Proton affinities of amino group functionalizing 2D and 3D boron compounds

Josep M Oliva-Enrich, Stéphane Humbel, Juan Z Dávalos, Josef Holub, Drahomír Hnyk

- To cite this version:

Josep M Oliva-Enrich, Stéphane Humbel, Juan Z Dávalos, Josef Holub, Drahomír Hnyk. Proton affinities of amino group functionalizing 2D and 3D boron compounds. Afinidad, 2018, 75 (584), pp.260-266. hal-02138836

HAL Id: hal-02138836

https://hal.science/hal-02138836

Submitted on 24 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PROTON AFFINITIES OF AMINO GROUP FUNCTIONALIZING 2D AND 3D BORON COMPOUNDS

Josep M. Oliva-Enrich ${ }^{(\mathrm{a})}$, Stephane Humbel ${ }^{(\mathrm{b})}$, Juan Z. Dávalos ${ }^{(\mathrm{a})}$, Josef Holub ${ }^{(\mathrm{c})}$, Drahomír Hnyk ${ }^{(\mathrm{c})}$

(a) Instituto de Química-Física "Rocasolano", CSIC, 28006 Madrid, Spain
(b) Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
(c) Institute of Inorganic Chemistry of the Academy of Sciences, 25068 Husinec-Rez, Czech Republic

Abstract

We report quantum-chemical computations of Proton Affinities (PA) of icosahedral amino boranes, carboranes and Co-containing metallacarboranes with a relative error of $\sim 2 \%$ - when experimental data available - by means of the B3LYP and BP86 functionals. Use of larger basis sets for simple systems such as $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2}$, and borazine $\left(\mathrm{B}_{3} \mathrm{H}_{6} \mathrm{~N}_{3}\right)$ reduces the error to $\sim 0.5 \%$ indicating the validity of these functionals for these computations and prediction of PA for unavailable experimental data on amino-derived (car)boranes and metalla(car)boranes. The computed PA show that, from an electronic structure point of view, when substituting an exo H atom by an NH_{2} group in $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{(2-)}$, $\mathrm{CB}_{11} \mathrm{H}_{12}{ }^{()}$, (ortho, meta, para) $-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, and the metallacarborane [3-Co(1,2-C $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{()}$ \equiv COSAN the most similar system to be compared with is the anion $\mathrm{NH}_{2}-\mathrm{BH}_{3}{ }^{()}-$ computed $\mathrm{PA}(\mathrm{B} 3 \mathrm{LYP} / \mathrm{cc}-\mathrm{pVTZ})=1505 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}-$ rather than methylamine $\mathrm{CH}_{3} \mathrm{NH}_{2}$ or borazine, the two latter with experimental PA of 900 and $803 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ respectively. The largest PA for a given isomer correspond, following this order, to: $1-\mathrm{NH}_{2}-\mathrm{B}_{12} \mathrm{H}_{11}{ }^{(2)}$, ${ }^{(}{ }^{1} \mathrm{BH}_{3} \mathrm{NH}_{2}$, 12- $\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{(-)}$, cisoid $8-\mathrm{NH}_{2}-\mathrm{COSAN}$, transoid $9-\mathrm{NH}_{2}-\mathrm{COSAN}$, $9-\mathrm{NH}_{2}-$ $1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}, 9-\mathrm{NH}_{2}-1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$, and $2-\mathrm{NH}_{2}-1,12-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$. The rule for larger PA applies for isomers with the NH_{2} groups farthest aways from (non-metal) carborane C(cage) atoms. Pyramidalization energy computation shows an enhanced facility for planarization of the amino group in cisoid $8-\mathrm{NH}_{2}-\mathrm{COSAN}$ as compared to cisoid $1-\mathrm{NH}_{2}-$ COSAN.

1. Introduction

The chemistry of polyhedral heteroboranes [1] and metallaheteroboranes [2] is, in many aspects, orthogonal to organic chemistry; namely, transferability of named reaction mechanisms, such as those shown in the list of organic reactions ($\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2, \ldots$), about a thousand [3], do not have the equivalence or parallel in polyhedral heteroborane chemistry. Therefore, tabulation of thermochemical properties for these systems is important in order to assess and predict reaction mechanisms when combinining heteroboranes with organic molecules or even biomolecules $[4,5,6]$. Indeed, the electronegativity (χ) of B versus H is reversed when compared with $\mathrm{C}: ~ \chi(\mathrm{~B})<\chi(\mathrm{H})<\chi(\mathrm{C})$, and therefore we should consider the exo H atoms in polyhedral boranes as hydrides. A recent example of significant changes in thermochemical character, is the predicted superacidity when substituting the benzene ring by an ortho-carborane cage in phthalic acid [7].

A very useful thermochemical property in gas-phase chemistry is the proton affinity (PA), namely, the attraction force of a system A towards a proton H^{+}or vice versa; we should note that even He can be protonated [8]. Tabulation of PA for many systems have been published in the literature [9]. According to the IUPAC, the proton affinity (PA) is defined as the negative of the enthalpy change in the gas phase reaction ($\mathrm{PA}=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$) between a proton and the chemical species concerned, to give the conjugate acid of that species, as shown below

$$
\mathrm{A}+\mathrm{H}^{+} \rightarrow \mathrm{AH}^{+}
$$

In our case here, the A system corresponds to the following amino-derived systems: ammonia NH_{3}, methylamine $\mathrm{CH}_{3} \mathrm{NH}_{2}$, boranamine $\mathrm{BH}_{2} \mathrm{NH}_{2},{ }^{(}{ }^{\circ} \mathrm{BH}_{3} \mathrm{NH}_{2}$, borazine $\mathrm{B}_{3} \mathrm{H}_{6} \mathrm{~N}_{3}$ - the equivalent of benzene by substituting every two consecutive C atoms by B and N and the following icosahedral (car)boranes, (ortho, meta, para)-carborane and Cobalt metallacarboranes: 1-($\left.\mathrm{NH}_{2}\right)-\mathrm{B}_{12} \mathrm{H}_{11}{ }^{(2)}$, all symmetry-unique (SU) isomers in n - $\left(\mathrm{NH}_{2}\right)$ $\left.\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{(}\right), n-\left(\mathrm{NH}_{2}\right)-(o, m, p)$-carboranes and cisoid and transoid $\left[\left(n-\mathrm{NH}_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)-\right.$ $\left.3,3^{\prime}-\mathrm{Co}\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]^{()}$. The notation for the latter will be simplified as $n-\mathrm{NH}_{2}-\mathrm{COSAN}$
[10]. The enumeration of cage atoms in the icosahedral carborane cages and the cobaltacarboranes is shown in Figure 1, and the optimized structures of the molecules included in this work are displayed in Table 1 thorugh Table 7. Thus, for ortho, meta and para-carboranes - Figure 1a, Figure 1b and Figure 1c - the C positions are (1,2), $(1,7)$ and $(1,12)$ respectively. As shown in Table 1 through Table 7 the position of the NH_{2} group substituting exo H atoms lead in many cases to more than one positional isomer for a given structure.

2. Computational Methods

The electronic structure computations for the determination of PA where carried out with the program Gaussian09 [11] and the B3LYP [12, 13] and BP86 [12, 14, 15] hybrid Hartree-Fock/DFT functionals for the non-metal systems and with the BP86 functional only for all isomers derived from substituting one exo H atom by an amino group NH_{2}. For selected $1-\mathrm{NH}_{2}-\mathrm{COSAN}$ and $8-\mathrm{NH}_{2}$-COSAN isomers of cisoid and transoid Co complexes we also used the B3LYP functional for comparative purposes. In the computations we used a double- ζ basis set plus a set of polarization functions for non-H atoms, known as $6-31 \mathrm{G}^{*}$ [16]. For the Co complexes we used the same basis set ($6-31 G^{*}$) for (H, B, C, N) atoms and an all-electron basis set for Co, known as augmented Wachter basis set [17], without the f functions: this basis set is defined as AE1. For the computation of delocalization energies, we used the block-localized wavefunction (BLW) formalism [18] with a modified version of the GAMESS program [19] at either the Hartree-Fock (HF) or the BP86 densityfunctional level of theory and the same AE1 basis set.

3. Results and discussion

3.1 Proton Affinities (PA)

Table 1 shows the electronic structure computations for simple amino compounds and the corresponding protonated species. We have included borazine, the benzene equivalent with alternative $\mathrm{B}-\mathrm{N}$ bonds in the hexagonal skeleton, given the interesting feature that protonation of borazine on the B atom gives H_{2} and the radical $\left.\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{5}{ }^{(}\right)$[20]. This is supported by our computations. As shown in Table 1, the computed PA compare well when
experimental data are available: a difference of $15 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ reduces to $5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, from a double-zeta $\left(6-31 G^{*}\right)$ to triple-zeta basis (cc-pVTZ) and the B3LYP functional. Since our goal is to predict PA for amino compounds derived from boranes, carboranes and metallacarboranes, for which experimental data are not avaliable, we need to mimic the closest possible system when comparing amino-boron compounds. Therefore we computed the PA for boranamine $\mathrm{BH}_{2} \mathrm{NH}_{2}$ and the ${ }^{(} \mathrm{BH}_{3} \mathrm{NH}_{2}$ anion, whose protonated species in the latter is the charge-transfer complex ${ }^{()} \mathrm{BH}_{3} \mathrm{NH}_{2}{ }^{(+)}$. Table 1 shows that the PA for $\mathrm{BH}_{2} \mathrm{NH}_{2}$ and ${ }^{(} \mathrm{BH}_{3} \mathrm{NH}_{2}$ are $767 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $1538 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ respectively (B3LYP/6-31G*). The PA of $\mathrm{BH}_{2} \mathrm{NH}_{2}$ is lower than in NH_{3}, but increases considerably - doubles! - in ${ }^{\circ} \mathrm{BH}_{3} \mathrm{NH}_{2}$. As for borazine, protonation on N atom gives a PA of $815 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ (double-zeta) which lowers to $804 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ (triple-zeta) very close to the experimental value of $803 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ [21].

Turning now to polyhedral (car)boranes, substitution of an H atom by an amino group in the icosahedral dianion $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{(2)}$, gives the single isomer $1-\mathrm{NH}_{2}-\mathrm{B}_{12} \mathrm{H}_{12}{ }^{(2)}$, with a computed PA of $1694 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, a shown in Table 2. This value is closer to the PA of ${ }^{(}{ }^{(} \mathrm{BH}_{3} \mathrm{NH}_{2}$ with $\mathrm{PA}=1538 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ as compared to the PA values in $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2}$, $\mathrm{BH}_{2} \mathrm{NH}_{2}$ and Borazine, as shown in Table 1. In Table 2 we show the PA for the four isomers derived from substituting one H atom by an NH_{2} group in the icosahedral anion $\left.\mathrm{CB}_{11} \mathrm{H}_{12}{ }^{(}\right): 1-\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{()}$, $2-\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{()}$, $7-\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{()}$and $12-\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{(}$. Interestingly, the larger the PA when the farther the NH_{2} group from C atom in position 1:

$$
\mathrm{PA}(1)<\mathrm{PA}(2)<\mathrm{PA}(7)<\mathrm{PA}(12)
$$

with a difference of $\mathrm{PA}(12)-\mathrm{PA}(1)=110 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, and $\mathrm{PA}(12)=\mathrm{PA}\left(12-\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{\circ}\right)$ $=1350 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, which is lower than $\mathrm{PA}\left(1-\mathrm{NH}_{2}-\mathrm{B}_{12} \mathrm{H}_{12}{ }^{(2)}\right)$ by $344 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Therefore the substitution of a B atom by a C atom in the cage, leading to a decrease of charge from -2 to -1 , are indications of lower PA.

As for icosahedral ortho, meta and para-carboranes, in Table 3 we display the different computed $\mathrm{PA}\left(\mathrm{PA}^{\mathrm{o}}, \mathrm{PA}^{\mathrm{m}}, \mathrm{PA}^{\mathrm{p}}\right)$ for the isomers derived from substituting one H atom by an NH_{2} group. Given the point-group symmetries of ortho $\left(\mathrm{C}_{2 \mathrm{v}}\right)$, meta $\left(\mathrm{C}_{2 \mathrm{v}}\right)$ and para $\left(\mathrm{D}_{5 \mathrm{~d}}\right)$
carboranes, we have five, five and two different isomers, respectively; see also Figure 1 for figuring out the symmetry-unique (SU) isomers according to the cage atom labels. As for ortho carborane, the PA increases the farther the NH_{2} group from the two C atoms in the cage, as in the previous case for the amino isomers of $\mathrm{CB}_{11} \mathrm{H}_{12}{ }^{\mathrm{O}}$:

$$
\mathrm{PA}^{\mathrm{o}}(1)<\mathrm{PA}^{\mathrm{o}}(3)<\mathrm{PA}^{\mathrm{o}}(4)<\mathrm{PA}^{\mathrm{o}}(8)<\mathrm{PA}^{\mathrm{o}}(9)
$$

with a difference $\mathrm{PA}^{\circ}(9)-\mathrm{PA}^{\circ}(1)=165 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, with the largest PA for the $9-\mathrm{NH}_{2}-1,2-$ $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}$ isomer: $\mathrm{PA}^{\mathrm{o}}(9)=975 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, larger than in NH_{3}, but much lower than in the 1-$\mathrm{NH}_{2}-\mathrm{B}_{12} \mathrm{H}_{11}{ }^{(2)}$ and $12-\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{()}$molecules.

As regards to meta-carboranes, Table 4, we observe a similar behaviour for the amino isomers, with increasing PA as the NH_{2} group is located farther from the C atoms, thus:

$$
\mathrm{PA}^{\mathrm{m}}(1)<\mathrm{PA}^{\mathrm{m}}(2)<\mathrm{PA}^{\mathrm{m}}(4)<\mathrm{PA}^{\mathrm{m}}(5)<\mathrm{PA}^{\mathrm{m}}(9)
$$

with a difference $\mathrm{PA}^{\mathrm{m}}(9)-\mathrm{PA}^{\mathrm{m}}(1)=104 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Finally, for para-carborane, the two amino isomers follow tha same rule, with $\mathrm{PA}^{\mathrm{p}}(1)<\mathrm{PA}^{\mathrm{p}}(2)$, with a difference of $\mathrm{PA}^{\mathrm{p}}(2)-$ $\mathrm{PA}^{\mathrm{p}}(1)=63 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, as shown in Table 5 . As for the largest PA for a given amino positional isomer, we have:

$$
\mathrm{PA}^{\circ}(9)=975>\mathrm{PA}^{\mathrm{m}}(9)=967>\mathrm{PA}^{\mathrm{p}}(2)=921 \text {, all values in } \mathrm{kJ} \cdot \mathrm{~mol}^{-1} .
$$

We now turn to the amino-metallacarboranes, when an H atom is substituted by an NH_{2} group in one of the ligands in the $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{()} \equiv$ COSAN complex [22] for all possible regioisomers, whose protonation on N gives the zwitterion $\left[\left(n-\mathrm{NH}_{3}{ }^{+}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)-3,3\right.$ '-$\left.\mathrm{Co}\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]^{()} \equiv n-\mathrm{NH}_{3}{ }^{+}-\mathrm{COSAN}$. The atom labels of this well-known complex are depicted in Figure 1d, with the transoid structure, with the two C atoms in one ligand farthest aways from the two C atoms of the other ligand by a rotation of 180°, with respect to the cisoid structure. The structure transoid $\left[3-\mathrm{Co}-\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]$ has $\mathrm{C}_{2 \mathrm{~h}}$ symmetry and therefore the following positions are equivalent for every ligand: $\mathrm{C}(1) \equiv \mathrm{C}(2), \mathrm{B}(4) \equiv \mathrm{B}(7)$,
$\mathrm{B}(5) \equiv \mathrm{B}(11), \mathrm{B}(9) \equiv \mathrm{B}(12)$, as shown in Figure 1 d . Thus only seven NH_{2} isomers must be considered: $C(1), B(4), B(5), B(6), B(8), B(9)$ and $B(10)$. The results reported for these complexes - transoid and cisoid - correspond to BP86/6-31G* quantum-chemical computations [14]. In Table 6 we report the PA for the seven NH_{2} isomers from transoid $\left[\left(n-\mathrm{NH}_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)-3,3{ }^{\prime}-\mathrm{Co}\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]^{()} \equiv n-\mathrm{NH}_{2}-\mathrm{COSAN}$. We should emphasize that $8-\mathrm{NH}_{3}{ }^{(+)}$-COSAN has been synthesized [23]. Note that in all these complexes the Co atom bears a formal charge of $\mathrm{Co}^{(3+)}$, since every capped cage ligand bears a formal charge of $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)^{(2)}$, and the total charge of the system is therefore $q=-1$. As shown in Table 6 , the PA follow the order:

$$
\mathrm{PA}^{\text {trans }}(6)<\mathrm{PA}^{\text {trans }}(1)<\mathrm{PA}^{\text {trans }}(5)<\mathrm{PA}^{\text {trans }}(10)<\mathrm{PA}^{\text {trans }}(4)<\mathrm{PA}^{\text {trans }}(8)<\mathrm{PA}^{\text {trans }}(9)
$$

the lowest PA corresponds to the NH_{2} group attached to $\mathrm{B}(6)$, and the largest PA to NH_{2} in positions $B(8)$ and $B(9)$. The difference between maximum and minimum is $\mathrm{PA}^{\text {trans }}(9)$ $\mathrm{PA}^{\text {trans }}(6)=78 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

As regards to the cisoid structures of the complex $\left[\left(n-\mathrm{NH}_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)-3,3\right.$ ' $-\mathrm{Co}(1,2-$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]^{()}$, in Table 7 we show the computed PA for the different isomers. The structure cisoid [3-Co- $\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}$] has only C_{2} symmetry, which relates one ligand with the other, without atom equivalences in the same ligand and therefore we have to take into account all, resulting in eleven NH_{2} isomers: $\mathrm{C}(1), \mathrm{C}(2), \mathrm{B}(4), \mathrm{B}(5), \mathrm{B}(6), \mathrm{B}(7), \mathrm{B}(8), \mathrm{B}(9)$, $\mathrm{B}(10), \mathrm{B}(11)$ and $\mathrm{B}(12)$, with the following order relation for PA
$\mathrm{PA}^{\mathrm{cis}}(1)<\mathrm{PA}^{\mathrm{cis}}(2)<\mathrm{PA}^{\mathrm{cis}}(6)<\mathrm{PA}^{\mathrm{cis}}(5)<\mathrm{PA}^{\mathrm{cis}}(11)<\mathrm{PA}^{\mathrm{cis}}(4)=\mathrm{PA}^{\mathrm{cis}}(10)<\mathrm{PA}^{\mathrm{cis}}(9)<$ $\mathrm{PA}^{\mathrm{cis}}(7)=\mathrm{PA}^{\mathrm{cis}}(12)<\mathrm{PA}^{\mathrm{cis}}(8)$

The largest PA corresponds to NH_{2} in position $\mathrm{B}(8)$ and the lowest for position $\mathrm{C}(1)$, with a difference of $\mathrm{PA}^{\mathrm{cis}}(8)-\mathrm{PA}^{\mathrm{cis}}(1)=178 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

Comparison of PA from transoid and cisoid structures, shows that the largest PA corresponds to the cisoid $\left[\left(8-\mathrm{NH}_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)-3,3 \text { ' }-\mathrm{Co}\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]^{()} \equiv 8-\mathrm{NH}_{2}-\mathrm{COSAN}$
with $\mathrm{PA}=1315 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Analysis of Table 1 through Table 7 shows that for the icosahedral carboranes, the farthest the NH_{2} group from the C (cage) atom, the larger the PA. As for the cisoid and transoid $n-\mathrm{NH}_{2}-\mathrm{COSAN}$ complexes, we can clearly see the largest PA for cisoid $8-\mathrm{NH}_{2}-\mathrm{COSAN}$, with $\mathrm{PA}\left(\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}\right)=1315 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

3.2 Delocalization energies

In this section we analyze the $-\mathrm{NH}_{2}$ pyramidalitation energy and delocalization energy for the systems: $\mathrm{NH}_{2}-\mathrm{BH}_{3}{ }^{(}$, cisoid $1-\mathrm{NH}_{2}-\mathrm{COSAN}$ and cisoid $8-\mathrm{NH}_{2}-\mathrm{COSAN}$. For the localized computations we first de-pyramidalize the Nitrogen, thus defining a plane of symmetry nearby this atom - say the (xy) plane. We shall then use the label σ for orbitals that are symmetric, in this (xy) plane, and π for orbitals that are antisymmetric by the mirror image of this plane ($\mathrm{p}_{\mathrm{z}}, \mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}$ orbitals of the Nitrogen).

The localization of the two electrons of the nitrogen lone pair was obtained in the BLW framework by an orbital optimization restricted to the 4π gaussian functions on the N atom $\left(2 p_{z}, 3 p_{z}, d_{x z}, d_{y z}\right)$. The remaining electrons of the system were then described by orbitals that were optimized using all other gaussian functions of the AE1 basis set. For the delocalized energy computation, we simply relaxed this constraint.

De-pyramidalization was obtained through a geometry optimization with the unique constraint of a fixed dihedral angle involving the NH_{2} group and the connecting atom, either $\mathrm{C}(1)$ (for $1-\mathrm{NH}_{2}-\mathrm{COSAN}$) or $\mathrm{B}(8)$ (for $8-\mathrm{NH}_{2}-\mathrm{COSAN}$).

Table 8. $\mathrm{BP} 86 / \mathrm{AE} 1$ pyramidalization energy $\mathrm{PE}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$ for representative systems. Pyram = pyramidalized.

System	Energy(au)	PE
Planar ${ }^{(}{ }^{(} \mathrm{BH}_{3}-\mathrm{NH}_{2}$	-82.59099	0.0
Pyram ${ }^{(}{ }^{3} \mathrm{BH}_{3}-\mathrm{NH}_{2}$	-82.60321	-32.1
Planar 1- $\mathrm{NH}_{2}-\mathrm{COSAN}$	-2051.63027	0.0
Pyram 1- NH_{2}-COSAN	-2051.63831	-21.1
Planar 8- $\mathrm{NH}_{2}-\mathrm{COSAN}$	-2051.66748	0.0
Pyram 8- NH_{2}-COSAN	-2051.66912	-4.3

Table 9. Delocalization energies $\Delta \mathrm{E}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$ for representative systems, with n-COSAN $\equiv n-\mathrm{NH}_{2}$-COSAN.

Method	System	Energy (au)	$\Delta \mathrm{E}$
BP86	${ }^{(} \mathrm{BH}_{3} \mathrm{NH}_{2}$ Deloc	-82.59087	-22.7
BP86	Localized	-82.58223	---
HF	${ }^{\mathrm{O}} \mathrm{BH}_{3} \mathrm{NH} 2$ Deloc	-81.99215	-17.6
HF	Localized	-81.99884	---
HF	1-COSAN Deloc	-2044.85090	-55.7
HF	Localized	-2044.87213	---
HF	8-COSAN Deloc	-2044.89384	-44.8
HF	Localized	-2044.91091	----

As shown in Table 8, the pyramidalization energies show that N is particularly easy to planarize in cisoid $8-\mathrm{NH}_{2}$-COSAN: only $4.3 \mathrm{~kJ} . \mathrm{mol}^{-1}$, much lower as compared to ${ }^{(} \mathrm{BH}_{3}-$ NH_{2} and 1- NH_{2}-COSAN. As shown in Table 9, the delocalization energy was calculated in the $\mathrm{NH}_{2}-\mathrm{BH}_{3}{ }^{(-)}$anion at two levels of theory: BP86 and HF. The value is $\sim 20 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, slightly larger at the BP86 level as compared to HF level. As the results are very close with both levels of theory, but the wave function convergence is faster at the HF level, we considered only HF for the Cobalt complexes. The delocalization obtained in $1-\mathrm{NH}_{2}$ COSAN and $8-\mathrm{NH}_{2}$-COSAN is significantly larger in the complexes, about $50 \mathrm{~kJ} . \mathrm{mol}^{-1}$. It is slightly larger in $1-\mathrm{NH}_{2}-\mathrm{COSAN}$ than in $8-\mathrm{NH}_{2}-\mathrm{COSAN}$ but the difference is small (5 $\mathrm{kJ} . \mathrm{mol}^{-1}$). The delocalization isosurfaces, as shown in Figure 2, display a delocalization that corresponds to small π bonding between the N atom and the first neighbor, $\mathrm{C}(1)$ in $1-\mathrm{NH}_{2}-$ COSAN and $\mathrm{B}(8)$ in $8-\mathrm{NH}_{2}-\mathrm{COSAN}$. A similar feature was observed in other cases [24].

4. Conclusions

The following conclusions come out from strickly quantum-chemical computations of Hartree-Fock (HF) and hybrid-HF - Density Functional Theory (DFT) methods:

While carboranes do not really increases the PA of amines: $\mathrm{PA}\left(\mathrm{NH}_{3}\right) \approx 850 \mathrm{~kJ} \cdot \mathrm{~mol}^{1}$, $\mathrm{PA}\left(1-\mathrm{NH}_{2}-1,12-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11}\right) \approx 877 \mathrm{~kJ} \cdot \mathrm{~mol}^{1}$, COSAN systems increase very significantly the PA , with $\mathrm{PA}\left(8-\mathrm{NH}_{2}-\mathrm{COSAN}\right) \approx 1260 \mathrm{~kJ} \cdot \mathrm{~mol}^{1}$, which is almost as large as $\mathrm{PA}\left({ }^{(}{ }^{(} \mathrm{BH}_{3} \mathrm{NH}_{2}\right)$ $\approx 1530 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, with $8-\mathrm{NH} 2-\mathrm{COSAN}$ possibly more stable from an experimental viewpoint. A simple computation of the PA in $\mathrm{HSO}_{4}{ }^{()}$to give $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives the value of $\mathrm{PA}\left(\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}\right)=1330 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ (understood as the acidity enthalpy for the process $\left.\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HSO}_{4}^{()}+\mathrm{H}^{+}[25]\right)$ thus showing the increased PA for NH_{2}-substituted (car)boranes and metallacarboranes, larger than in $\mathrm{HSO}_{4}{ }^{()}$for 1- $\left.\mathrm{NH}_{2}-\mathrm{B}_{12} \mathrm{H}_{11}{ }^{(2)},{ }^{(}\right) \mathrm{BH}_{3} \mathrm{NH}_{2}$ and 12- $\mathrm{NH}_{2}-\mathrm{CB}_{11} \mathrm{H}_{11}{ }^{(-)}$. As for the cobaltacarborane cisoid $8-\mathrm{NH}_{2}$-COSAN, the PA is only $15 \mathrm{~kJ} \cdot \mathrm{~mol}^{1}$ lower than in $\mathrm{HSO}_{4}{ }^{()}$, hence proving the enhanced stability of the corresponding zwitterion from protonation of the NH_{2} group.

5. Acknowledgements

We are grateful to Professor Lluís Victori (IQS, Ramon Llull University, Barcelona) and Professor Joan O. Grimalt (Institute of Environmental Assessment and Water Research, CSIC, Barcelona), for reading the manuscript. Y. Mo is gratefully acknowledged for the BLW code, which was used for the computation of electronic delocalization effects.

FIGURES

FIGURE 1
FIGURE 2

CAPTIONS

Figure 1. Atom labels for: (a) ortho-carborane $1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, (b) meta-carborane 1,7$\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, (c) para-carborane $1,12-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, (d) transoid Cobalt bis(dicarbollide) $\left[3-\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{()}$. Hydrogen atoms are not shown for clarity in (ortho, meta, para)carborane.

Figure 2. Isosurface of density variation when the localization constraint is released in (a) $\mathrm{NH}_{2}-\mathrm{BH}_{3}{ }^{\mathrm{O}}$, (b) $1-\mathrm{NH}_{2}-\mathrm{COSAN}$, (c) $8-\mathrm{NH}_{2}-\mathrm{COSAN}$. Red and green density lobes correspond, respectively, to negative and positive electron density differences. Hence the delocalization is from the NH_{2} lone pair to the rest of the molecule. The isovalue surface for electron density differences is set to 10^{3} atomic units.

TABLES

Table 1. Optimized structures and Proton Affinities (PA, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) in $\mathrm{CH}_{3}-\mathrm{NH}_{2} / \mathrm{NH}_{3}{ }^{(+)}$, $\mathrm{BH}_{2}-\mathrm{NH}_{2} / \mathrm{NH}_{3}{ }^{(+)}$, and $\mathrm{BH}_{3}{ }^{()}-\mathrm{NH}_{2} / \mathrm{NH}_{3}{ }^{(+)}$, with $\mathrm{PA}=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow$ $\mathrm{AH}^{(+)}$. B3LYP/6-31G* computations, in parentheses B3LYP/cc-pVTZ computations.

A	$\mathrm{AH}^{(+)}$	PA	$\begin{gathered} \text { PA(ex } \\ \mathrm{p}) \\ \hline \end{gathered}$	A	$\mathrm{AH}^{(+)}$	PA	$\begin{gathered} \text { PA(ex } \\ \text { p) } \end{gathered}$
NH_{3}		$\begin{gathered} 874.2 \\ (860 . \\ 4) \end{gathered}$	$853.6^{(\mathrm{a}}$		$\begin{gathered} \left.\mathrm{BH}_{3}{ }^{(}\right) \\ \mathrm{NH}_{3}^{(+)} \end{gathered}$	1537.5 (1504. 8)	---
		$\begin{gathered} 915.2 \\ (905 . \\ 0) \end{gathered}$	$\underset{.}{899.0^{(a)}}$			$\begin{gathered} 815.0^{(b)} \\ (803.6 \\) \end{gathered}$	$802.5^{(\mathrm{a}}$
		$\begin{gathered} 766.5 \\ (754 . \\ 1) \end{gathered}$	---				

(a) See Reference [9]. (b) PA for protonation on the N atom. Protonation on B atom gives H_{2}, see Reference [20].

Table 2. Optimized structures and Proton Affinities (PA , in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for systems where a hydrogen atom is substituted by an amino group in $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{(2-)}$ and $\mathrm{CB}_{11} \mathrm{H}_{12}{ }^{(-)}$with $\mathrm{PA}=$ $-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow \mathrm{AH}^{(+)}$. B3LYP/6-31G* computations.

A	$\mathrm{AH}^{(+)}$	PA	A	$\mathrm{AH}^{(+)}$	PA
		1693.5			
		1238.2			1335.9
		1289.3			1349.6

Table 3. Optimized structures and Proton Affinities (PA, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for systems where a hydrogen atom is substituted by an amino group in ortho-carborane $1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, with PA $=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow \mathrm{AH}^{(+)}$. B3LYP/6-31G* computations.

A	$\mathrm{AH}^{(+)}$	PA	A	$\mathrm{AH}^{(+)}$	PA
		809.4			966.1
$\begin{gathered} 3-\mathrm{NH}_{2}-1,2- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 0 \\ 0 \end{gathered}$		875.9	$\begin{gathered} 9-\mathrm{NH}_{2}-1,2- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 0^{\circ} \\ 2 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 9-\mathrm{NH}_{3}{ }^{+}-1,2- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 0 \\ 0 \\ 0 \end{gathered}$	974.6
		916.8			

Table 4. Optimized structures and Proton Affinities (PA, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for systems where a hydrogen atom is substituted by an amino group in meta-carborane $1,7-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, with PA $=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow \mathrm{AH}^{(+)}$. B3LYP/6-31G* computations.

A	$\mathrm{AH}^{(+)}$	PA	A	$\mathrm{AH}^{(+)}$	PA
$\begin{gathered} 1-\mathrm{NH}_{2}-1,7- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 20 \\ 38 \\ 2 \\ 0 \end{gathered}$	$\begin{gathered} 1-\mathrm{NH}_{3}{ }^{+}-1,7- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 0 \\ \text { N } \\ 0 \end{gathered}$	863.4	$\begin{gathered} 5-\mathrm{NH}_{2}-1,7- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 0^{2} \\ 2 \\ \mathrm{~N}^{2} \mathrm{y} \\ 0 \\ 0 \end{gathered}$		930.4
$\begin{gathered} 2-\mathrm{NH}_{2}-1,7- \\ \mathrm{C}_{2} \mathrm{~B}_{20} \mathrm{H}_{11} \\ 0 \\ 0 \end{gathered}$		884.1	$\begin{gathered} 9-\mathrm{NH}_{2}-1,7- \\ \mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{11} \\ 0 \end{gathered}$		966.5
		921.1			

Table 5. Optimized structures and Proton Affinities (PA, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for systems where a hydrogen atom is substituted by an amino group in para-carborane $1,12-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$, with PA $=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow \mathrm{AH}^{(+)}$. B3LYP/6-31G* computations.

Table 6. Optimized structures and Proton Affinities (PA, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for systems where a hydrogen atom is substituted by an amino group in transoid $\left[3-\mathrm{Co}\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{()}$, with $\mathrm{PA}=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow \mathrm{AH}^{(+)}$. BP86/AE1 computations. COSAN $\equiv[3-$ $\left.\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]$.

Table 7. Optimized structures and Proton Affinities (PA, in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for systems where a hydrogen atom is substituted by an amino group in cisoid $\left[3-\mathrm{Co}\left(1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]^{()}$, with PA $=-\Delta_{\mathrm{r}} \mathrm{H}^{0}$ of the process $\mathrm{A}+\mathrm{H}^{(+)} \rightarrow \mathrm{AH}^{(+)}$. BP86/AE1 computations. COSAN \equiv [3$\left.\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2}\right]$. The notation n - NH_{2} indicates the position of the amino group in $n-\mathrm{NH}_{2}-$ COSAN.

6. References

[^0]${ }^{9}$ E. P. L. Hunter, and S. G. Lias, Journal of Physical and Chemical Reference Data 27, 413 (1998); doi: 10.1063/1.556018
${ }^{10}$ COSAN is a macropolyhedron consisting of two icosahedral cages with one vertex sharing (Co)
${ }^{11}$ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
${ }^{12}$ A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100
${ }^{13}$ C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785-789
${ }^{14}$ J. P. Perdew, Phys. Rev. B 1986, 33, 8822
${ }^{15}$ J. P. Perdew, Phys. Rev. B 1986, 34, 7406
${ }^{16} 6-31 G^{*}$ basis set
${ }^{17}$ a) A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033; b) P. J. Hay, J. Chem. Phys. 1977, 66, 4377
${ }^{18}$ Y. Mo, L. Song and Y. Lin, J. Phys. Chem. A, 2007, 111, 8291-8301
${ }^{19}$ M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347-1363.
${ }^{20}$ J.-L. M. Abboud, B. Németh, J.-C. Guillemin, P. Burk, A. Adamson, E.R. Nerut, Chem. Eur. J. 2012, 18, 3981-3991
${ }^{21}$ E. P. Hunter, S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656
${ }^{22}$ M. Bühl, D. Hnyk, J. Macháček, Chem. Eur. J. 2005, 11, 4109-4120
${ }^{23}$ V. Šícha, J. Plešek, M. Kvíčalová, I. Císařová, B. Grüner, Dalton Trans. 2009, 851.
${ }^{24}$ J. Racine, S. Humbel Chem. Eur. J. 2014, 20, 12601-12606
${ }^{25}$ The NIST gives a value of of $1295 \mathrm{~kJ} \cdot \mathrm{~mol}^{1}$ for the acidity enthalpy, see e.g. X. B. Wang, J. B. Nicholas, L. S. Wang, J. Phys. Chem. A, 2000, 104, 504-508.

[^0]: ${ }^{1}$ An heteroborane is based on a polyhedral borane $\mathrm{B}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}$ where one or more of the boron atoms are substituted by another element of the Periodic Table
 ${ }^{2}$ A metallaheteroborane is the equivalent of an inorganic metal complex in which one or more ligands are polyhedral heteroboranes.
 ${ }^{3}$ See https://en.wikipedia.org/wiki/List_of_organic_reactions
 ${ }^{4}$ S. M. Eyrilmez, E. Bernhardt, J. Z. Dávalos, M. L̄epšík, P. Hobza, K. I. Assaf, W. M. Nau, J. Holub, J. M. Oliva-Enrich, J. Fanfrlík, D. Hnyk, Phys. Chem. Chem. Phys. 2017, 19, 11748-11752
 ${ }^{5}$ R. Sedlak, J. Fanfrík, A. Pecina, D. Hnyk, P. Hobza and M. Lepšík, Boron - the Fifth Element, Chapter 9, Challenges and Advances in Computational Chemistry and Physics. Vol 20, (Eds. D. Hnyk, and M. McKee), Springer, Heidelberg, New York, Dordrecht and London, 2015
 ${ }^{6}$ Boron-Based Compounds: Potential and Emerging Applications in Medicine, Eds. C. Viñas and E. HeyHawkins (2018) Wiley
 ${ }^{7}$ J. M. Oliva-Enrich, S. Humbel, J. A. Santaballa, I. Alkorta, R. Notario, J. Z. Dávalos, M. Canle-L., E. Bernhardt, J. Holub, D. Hnyk, ChemistrySelect 3, 2018, 4344-4353
 ${ }^{8}$ Protonation of He leading to HeH^{+}system was first produced in the laboratory in 1925 , see T. R. Hogness and E. G. Lunn, Phys. Rev. 26 (1925) 44

