve com-
putational efficiency while keeping the response operators limited in
size for subsequent calculations. The accuracy and efficiency of our
approach is further benchmarked on a large number of molecular
systems.

C. Quadrature weight determination
Assuming that the rk locations are known (see below), the

determination of the [M]βk coefficients in Eq. (5) is obtained from
the following minimization condition:

argmin
M
∑
ρ,β

(FRS
β (ρ) −FV

β (ρ))
2
. (6)

Namely, we aim to equate the fitting functions of the present RI-
RS approach with those of the Coulomb fitting RI-V scheme. The
accuracy of the present RI-RS approach is thus targeting that of the
RI-V approach. The set of test codensities {ρ} typically spans the
{α} ⊗ {α} product-space, even though it can be adjusted depend-
ing on the problem being addressed. Interestingly, the present fitting
scheme allows us to recover at a reduced cost the otherwise O(N4)
LS-THC factorization (see the supplementary material). The solu-
tion of Eq. (6) can indeed be achieved with an advantageous O(N3)
computational complexity, as demonstrated now.

In order to detail our fitting procedure, we adopt the follow-
ing matrix notations: [D]kρ = ρ(rk) and [F]βρ = FV

β (ρ). Due to the
localization properties of the atomic orbitals, the number of atomic
orbital products scales linearly with system size, and thus, the num-
ber Nρ of test codensities in the test set can be considered ∝Nα. As a
result, the matrices D (Nk ×Nρ) and F (Nβ ×Nρ) as well as the matrix
M (Nβ × Nk) of Eq. (5) are all O(N2) tensors. Using the Frobenius
norm ||⋅||F , the fit equation (6) can then be formulated as

argmin
M

∣∣M ⋅D − F∣∣
F
, (7)

which leads to the standard least-square estimator

M = F ⋅D† ⋅ (D ⋅D†)−1 (8)

involving only matrix multiplications and inversions. Computation
of (D ⋅ D†)−1 could prove problematic if done explicitly. The term
D ⋅D† is positive, but has not guaranteed to be definite. On the other
hand, due to the large number Nρ of test codensities, application
of the standard Singular Value Decomposition (SVD) technique to
extract the pseudoinverse based estimator leads to rather significant
prefactors to the otherwise O(N3) pseudoinverse procedure. We
take a side approach by combining simple balancing and Tikhonov
L2 regularization.34 We first balance the problem by normalizing the
rows of D, writing D̃ = d ⋅ D, where d is a diagonal matrix and the
diagonal terms [D̃ ⋅ D̃†]kk = 1. The pseudoinverse is then calculated
as

(D ⋅D†)−1 ≃ d ⋅ (D̃ ⋅ D̃† + �I)−1 ⋅ d,

where the L2 regularization parameter � is adjusted to a small value
to maintain definiteness of the problem and ensure numerical stabil-
ity of the inverse. We identified the value � = 4 × 10−7 as a reasonable
parameter for double precision arithmetic and kept this value for all
the results presented in this work. The resulting final least square
estimator is thus

M = F ⋅ D̃† ⋅ (D̃ ⋅ D̃† + �I)−1 ⋅ d, (9)

which can be computed efficiently through standard numerical
inversion techniques. We emphasize that while computing the
[M]βk optimal coefficients, there is no need for keeping the 3-center
Coulomb integrals or the associated FV

β (αα′) coefficients: these can
be computed once on-the-fly and discarded immediately, avoiding
thus any extra memory consumption. In other terms, we never store
explicitly the F and D matrices but only their F ⋅ D† and D ⋅ D†

(Nk × Nk) resulting products.

D. Real-space grids’ generation
In the present approach, the optimized {rk} sets are generated

for isolated atoms, once for every chemical species and their asso-
ciated atomic basis sets. These atomic grids are then duplicated
according to the molecule geometry to form the system-specific
quadrature points. With Eq. (9) defining the optimal M for a given
{rk} set, locations are adjusted so as to minimize the fit error for
single atom test codensities, using the Coulomb metric

argmin
{rk}

∑
ρ
∣∣FRS(ρ) −FV(ρ)∣∣

2

V
. (10)
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For the sake of keeping the optimization process relatively simple,
we structured the {rk} set over four different shells, each one repli-
cated with a different number of radii. The only parameters of the
optimization problem are thus the number of radii and their length.
The four base shells taken here and denoted A1, A2, A3, and B1 are
subsets of the Lebedev quadrature grids35 (denoted here Li for the
Lebedev grid of order i) in the sense that

L3 = A1,
L5 = A1 ∪ A2,
L7 = A1 ∪ A2 ∪ A3,
L11 = A1 ∪ A2 ∪ A3 ∪ B1.

The determination of the number of radii associated with each shell
has been done through experimentation until satisfying configura-
tions were obtained. Base shells are provided in Tables S4–S7 of
the supplementary material, and the resulting atomic quadrature
grids for atoms H, C, N, and O in Tables S8–S11 of the supple-
mentary material. Optimizing freely all rk locations and not only the
radii may lead to significant improvement with respect to the grid
size/accuracy ratio. Providing such grids falls, however, outside the
scope of the present work.

E. Technical details
Benchmark Hartree-Fock and MP2 calculations were per-

formed on a standard set of 28 medium size organic molecules
containing unsaturated aliphatic and aromatic hydrocarbons or het-
erocycles, aldehydes, ketones, amides, and nucleobases. Such a test
set was originally proposed by Thiel and co-workers36 for refer-
ence optical excitations calculations within, e.g., coupled cluster,36,37

Time Dependent Density Functional Theory (TD-DFT)38 and more
recently Bethe-Salpeter39–41 formalisms. We adopt the MP2/6-31Gd
geometries supplied in Ref. 36.

The assessment of the scaling properties of the present real-
space quadrature RPA implementation is further performed on
the oligoacene family from benzene to hexacene using the B3LYP
cc-pVTZ geometries available in Ref. 42, complemented by the
decacene, recently observed,43 and the (hypothetical) octacene, both
relaxed at the B3LYP/6-31Gd level. Finally, we consider the C60
fullerene (B3LYP/6-311Gd geometry provided in the supplemen-
tary material) and the octapeptide angiotensin II molecule originally
proposed by Eshuis and co-workers.11

All calculations are performed with input molecular orbitals
generated at the (spherical) cc-pVTZ44 Hartree-Fock level using
the NWChem package.45 The corresponding (Cartesian) cc-pVTZ-
RI auxiliary basis46 was adopted in all resolution-of-the-identity
(RI) approaches (RI-SVS, RI-V, and real-space quadrature RI-RS).
For the sake of comparison, Hartree-Fock exchange and MP2 cor-
relation energies were calculated exactly, namely, without any RI
approximation, using the NWChem package as well. All calculations
are performed without any frozen-core approximation.

The set {ρ} of test codensities can be adjusted depending on the
needs, for example, to match a specific subset of the wave function
codensities. In the rest of this work, we adopt the following settings:

{ρ} = ({α}⊗ {α′}l≤2) ∪ {β} (11)

for both the single atom {rk} set problem and the full system opti-
mization of M coefficients. Limiting the second {α′} atomic orbital

(AO) basis set to s, p and d orbitals allowed to speed up the compu-
tation while no significant change in accuracy was observed. In the
minimization process, the weight on the s and p AO orbitals have
also been stressed with factors 4 and 2, respectively, so as to increase
focus on the low-order multipole charge and dipole component of
the codensities. Inclusion of the {β} auxiliary orbitals within the test
set slightly improves regularity of the errors. Such a choice is relevant
for the atoms of the present set. The use of products of Kohn-Sham
atomic orbitals spanning, e.g., reduced energy range test sets may
lead to more accurate fits.

We adopt real-space {rk} sets that contain typically 320 points
per C, N, and O atom and 180 for hydrogen. This size corresponds
to about 3 times the size of the corresponding cc-pVTZ-RI auxiliary
basis set. In this study, we do not seek to look for minimal grid sizes,
showing here below that excellent accuracy and a small crossover
between RI-RS and RI-V can already be obtained with such param-
eters. Details about the optimized real-space {rk} sets, optimized for
the cc-pVTZ and cc-pVTZ-RI Gaussian basis sets following Eqs. (6)
and (10), are provided in the supplementary material.

The Laplace transform (LT) RPA correlation energy calcu-
lations are based on time and frequency grids described in the
Appendix together with convergence tests for the benzene correla-
tion energy, other molecules being reported in the supplementary
material. The present RI calculations, including the standard RI-V,
RI-SVS and the newly developed real-space RI-RS, with and without
Laplace transform, are performed with a specific pilot code build-
ing on the Coulomb integral libraries implemented in the FIESTA
code.13,39,47

III. RESULTS
A. Assessing the accuracy of the optimized
real-space grid: Fock exchange and MP2
correlation energies

As a first accuracy test of the present real-space RI implemen-
tation, namely, to assess the quality of the codensity fits, we calculate
both the Fock exchange energy,

Exx = −
occ
∑
ij
(ij∣ij), (12)

written here for a spin compensated system, and the Møller-Plesset
(MP2) correlation energy,

EMP2
C = −

occ
∑
ij

virt
∑
ab

(ia∣ jb)[2(ia∣ jb) − (ib∣ ja)]
εa + εb − εi − εj

. (13)

The Fock exchange and MP2 energies are calculated using the RI
expressions of the 2-electron integrals, namely,

(ia∣ jb) RI−X= ∑
ββ′

FX
β(ia)Vββ′FX

β′( jb), (14)

where X = SVS, V, or RS depending on the selected scheme. Since we
want to specifically address the accuracy of the fitting technique, we
avoid at that stage using extra approximations such as Laplace trans-
form techniques. Also, contrary to the {β} Gaussian auxiliary basis,
the atomic {rk} set is not rotationally invariant. Consequently, all
the RI-RS results reported in this section are mean values obtained
over 40 random orientations of each molecule, dressed with an
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FIG. 1. Fock exchange energy error as compared to exact calculations for var-
ious RI approximations (RI-RS, RI-V, and RI-SVS). Errors are given in micro-
Hartree (µHa) per electron. For RI-SVS data (red triangles), we adopt a log scale
(gray shaded area). The blue circles and error bars denote the RI-RS total Fock
exchange energy mean error and its associated standard deviation, respectively,
computed over 40 random orientations for each molecule of the set (see text). The
molecules are ordered from the left to right following the original order provided in
Ref. 36 and in Table S1 of the supplementary material.

“error bar” that represents the standard deviation of the correspond-
ing distribution when the molecules are rotated.

The results, namely, the mean errors as compared to exact cal-
culations for the 28 Thiel’s set molecules, are provided in Fig. 1 for
the Fock exchange energy calculations. Clearly, the {rk} sets adopted
in this study provide mean errors that are of the same magnitude as
the one from the targeted RI-V approximation, both of which being
significantly smaller than those obtained with the RI-SVS scheme.
We recall that our real-space quadrature was optimized to repro-
duce the coefficients FV

β of the RI-V formalism [see Eq. (6)] so that it
should not be expected that the RI-RS approach yields errors smaller
than the RI-V.

The standard deviation per molecule with respect to orienta-
tion, as reported in Fig. 1 under the form of an error bar, is found
to be well within the corresponding mean error. This ensures an
accurate description, regardless of the chosen orientation of the
molecule. Along with the per molecule data of Fig. 1 that focus on
the sensitivity of our approach with respect to orientation, we also
provide the global statistics across the whole Thiel’s molecular set
in Table I. More precisely, the statistical analysis is performed over

TABLE I. Fock exchange and MP2 correlation error global statistics: global mean
error and the corresponding standard deviation σ (both in µHa/electron) provided
by the different RI techniques over the full Thiel’s molecular set. Mean signed and
absolute errors are the same in the present case.

Fock exchange MP2 correlation

RI-SVS RI-V RI-RS RI-V RI-RS

Err 95.0 3.8 6.5 1.1 1.6
σ 58.5 0.7 1.1 0.6 0.7

the 40 random orientations for each of the 28 molecules, namely,
averaging over a 1000 calculations on medium size molecules repre-
senting a large variety of molecular families. In particular, we can see
that the global mean errors and standard deviations of the RI-V and
RI-RS approaches are comparable.

We now turn to the MP2 correlation energies (Fig. 2), focus-
ing on the comparison between the present RI-RS and the targeted
RI-V formalism that we adopt in the following rather than the RI-
SVS scheme for the sake of accuracy. Again, we observe that the
RI-RS quadrature does not degrade significantly the targeted RI-V
MP2 correlation energies, with mean errors remaining lower than
a few µHartree per electron. Similarly, the corresponding standard
deviations remain small. We provide in the inset of Fig. 2 the actual
distribution of errors obtained for a 1000 independent random ori-
entations of the benzene molecule, replicating the corresponding
standard deviation error bar. We also report the global statistics
obtained over the whole molecular set in Table I. Again, we observe
comparable performances for RI-V and RI-RS approaches.

We can conclude from the present set of benchmark calcula-
tions that the real-space representation (RI-RS), with the adopted
{rk} distribution size, reproduces accurately the RI-V Coulomb inte-
grals involving codensities (products �i�j in the Fock exchange
expression) and transition densities (products �i�a in the MP2
energy formula) at the core of all explicitly correlated perturbative
techniques.

B. Laplace transformed RPA
We now turn to the central application of the present study,

namely, the calculation of the correlation energy within the random

FIG. 2. MP2 correlation energy error, in micro-Hartree (µHa) per electron, as
compared to exact calculations for the standard Coulomb-fitting (RI-V) and real-
space quadrature (RI-RS) approximations. The blue circles and error bars denote
the RI-RS total MP2 energy mean error and its associated standard deviation,
respectively, computed over 40 random orientations for each molecule of the set
(see text). Inset: details of benzene RI-RS MP2 correlation energy error (µHa)
over a 1000 random orientations with the corresponding standard deviation (blue
segment). Reference values (no-RI) and errors are provided in Table S1 of the
supplementary material.
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phase approximation (RPA).10,48,49 We show, in particular, that the
real-space quadrature RI-RS, combined with the standard Laplace
transform (LT) approach,18 allows reducing the scaling with system
size down to O(N3), instead of the O(N4) scaling of standard RI-
RPA implementations,11 without invoking any weak localization or
system dependent sparsity arguments.

Following seminal papers,50–52 we start with the adiabatic-
connection fluctuation-dissipation theorem (ACFDT) formula to
the RPA correlation energy,

ERPA
C = 1

2π ∫
∞

0
dω Tr[ln(1 − χ0(iω) ⋅ v) + χ0(iω) ⋅ v], (15)

where v is the bare Coulomb operator and χ0(iω) is the
independent-electron density-density susceptibility at imaginary
frequency, that is, for closed-shell systems

χ0(r, r′; iω) = 2∑
ja

�∗j (r)�a(r)�∗a (r′)�j(r′)
iω − (εa − εj)

+ cc (16)

RI≃ ∑
ββ′
β(r)β′(r′)

⎡⎢⎢⎢⎢⎣
2∑

ja

Fβ(�j�a)Fβ′(�a�j)
iω− (εa − εj)

+ cc
⎤⎥⎥⎥⎥⎦

(17)

∶= ∑
ββ′
β(r)β′(r′)[χRI0 (iω)]ββ′ , (18)

with (j, a) indexing (occupied/virtual) molecular eigenstates. The
construction of the χRI0 (iω) matrix according to Eq. (17) clearly
scales as O(N4).

To discuss such scaling properties, we compare first in Fig. 3
the total computing time for calculating the RI-RPA correlation
energy within the standard Coulomb-fitting approach (RI-V) and
the novel RI-RS formalism, using the acene family from benzene to

FIG. 3. Total walltime for the calculation of the RPA correlation energy over the
acene family (benzene to decacene) using several RI schemes. We compare,
in particular, the standard Coulomb fitting RI-V approach, the real-space quadra-
ture RI-RS scheme, with and without the Laplace transform (LT) technique. The
abscissa provides the size of the (cc-pVTZ) AO basis used to expand the molecular
orbitals. Both axes are displayed in log scale. The crossovers between the vari-
ous RI formalisms are indicated by vertical short segments with the corresponding
molecules. Inset: same data points without log scales. Walltimes are given for a
run on 64 processors described in Ref. 53.

decacene as a test set. Calculations are performed using the cc-pVTZ
AO and cc-pVTZ-RI auxiliary basis sets, together with a 12-point
quadrature rule for the imaginary frequency axis integration (see the
Appendix). The corresponding correlation energies are provided in
the Appendix for benzene and in the supplementary material for
other acenes, demonstrating again the accuracy of the real-space
approach as compared to the targeted RI-V approach. We further
provide for the sake of illustration in the supplementary material
the dissociation curve for the benzene dimer (cofacial or sand-
wich configuration) within the RI-V and RI-RS RPA formalisms,
demonstrating that the roughness of the potential energy surface
associated with the real-space {rk} distribution is marginal even as
compared to the small binding energy typical of van der Waals
interactions.

We observe that the RI-RS scheme walltime becomes smaller
than that of our RI-V implementation for acenes larger than naph-
thalene. We emphasize, however, that at that stage, both RI-V and
RI-RS techniques offer the very same O(N4) scaling, differing only
by the expression of the Fβ(�j�a) coefficients. This crossover is
related to the effort coming from the O(N4) computation of the full
Fβ(�j�a) coefficient set. Without any assumption on the sparsity,
the RI-RS scaling relies only on dense algebra techniques and can
thus be implemented efficiently.

In order to reduce this scaling, one thus needs to avoid explicit
calculation of the full Fβ(�j�a) coefficient set. We achieve this
by evaluating the independent-electron susceptibility directly in the
real-space representation before transforming it back to the normal
auxiliary basis representation,

[χRI0 (iω)]ββ′ =∑
kk′

Mβk χ0(rk, rk′ ; iω) Mβ′k′ . (19)

The second step consists in applying the well known Laplace trans-
form (LT) technique18 so as to first compute χ0(rk, rk′ ; iτ) in the
time domain where its expression is separable25,26 and transform it
back to the frequency domain, using quadrature rules to form χ0(rk,
rk′ ; iω) [Eq. (20)]. Such a scheme allows us to work with factorized
expression of χ0(rk, rk′ ; iτ) [Eq. (21)],

χ0(rk, rk′ ; iω) =∑
τ
cτ(ω)χ0(rk, rk′ ; iτ), (20)

χ0(rk, rk′ ; iτ) = G<(rk, rk′ ; iτ)G>(rk, rk′ ;−iτ), (21)

introducing the propagators of the occupied states and of the unoc-
cupied states, respectively,

G<(rk, rk′ ; iτ) = i∑
j
�j(rk)�j(rk′)e

εjτ, (22)

G>(rk, rk′ ;−iτ) = −i∑
a
�a(rk)�a(rk′)e

−εaτ, (23)

with τ > 0 and the zero of the occupied/virtual electronic energy
levels taken at the Fermi level. As a result of the decoupling of occu-
pied and virtual states, the G< and G> propagators can be obtained
withO(N3) operations. Furthermore, the entire [χRI0 (iω)]ββ′ matrix
stems from a combination of Hadamard product [Eq. (21)] and
standard matrix operations [Eqs. (19) and (20)], yielding an overall
O(N3) process.

We can now report in Fig. 3 the full calculation walltime asso-
ciated with the RI-RS+LT approach. Laplace transform quadratures
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for each of the 12 imaginary frequencies are performed with a grid of
18 imaginary times, yielding fully converged RPA energies (see the
Appendix). With such running parameters, the RI-RS+LT approach
becomes more efficient than the standard RI-V formalism for sys-
tems larger than anthracene, outperforming the RI-RS approach for
molecules larger than pentacene.

To better assess the scaling properties associated with the reso-
lution of Eq. (15) within standard and Laplace transformed RI-RPA
approaches, we single out the corresponding computation walltimes
in Fig. 4. We assume, in particular, that fitted codensities coeffi-
cients are already available in the case of standard approaches so that
standard RI-V and RI-RS computational loads are equivalent. To
probe larger systems, the test set is extended with the C60 fullerene
and the original octapeptide angiotensin II molecule proposed by
Eshuis and co-workers.11 For the sake of information, the RI-RS
setup and the Laplace transform RI-RS RPA calculation walltimes
for the angiotensin II molecule are 418 s and 300 s, respectively.

Without accounting for the fitting of codensity calculation, the
Laplace transform RI-RS RPA algorithm supersedes the standard
RI-RS (or RI-V) RPA approach for systems larger than hexacene.
This delayed crossover (as compared to Fig. 3) can be imputed to
both the Laplace transform overheads and the fact that with the {rk}
real space point set presently used, [χ0(iω)]kk′ matrices are roughly
3 × 3 times bigger than [χ0(iω)]ββ′ ones, leading to a 33 prefactor in
the linear algebra operations. This last fact demonstrates the impor-
tance of operating on small {rk} quadrature sets. The additional cost
coming from obtaining the fitting parameters Fβ(�j�a) only adds
to the cost of the no-Laplace-transform RI approaches, bringing the
overall crossover at the level of a pentacene molecule, as exemplified
in Fig. 4. We finally observe O(N3.5) and O(N2.5) scaling laws (see
dotted lines), indicating that the expected asymptotic O(N4) and
O(N3) behaviors are not yet reached for the tested molecule sizes.

FIG. 4. Partial walltimes associated with the RI-RS RPA correlation energy cal-
culations with and without Laplace transforms (LTs), removing the extra cost
associated with obtaining the Fβ(�j�a) coefficients in the case of the no-LT

approach.53 The test covers the acene family plus the C60 fullerene and octapep-
tide angiotensin II molecule. The abscissa provides the size of the (cc-pVTZ) AO
basis used to expand the molecular orbitals. Both axes are displayed in log scale.
Dotted and dashed lines are a schematic guide to the eye for scaling properties.
Walltimes are given for a run on 64 processors described in Ref. 53.

We conclude this section by mentioning that the total walltime for
the (RI-RS+LT) calculation of the cc-pVTZ RPA correlation energy
for C60 takes less than 6500 s on a single processor.

IV. DISCUSSION
The present implementation can be compared to the real-

space-grid imaginary-time approach introduced originally in the
framework of GW calculations by Rojas and co-workers25 or
the recent real-space-grid imaginary-time RPA implementation by
Kaltak and co-workers.26 In such studies, the real-space grid was
obtained as the Fourier transform of the planewave basis used to
expend the Bloch states in a pseudopotential or Projector Aug-
mented Wave (PAW) framework for periodic systems. Alterna-
tively, the work of Moussa54 demonstrated as well cubic scal-
ing for a random-phase approximation with the second-order
screened exchange formalism, exploiting a real-space grid for both
the primary and auxiliary basis sets, combined with nested low-
rank approximations to energy denominators. The present RI-RS
approach, while targeting all-electron atomic-basis calculations, pre-
serves the use of the standard representation of molecular orbitals,
related codensities, and response operators in terms of atomic
orbitals and their associated auxiliary bases, adopting further stan-
dard Laplace transform techniques.

A central issue in real-space representations, in particular,
when performing all-electron calculations, concerns the size of the
real-space grid that strongly influences the crossover with standard
RI implementations and the memory requirements. This is all the
more important in the present study since we aim to calculate and
store intermediate nonlocal operators such as the χ0(rk, rk′ ; iτ) sus-
ceptibilities, and not only local functions such as the charge density
or the DFT exchange-correlation potential and energy density. Since
our real-space {rk} distribution must serve in a quadrature reproduc-
ing codensities involving molecular orbital products, one may expect
that it should be as large as standard grids55 used to represent the
charge density in DFT codes. Taking as an example the Gaussian09
code, the default DFT grid involves about 7000 grid points per atom
after pruning. This is consistent with the recommended “Grid3” in
the original paper by Trutler and Alrichs56 yielding 5980 pruned
points for elements from Li to Ne and that serves as the default in
Turbomole.

Such standard DFT grid sizes are much larger than the number
of real-space points used in the present RS approach, roughly 180 for
hydrogen and 320 per non-H atom (C, N, and O). The present {rk}
sets were optimized so that the RI-RS scheme faithfully reproduces
the standard RI-V density fitting results. Each set is composed of a
number of different shells of high symmetry points, each one asso-
ciated with a set of different radii. This minimization process results
in a nonuniform {rk} distribution of real-space points. As empha-
sized above, we did not seek to explore here in great details the set
size to accuracy ratio, for our goal was to demonstrate that one can
find an accurate real-space representation yielding a crossover with
standard techniques for small system sizes. Smaller optimized sets of
real-space points may certainly be explored in the future.

Another advantage is that the RI-RS+LT RPA scheme lies in
the related O(N2) memory footprint associated with the underlying
matrix algebra. In the case of the C60 molecule, the relevant sizes are
1800 spherical AOs, 6060 Cartesian auxiliary orbitals, and 19 140
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real-space quadrature points. On a single processor run, the setup
of the RI-RS [Eq. (6)] peaks at about 8 Gb of memory while leaving
at exit a memory footprint below 1Gb for the Mβk coefficients. Fur-
thermore, each χ0(rk, rk′ ; iτ) requires about 3 Gb. In regards to a par-
allelization scheme oriented towards central processing unit (CPU)
efficiency, one can benefit from storing all the (nτ) χ0(rk, rk′ ; iτ)
in memory.

As emphasized here above, the present cubic scaling in terms of
floating point operations, and quadratic scaling in terms of memory
load, was obtained without invoking weak localization nor system
dependent sparsity considerations. In particular, our approach does
not require the use of the density-fitting (RI-SVS) approach with
its sparse 3-center overlap matrix tensor. However, another class of
localization properties, based on the exponential decay in real-space
of the one-body Green’s function in gaped systems,57 can be easily
combined with the present approach. These localization properties,
which strongly depend on the electronic properties of the system of
interest, are reminiscent of the low-scaling techniques based on local
AO formulations in the treatment of MP221,22 or RPA20,23,24 corre-
lation energies.58 Such additional considerations, together with the
stochastic approach by Neuhauser and co-workers,59 may be com-
bined and explored in the future to seek further reduction of the
memory and computing time.

V. CONCLUSION
We have introduced a separable RI based on a real-space

quadrature of codensities. The efficiency of our approach relies on
setting up an optimal and compact distribution of real-space points
{rk} allowing excellent accuracy, as exemplified in the case of the
Fock exchange energy and further the MP2 and RPA correlation
energies, taking as a test case a large set of molecular systems. Our
approach preserves the use of standard Gaussian atomic orbitals
and related auxiliary basis sets for all-electron calculations, the real-
space set of points being used as an intermediate representation. We
demonstrate that such an approach leads to calculating RPA corre-
lation energies with a cubic scaling in terms of operations, quadratic
in memory, without invoking any localization nor sparsity consid-
erations that may be combined in the future. The limited number
of needed real-space points allows early crossovers with traditional
Coulomb-fitting RI-RPA calculations for systems as small as naph-
thalene or anthracene (Fig. 3). The application of such a real-space
separable RI to other explicitly correlated techniques, such as the
GW and Bethe-Salpeter equation (BSE) formalisms for calculating
charged and neutral electronic excitations in molecular systems,60 is
currently under exploration. The slow convergence of RPA and GW
correlation energy with basis size also invites to explore in a more
systematic way sets of real-space points adapted to larger auxiliary
basis sets.

SUPPLEMENTARY MATERIAL

See supplementary material for (I) MP2 and RPA correla-
tion energies, (II) details of the real-space {rk} set of points, (III)
geometries for the octacene and decacene (B3LYP 6-31Gd) and
the C60 fullerene (B3LYP 6-311Gd), (IV) relation with the LS-THC
approach estimator, and (V) RPA potential energy curve for the
benzene dimer.
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APPENDIX: IMAGINARY FREQUENCY AND TIME
QUADRATURES

We briefly outline the imaginary frequency and time quadra-
ture strategies adopted for calculating the RPA correlation energy
and for setting the Laplace transform. Relying on the pole struc-
ture of the susceptibility [Eq. (16)], we seek for a quadrature that
reproduces the contribution of all possible poles in the imaginary
axis integral, using the exact relation

∫
∞

0
dω[ 1

E − iω
+

1
E + iω

] = π, (A1)

where the pole energy E can vary from Emin, i.e., the electronic energy
gap, to Emax determined by the maximum transition energy between
the occupied and virtual energy levels. Even if an optimal solu-
tion of this problem could be, in principle, determined through the
minimax fitting approach usually applied to Laplace transforms,26

we prefer here a somewhat numerically simpler least square for-
mulation, namely, we seek for nω frequencies zk and weights wk
corresponding to

argmin
wk ,zk

⎡⎢⎢⎢⎢⎣
∫

ln(Emax)

ln(Emin)
du ∣∣∑

k
wk[

1
eu − izk

+
1

eu + izk
] − π∣∣

2⎤⎥⎥⎥⎥⎦
.

Here, the log scale has been preferred so as to obtain uniform oscil-
lations of the error as a function of the integration variable (see
Fig. 5), since integrating directly over the energy would favor larger

FIG. 5. Imaginary axis quadrature error [see Eq. (A1)] for nω ∈ {6, 8, 10, 12},
Emin = 1, and Emax = 1500.
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TABLE II. RPA correlation energy (hartree) for the benzene molecule. The various RI schemes are compared. Calculations
are performed at the (spherical) cc-pVTZ level with the corresponding (Cartesian) cc-pVTZ-RI auxiliary basis. The number of
imaginary frequencies in the RPA integration is given by nω. The number of times in the Laplace transform (LT) approach is
given by nτ.

RI-RS+LT RI-RS+LT

nω RI-SVS RI-V RI-RS (nτ = 1.5 × nω) (nτ = 2 × nω)

6 −1.25169968 −1.25148948 −1.25143651 −1.25148267 −1.25143097
8 −1.25171657 −1.25150621 −1.25145324 −1.25145455 −1.25145327
10 −1.25171791 −1.25150754 −1.25145456 −1.25145456 −1.25145456
12 −1.25171791 −1.25150754 −1.25145456 −1.25145456 −1.25145456

errors in the small energy range.26 Under such conditions, minimax
and least square approaches should provide consistent results. The
zk frequencies and their corresponding wk weights are used for the
integration reported in Eq. (15). Convergence tests are provided in
Table II for benzene, other acenes being dealt with in the supplemen-
tary material. Concerning benzene, our reference RI-V RPA corre-
lation energy falls within less than 8 meV/molecule (0.19 kcal/mol)
as compared to that obtained with other codes61,62 with identified
differences in the treatment of preceding Hartree-Fock calculations
(RI vs no-RI) and use of the auxiliary basis (Cartesian vs spherical).
Together with potential differences in the treatment of the energy
integration, these variations result in very small energy differences
(see Table S2 of the supplementary material for details).

For the Laplace transform, the time grid {τp, p ∈ [1, nτ]} is set
accordingly so as to minimize the Laplace transform errors for the
specific quadrature (zk, wk) points obtained above, namely,

argmin
w

p
k ,τp

⎡⎢⎢⎢⎢⎣
∑
k
∫

ln(Emax)

ln(Emin)
du ∣∣∑

p
w

p
ke
−τp eu

− [ 1
eu − izk

+
1

eu + izk
]∣∣

2⎤⎥⎥⎥⎥⎦
,

where the weights {wp
k} depend on the targeted zk frequency. Again,

the log scale is used so as to allow a regular sampling of the error
oscillations. We draw the readers’ attention on the fact that the least
square approach is clearly at advantage over the minimax fitting
approach here since defining an alternant is not possible in the case
of simultaneous fits (one fit for each zk frequency). The results pro-
vided here below for the benzene RPA correlation energy demon-
strates already <10−4 Ha convergence for grids containing as few as
nω = 6 imaginary frequencies and nτ = 9 times. For nω = 12 and nτ
= 18, the parameters used in this manuscript for actual calculations,
the correlation energy is clearly converged.
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