
HAL Id: hal-02138771
https://hal.science/hal-02138771v1

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schema validation and evolution for graph databases
Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia

Oshurko, Hannes Voigt

To cite this version:
Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko, et al.. Schema val-
idation and evolution for graph databases. ER 2019 - 38th International Conference on Conceptual
Modeling, Nov 2019, Salvador, Brazil. pp.448-456, �10.1007/978-3-030-33223-5_37�. �hal-02138771�

https://hal.science/hal-02138771v1
https://hal.archives-ouvertes.fr


Schema Validation and Evolution for
Graph Databases

Angela Bonifati1[0000−0002−9582−869X], Peter Furniss2, Alastair Green2, Russ
Harmer3[0000−0002−0817−1029], Eugenia Oshurko3, and Hannes Voigt2

1 Lyon 1 University & CNRS Liris, France
angela.bonifati@univ-lyon1.fr

2 Neo4J, Germany & UK
{peter.furniss,alastair.green,hannes.voigt}@neo4j.com

3 UdL, CNRS, ENS Lyon, UCBL1, France
{russell.harmer,ievgeniia.oshurko}@ens-lyon.fr

Abstract. Despite the maturity of commercial graph databases, little
consensus has been reached so far on the standardization of data defi-
nition languages (DDLs) for property graphs (PG). Discussion on the
characteristics of PG schemas is ongoing in many standardization and
community groups. Although some basic aspects of a schema are already
present in most commercial graph databases, full support is missing
allowing to constraint property graphs with more or less flexibility.

In this paper, we show how schema validation can be enforced through
homomorphisms between PG schemas and PG instances by leveraging a
concise schema DDL inspired by Cypher syntax. We also briefly discuss
PG schema evolution that relies on graph rewriting operations allowing
to consider both prescriptive and descriptive schemas.

Keywords: Graph Databases · Graph Schema Modelling · Graph Schema
Validation.

1 Introduction

Property graph databases are modern data management systems that use graph
structures, such as nodes, edges and properties, to encode semantically complex
data [3]. Graph database technology has made tremendous progress with many
commercial products—such as Neo4j, Oracle PGX, SAP HANA Graph, Redis
Graph, Cypher for Apache Spark and TigerGraph—and yet little consensus
has been reached so far on the standardization of graph data querying and
manipulation or of data definition languages (DDLs).

The aim of ISO SC32/WG3 is to develop a new international standard-
ized query language—called GQL4—for property graphs, with support from
the activities of the wider community such as OpenCypher5 and G-Core [1].

4 https://www.gqlstandards.org/
5 http://www.opencypher.org/

https://www.gqlstandards.org/
http://www.opencypher.org/


2 A. Bonifati et al.

Standardization of graph data querying and manipulation is therefore well under
way.

At present, there are only a few examples of property graph systems offering
schema and DDL, e.g. Neo4j’s Cypher for Apache Spark and TigerGraph. Neo4j
3.5 already provides the means to express certain basic aspects of schemas, e.g. the
use of unique property and property existence constraints enables us to enforce
nodes (or edges) to have certain properties. However, this does not allow users
to express more advanced aspects of schemas such as specifying, for a given node
or edge label, the collection of all possible associated properties; or constraining
whether or not an edge may exist between nodes with certain labels.

In this paper, we make the following specific contributions: (i) a schema model
(and corresponding DDL) specifying labels and (mandatory) properties for nodes
and edges with mixed composition and facilitating strict typing of every graph
element (Section 2); (ii) a mathematical framework for schema validation allowing
us to construct both instances and schemas as property graphs and to enforce
schema validation through the existence of a homomorphism from instance to
schema (Section 3); and (iii) graph rewriting rules [5] and their application to
propagate changes from schema to instance (or vice versa) while keeping the
instance and schema consistent at all times (Section 4).

2 PG Schema Language

We introduce in this section an OpenCypher-based6 schema DDL for Property
Graphs (PG). Although informing and feeding the ongoing standardization
process, our DLL must not be intended as a standard proposal since its main
purpose is to substantiate the algorithmic contributions presented in the paper.
The basic components of a schema definition assume a finite set of labels L, a set
of property keys K and a finite set of data types T .

Property graph type. A property graph type is a triple (BT ,NT , ET ) where
BT is a set of element types, NT is a set of node types and ET is a set of edge
types. A property graph type provides the schema for a PG. Multiple PGs can
share a property graph type to the effect that they will have the same schema.

Property type. A property type is a pair (k, t), where k ∈ K is the property
key and t ∈ T is its data type.

Element type. An element type b ∈ BT is a 4-tuple (l, P,M,E), where l ∈ L
is a label, P is a set of property types, M ⊆ P is a subset of mandatory property
types and E ⊆ BT is the set of element types that b extends.

Hence, “Message {content: STRING?, length: INTEGER}” is a declaration of
the element typem = (Message, {pt1, pt2} , {pt2} , ∅), where pt1 = (content, STRING)
and p2 = (length, INTEGER); while “Post :: Message {language: STRING?}” de-
clares the element type p = (Post, {pt3 = (language, STRING)} , ∅, {m}).

An element type is allowed to extend multiple other element types, but must
not extend itself either directly or indirectly. All element types of a property

6 https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf


Schema Validation and Evolution for Graph Databases 3

graph type must be disambiguated by their label. Where clear from context, we
use the label to denote the corresponding element type.

Exposed (mandatory) property types and labels. The set of exposed
property types of an element type b = (l, P,M, E) is defined as prop(b) :=
P ∪

⋃
c∈E prop(c), i.e. all the property types that b possesses, either directly

or through inheritance. Similarly, we define mand(b) to be the set of exposed
mandatory property types of b and labels(b) to be the set of exposed labels of
b. For instance, for element type p from above we have prop(p) = {pt1, pt2, pt3},
mand(p) = {pt2}, and labels(p) = {Post, Message}.

For an element type b to be valid, prop(b) must not have two or more property
types with the same property key, i.e. all properties types of a element type
are disambiguated by their property key. Where clear from context, we will
use the property key to denote the corresponding property type. For instance,
for the element type p above, we have prop(p) = {content, length, language},
mand(p) = {length} and labels(p) = {Post, Message}. Note that labels(b) is
unambiguous for all element types b of a property graph type.

Node type. A node type nt ∈ ET is a 1-tuple (b), where b ∈ BT is an element
type. For a node type nt = (b), we define prop(nt) = prop(b), mand(nt) = mand(b),
and labels(nt) = labels(b).

Edge type. An edge type et ∈ ET is a triple (s, b, t), where s, b, and t are element
types. Exposed (mandatory) property and label sets are defined analogously to
node types based on b. Note that s and t need not be node types. This allows a
single edge type to be inherited by multiple node types.

Example. The following snippet of the OpenCypher PG schema DDL creates a
property graph type that captures an excerpt of the LDBC SNB [8] schema 7.

CREATE GRAPH TYPE snb (

// element types

Person {

firstName : STRING, lastName : STRING

},

Message {

creationDate : TIMESTAMP, browserUsed : STRING

},

Comment <: Message {},

Post <: Message {

imageFile : STRING?

},

// node types

(Person), (Post), (Comment),

// edge types

(Person)-[KNOWS]->(Person),

(Person)-[LIKES]->(Message),

(Message)-[HAS_CREATOR]->(Person),

(Comment)-[REPLY_OF]->(Message)

7 The complete PG schema encoding of LDBC SNB is reported in [4].



4 A. Bonifati et al.

)

3 Schema Validation

In this section, we provide a mathematical formalization of our schema notion
that, in particular, allows us to interpret a DDL specification as a PG. We present
the mathematical definitions of schemas and instances as property graphs in
Section 3.1 and then discuss the application of homomorphisms to the schema
validation problem in Section 3.2.

3.1 Schemas and instances as property graphs

We fix countable sets O, K and V of objects, keys and values respectively. For
the purposes of this paper, we assume that V contains (at least) basic types of
integers, booleans, strings and dates.

A property graph is defined to be a tuple (N,E, η, P, ν,M) where N and E
are disjoint, finite subsets of O called nodes and edges; η : E → N × N is a
function assigning a source and target node to each edge; P ⊆ (N ∪E)×K is a
finite set of properties; ν ⊆ P × V is a finite relation, assigning sets of values to
properties; and M ⊆ P is a set of mandatory properties. The requirement that ν
be finite means that each node and each edge has finitely many properties, each
of which has a finite set of associated values.

A schema (BT ,NT , ET ) specified in our DDL from Section 2 can be in-
terpreted as a property graph S in the following way. The nodes NS are the
node types NT and we have an edge e ∈ ES from n1 to n2 in ES if, for some
l1 ∈ labels(n1) and l2 ∈ labels(n2), there is an edge type (n1, e, n2) ∈ ET .
Note that a node type always gives rise to a single node of S whereas an edge type
may give rise to many edges in the schema graph; this is how inheritance in the
DDL syntax is ‘expanded out’ in the schema graph S interpreting the property
graph type. Each node and edge has the (mandatory) properties specified by its
corresponding node or edge type. As an example, the schema defined in Section
2 and interpreted as a property graph is illustrated in Figure 1.

PersonfirstName: STRING
lastName: STRING

Post

imageFile: STRING?
creationDate: STRING
browserUsed: STRING

Comment

creationDate: STRING
browserUsed: STRING

K
N
O
W
S

HAS
CRE

ATO
R

HAS CREATOR

LIK
ES

LIKES

R
E
P
L
Y
O
F

REPLY OF

Fig. 1: An extract from the SNB schema



Schema Validation and Evolution for Graph Databases 5

3.2 Schema validation via graph homomorphisms

Let G and S be property graphs where NG ∪ EG and NS ∪ ES are disjoint.
A homomorphism h : G → S is a function hN : NG → NS and a function
hE : EG → ES , mapping nodes and edges of G to nodes and edges of S, such that
ηS ◦ hE = (hN × hN ) ◦ ηG. We write h := hN ∪ hE . We further require that (i)
if (x, k) ∈ PG then (h(x), k) ∈ PS ; (ii) if ((x, k), v) ∈ νG then ((h(x), k), v) ∈ νS ;
and (iii) if (h(x), k) ∈MS then (x, k) ∈MG.

n1

firstName: Bryn
lastName: Davies

n2

imageFile: photo33711.jpg
creationDate: 2010-10-16
browserUsed: Firefox

n3

firstName: Jose
lastName: Alonso

n4

creationDate: 2010-10-30
browserUsed: Firefox

n5

firstName: Jane
lastName: Murray

n6

creationDate: 2010-10-30
browserUsed: Safari

n7

creationDate: 2010-10-30
browserUsed: Safari

LIKES

KN
OW
S

KNOWS

LIKES

HAS
CRE

ATO
R H

A
S
C
R
E
A
T
O
R

HAS CREATOR

LI
KE
S

REPLY
OF

HAS CREATOR

REPLY OF

Fig. 2: A valid instance of the SNB schema extract

We can view a homomorphism h : G → S as a formalization of the notion
schema validation, i.e. that G respects the ‘schema’ S: each node/edge x of G is
an instance of the schema node/edge h(x); edges in S constrain which edges can
exist in G; and properties that are mandatory in the schema S are mandatory (so
must occur) in G. In the example instance G of Figure 2, we have used colours
to encode the homomorphism h, i.e. all yellow nodes are Comments, etc. In the
DDL of Section 2, the fact that all element types are disambiguated by their
label would also allow us to determine h provided we include these labels in the
instance G.

The ReGraph library. The Python library ReGraph8 provides an implementa-
tion of the presented system. It enables us to construct property graphs and
structure them into hierarchies (DAGs) of graphs via homomorphisms. In this
paper we limit our use of the library to the special case of two graphs connected
by a single homomorphism, i.e. h : G→ S as this is sufficient to express that G
respects the schema S. Our system thus provides an abstraction barrier that gives
the illusion that the underlying Neo4j graph is, in fact, two separate graphs—a
data graph and a schema—related by a homomorphism that guarantees schema
validation. In the next section, we explain briefly how updates to either of these
graphs are performed in such a way as to maintain the invariant of schema
validation.

8 https://github.com/Kappa-Dev/ReGraph

https://github.com/Kappa-Dev/ReGraph


6 A. Bonifati et al.

4 Property graph rewriting

In our approach, the data graph and its schema are represented as PGs; as such,
we can use graph rewriting rules [5] to perform updates of either. Informally, a
rewriting rule consists of a pattern—of which there can be zero, one or many
instances in the graph G we wish to modify—together with a collection of
modifications to be effected. In the case of PGs, these operations are: addition
and deletion of elements; cloning and merging of nodes; and modification of
the set of values associated with a property. The rule is applied by selecting
an instance in G and performing the associated operations. The effect of a rule
application remains localized to the subgraph of G picked out by the choice of
instance which, in practice, is very small compared with G itself.

In general, an update invalidates the homomorphism that previously existed
and which guaranteed compliance of the data to the schema. In our mathemati-
cal formulation, and its associated implementation discussed briefly below, we
automatically recompute a canonically updated homomorphism that restores
compliance [9]. The way in which compliance can be broken—and the process
by which we restore it—depends on whether the update was made to the data
graph or to the schema.

In the first case, compliance can be broken by the addition of nodes, edges or
properties or by the merging of nodes in the data graph. By default, the addition
of a new element e is propagated to the schema, i.e. we add a new element to
the schema to type e in the data graph. We can further specify that e is actually
typed by an existing element of the schema; this can be done explicitly by the user
or, more commonly, computed automatically through the use of labels. However,
in the case of the merge of two nodes, their associated typing nodes in the schema
must be merged—unless they already had the same type (in which case no change
to the schema is necessary).

In the second case, compliance can be broken by the deletion of an element
or by the cloning of nodes in the schema. By default, the cloning of a node n is
propagated to the data graph, i.e. we clone all instances of n in the data graph.
For some or all instances of n, we may not wish to propagate but rather specify
the particular clone of n that should be used to type it, i.e. a concept refinement ;
again, this can be specified directly by the user or computed automatically
through the use of labels. However, in the case of the deletion of an element, we
must delete all its instances in the data graph.

An update of the data graph that propagates to the schema can be blocked in
our implementation. This would be appropriate in situations where the schema is
already well-developed and we expect all incoming data to comply, i.e. we consider
our schema to be prescriptive. However, in an earlier phase of development, the
ability to propagate automatically new elements to the schema enables the user
to focus simply on gathering their data of interest and allows the schema to
adapt appropriately, i.e. the schema is considered to be descriptive. As such,
our approach—in addition to providing the guarantee that updates never break
schema compliance—also provides support for the natural development cycle of
an application.



Schema Validation and Evolution for Graph Databases 7

In our implementation, a rewriting rule is translated into a Cypher query
that manipulates the underlying Neo4j graph in such a way as to preserve the
correspondence with the data and schema graphs. As outlined above, an update
of one graph may—but need not necessarily—induce a further update of the
other to maintain schema validation. A detailed account will be included in the
long version of this paper and can be found in the arXiv preprint [4].

5 Related Work

Schema evolution [17] is a well established topic in data management. A set of
principles ruling out schema and instance evolution under schema constraints
was discussed in [10]. Various approaches exist to increase usability and efficiency,
e.g. schema evolution-aware query languages [18] or providing a general framework
to describe database evolution in the context of evolving applications [7]. Meta
Model Management 2.0 [2] introduced tools to match, merge and diff given
relational schema versions. The resulting mappings couple the evolution of
the schema and the data; however, they are complex relationships between
heterogeneous schemas, as in data integration and ETL scenarios, i.e. they only
deal with schema evolution after the fact. Recently, PRISM [6] and InVerDa [11]
have provided advanced database schema evolution tools. PRISM focuses on
plain database evolution but allows the answering of queries using former schema
versions with respect to the current data. InVerDa provides co-existing schema
versions via bidirectional transformations with symmetric relational lenses [12].
However, none of the above approaches goes beyond a prescriptive schema.

SHACL [14] is a language for validating RDF graphs. Shapes are used to
validate RDF instances against a set of conditions. SHACL supports RDF
term restrictions, cardinality constraints, and predicate constraints. Research on
ontologies also considered the problem of update propagation to instances using
Description Logic mappings [13]. However, such mappings are quite complex
when contrasted with the implicit homomorphisms considered in our work. The
distinction between descriptive and prescriptive schemas as carried out in our
paper is reminiscent of open and close tuple types as used for instance in JSON [16].
In particular, the schema flexibility pointed out in our work affects not only types
but entire portions of the schemas and as such is more general.

Graph rewriting has been used in a variety of areas related to knowledge
representation and meta-modelling. For example, triple graph grammars [19,15]—
which correspond very closely to our rewriting rules—provide a means to specify
bidirectional model transformations and have been used in various applications
such as conformance testing and model synchronization.

6 Concluding Remarks

We have presented a schema DDL for PGs following the ASCII-art syntax of
Cypher and shown how schema validation and evolution can be simulated via a
mathematical framework that enforces and maintains schema validation.



8 A. Bonifati et al.

Our next step is to enrich the DDL for the expression of finer constraints and
to define a DML for our graph update operations.

Acknowledgements. We would like to thank Petra Selmer (Neo4j) for her careful
proof reading and useful feedback. This work was partially funded by a grant
from the Fédération Informatique de Lyon.

References

1. Angles, R., et al.: G-CORE: A core for future graph query languages. In: SIGMOD.
pp. 1421–1432 (2018)

2. Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Mappings.
In: SIGMOD. pp. 1–12 (2007)

3. Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers (2018)

4. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema
Validation and Evolution for Graph Databases. CoRR abs/1902.06427 (2019)

5. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
International Conference on Graph Transformation. pp. 30–45. Springer (2006)

6. Curino, C., Moon, H.J., Zaniolo, C.: Graceful Database Schema Evolution: the
PRISM Workbench. PVLDB 1(1), 761–772 (Aug 2008)

7. Domı́nguez, E., Lloret, J., Rubio, A.L., Zapata, M.A.: MeDEA: A database evolution
architecture with traceability. DKE 65(3), 419–441 (Jun 2008)

8. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat-Pérez,
A., Pham, M., Boncz, P.A.: The LDBC Social Network Benchmark: Interactive
Workload. In: SIGMOD. pp. 619–630 (2015)

9. Harmer, R., Oshurko, E.: Knowledge representation and update in hierarchies of
graphs. In: International Conference on Graph Transformation. Springer (2019)

10. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent advances in schema and ontology
evolution. In: Schema Matching and Mapping, pp. 149–190 (2011)

11. Herrmann, K., Voigt, H., Pedersen, T.B., Lehner, W.: Multi-schema-version data
management: data independence in the twenty-first century. The VLDB Journal
27(4), 547–571 (2018)

12. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric Lenses. In: POPL (2011)
13. Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology

evolution at the instance level: The case of dl-lite. J. Comput. Syst. Sci. 79(6),
835–872 (2013)

14. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C
Recommendation 20 July 2017

15. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
Electronic Notes in Theoretical Computer Science 148(1), 113–150 (2006)

16. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data
model and query language: A capabilities survey of sql-on-hadoop, nosql and newsql
databases. CoRR abs/1405.3631 (2014)

17. Rahm, E., Bernstein, P.A.: An Online Bibliography on Schema Evolution. SIGMOD
Record 35(4), 30–31 (Dec 2006)

18. Roddick, J.F.: SQL/SE - A Query Language Extension for Databases Supporting
Schema Evolution. SIGMOD Record 21(3), 10–16 (Sep 1992)

19. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Workshop on Graph-Theoretic Concepts in Computer Science. pp. 151–163 (1994)


	Schema Validation and Evolution for  Graph Databases

