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A new statistical approach to predict the gain bandwidth of Phoenix-cell based 

reflectarrays is proposed. It combines the effects of both main factors that limit the 

bandwidth of reflectarrays: spatial phase delays and intrinsic bandwidth of radiating cells. 

As an illustration, the proposed approach is successfully applied to two reflectarrays based 

on new Phoenix cells. 
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1. Introduction

This paper is an extension of work originally presented in the 

11th European Conference on Antennas and Propagation (EuCAP) 

where a novel single layer stub-patch Phoenix cell is suggested as 

a broadband and easy solution to fabricate reflectarray (RA) 

elements [1].  

The Phoenix cell concept was firstly introduced in [2] and 

many other Phoenix cells were derived later [3-8]. As their name 

suggests, Phoenix cells are characterized by rebirth capabilities, 

which means that their geometry comes back to its initial state after 

a complete 360° phase cycle.  This guarantees a smooth evolution 

of cell geometries over the RA panel and prevents perturbations in 

the radiation pattern. Phoenix cells are also characterized by a 

quasi-linear phase response which classifies them as broadband 

RA cells. Nevertheless, as for other broadband cells, their phase 

response is still not totally perfect and the proper assessment of the 

residual phase error versus frequency is still missing in the 

literature.  

In this paper, this last issue is addressed and a new statistical 

approach for estimating the bandwidth of RA based on Phoenix 

cells is proposed. The suggested approach relies on the standard 

deviation of phase errors over the RA panel and combines the 

effects of both bandwidth limiting factors: the dispersion of spatial 

phase delays with frequency [9] and the intrinsic limited 

bandwidth of cells themselves [10]. This standard deviation is 

shown to provide a promising figure of merit, better than those in 

[9, 10] where only the maximum phase error due to spatial delays 

is taken into account. 

The paper is organized as follows. In section 2, the new 

statistical approach is defined. In sections 3 and 4, a bandwidth 

estimator for RA gain is derived. Finally, in section 5, it is 

validated by comparison with the simulated bandwidth of a test-

case RA based on two different Phoenix cell topologies. 

2. Statistical Bandwidth Estimator

Consider an N-cell circular RA of diameter D with a feeding 

antenna positioned at distance F normally above the array center. 

The phase of the wave radiated by cell i at central frequency f0 is 

defined as: 

)()()( 000 fff Sh
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i
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i   

where ∅𝑖
𝑆ℎ is the phase-shift produced by the cell and  ∅𝑖

𝐼𝑛𝑐 is

the phase of the incident wave defined as: 
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In these equations, ρi is the radial distance between the center 

of the array and cell i and c is the velocity of light in vacuum. 

In order to produce a desired radiation pattern, the required 

radiated phases ∅i
Rad are usually specified at f0 and the subsequent
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phase-shifts ∅𝑖
𝑆ℎ(𝑓0) are directly deduced from (1) and (2). The 

cells are selected accordingly and appropriately distributed over 

the RA.  

When the frequency is shifted to f=f0+Δf, the phase radiated by 

cell i is changed by ∆∅i
Tot as: 

 )()()( fff Sh

i

Inc

i
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i    

where ∆∅𝑖
𝐼𝑛𝑐  is the predictable deviation of the phase of the 

incident wave defined as:  

 cFfFf i

Inc

i /)/(12)( 2   

while ∆∅i
Sh is the cell-dependent phase deviation due to the 

cell’s dispersive phase response. At the RA level, these phase 

errors are responsible for a decrease of the gain at f, and thus for 

the limited bandwidth. 

The bandwidth estimator we propose is derived from the 

standard deviation of the total phase error. Let ∆∅𝑇𝑜𝑡(𝑓) , 

∆∅𝐼𝑛𝑐(𝑓), and ∆∅𝑆ℎ(𝑓) be the statistical variables related to the 

total, incident and phase-shift errors at f respectively.  𝜎𝑇𝑜𝑡(𝑓), 

𝜎𝐼𝑛𝑐(𝑓) and 𝜎𝑆ℎ(𝑓) are the respective standard deviations. Using 

(3), the standard deviation of the total error σTot(𝑓)  can be 

expressed as: 

)](),(cov[2)]([)]([)( 22 fffff ShIncShIncTot    

Assuming ∆∅Inc(𝑓) and  ∆∅Sh(𝑓) are uncorrelated, which is 

the case when the synthesis process is done at f0 only, as usually 

applied in the literature [11-15], the covariance term reduces to 

zero and σTot(𝑓) reduces consequently to: 

 22 )]([)]([)( fff ShIncTot    

3. Bandwidth Estimator: Incident Phase Errors 

3.1. Standard Deviation of Incident Phase Errors 

Defining: 

 2)/(1 FS ii   

(4) can be reformulated as: 
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Due to the mathematical properties of standard deviation, 

𝜎𝐼𝑛𝑐(𝑓) can be derived as: 
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where:    22 ][SESES               (10) 

E[S] and E[S2] are the first statistical moments and can be 

calculated as: 
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Note that σS does not depend on frequency but only on the 

dimensions of the RA, which is consistent with other criteria in the 

literature [10]. Note also that, in (11) and (12), a rectangular lattice 

is considered and ρi is consequently supposed to vary uniformly in 

the [0, D/2] range. In addition, though ρi is normally a discrete 

variable, it is assumed here to vary continuously. This assumption 

is reasonable since the inter-element spacing is usually a small 

fraction of λ0 (which is much lower than D/2).  Furthermore, as in 

[9] and [10] and for simplicity reasons, Si and the resulting σS are 

calculated for a centered fed RA. Different expressions could 

easily be established for offset configurations. 

3.2. Bandwidth Estimator 

We now investigate how the gain deteriorates with respect to 

𝜎𝐼𝑛𝑐. To do so, we consider the gain at broadside for a test-case 

RA with 12mm spacing (i.e. 0.5λ0 at the center of the [11-14] GHz 

frequency band). Edge tapering is supposed to be -12dB and 

different antenna configurations are considered: F/D=0.6 and 0.8 

with D varying from 0.28m≈ 12λ0 to 1m ≈ 42λ0. For each couple 

(F/D; D), the reflected field (phase and magnitude) in the aperture 

is calculated and the associated gain is derived using simple array 

theory (as in [16]). Simultaneously, 𝜎𝐼𝑛𝑐(𝑓) is also computed as 

the standard deviation of all phase errors. Finally, Figure 1 gives 

the representation of the normalized simulated gain G(f)/G(f0) 

versus the corresponding standard deviation 𝜎𝐼𝑛𝑐.  

 
Figure 1. Simulated gain decrease with respect to the standard deviation of 

incident phase errors (F/D=0.8 or F/D=0.6). 
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An important conclusion from Figure 1 is that all curves 

superimpose whatever the particular values of D, F or f. This 

demonstrates that 𝜎𝐼𝑛𝑐  is a reliable estimator for the bandwidth 

since it directly reflects the gain decrease. Figure 1 also shows that 

a 1dB gain-drop approximately corresponds to 𝜎𝐼𝑛𝑐 =π/6. As a 

consequence, the upper frequency fmax of the -1dB bandwidth may 

be derived simply by replacing 𝜎𝐼𝑛𝑐(𝑓) by π/6 in (9), leading to:  

 )6/(/)(2 000max SInc FfcfffB   

where 

  )12/(0max SFcff               (14) 

 Equation (13) will thus be used as a bandwidth estimator. At 

this stage, it does not depend on any particular cell topology but 

only on the spatial phase delay error. As will be seen now, this 

initial estimator can advantageously be replaced by a more 

sophisticated one that also accounts for the phase dispersion of the 

used RA cells. In what follows, the case of cells with an ideal phase 

response is considered. 

4. Bandwidth Estimator: Total Phase Errors 

 

Figure 2.  Linear phase response of an ideal Phoenix cell. 

The ideal cell we suggest here is quite representative of 

Phoenix cells as will be shown in section 5. It is supposed to 

provide a phase range of at least 360° at f0 and perfect linear 

variations with respect to frequency. Figure 2 shows the phase 

response versus frequency of the ideal cell. As such, the phase-

shift error for cell i at frequency f can be expressed as: 

 fDispfff i

Sh

i

Sh

i

Sh

i  .)()()( 0  

where Dispi is the dispersion that is supposed to vary uniformly 

in the interval [0-Dispmax]. More specifically, Dispi is considered 

to be equal to 0°/GHz for phase-shifts ∅i
Sh(f0)= ±180° and to reach 

its maximum (i.e. Dispmax) when ∅i
Sh(f0)= 0°. Note that the perfect 

Phoenix cell is obtained when Dispmax= 0°/GHz as all its phase 

states would be perfectly parallel.  

Assuming all phase-shifts are equally probable on the radiating 

aperture, σSh(f) can be expressed as: 

 12/maxDispfSh

f   

Using (9) and (16) in (6), a generalized bandwidth estimator 

𝜎𝑇𝑜𝑡(𝑓) accounting for both types of errors is derived:  

 2
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Finally, 𝜎𝑇𝑜𝑡(𝑓) is set to π/6 as already done in Part 3.2 to 

obtain the generalized bandwidth estimator:  

 2

0max )180/(75.01/  IncIncTot BfDispBB  

To validate (18), the gain decrease simulation described in 

Section 3.2 is repeated (as in [16]), now accounting for both types 

of phase errors. The associated simulated -1dB gain bandwidth is 

then extracted and compared to the theoretical value predicted 

from (18). In this study, F/D is set to 0.8, D varies from 0.16m to 

1m (i.e. ~7λ0 to 42λ0) and Dispmax varies from 0˚/GHz to 100˚/GHz. 

Figure 3 shows that the difference between simulation and theory 

is less than 3%, even for the highest dispersion and the smallest 

diameter values.  

 

Figure 3.  Total phase errors effects: simulated and theoretical bandwidths 

(F/D=0.8). 

As a conclusion, (18) appears to be a reliable bandwidth 

estimator. In practice, it can be used to define the maximum 

acceptable cell dispersion for a given application. As an example, 

for a RA with D=22λ0 and F/D = 0.8, the cell dispersion should be 

less than 50°/GHz to ensure a 15% bandwidth. 

5. Practical Validation 

In practice, the phase response of Phoenix cells is not purely 

linear as in the previously-used ideal cell model. Therefore, to 

assess the validity of our approach, the actual performance of two 

recently-proposed Phoenix cells is assessed and compared to those 

obtained using (18). 

The two cells are designed to operate around a central 

frequency f0 = 12.5GHz, with λ0/2 spacing at f0. Both cells are 

printed on a Duroïd substrate with 2.17 dielectric constant and 

backed by a ground plane. The substrate height is fixed to 4 mm.  
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This corresponds to approximately λ0/(4√𝜀𝑟) , which means the 

reflected phase is close to 0° if the cell is transparent. 

To extract the phase responses, both cells are simulated using 

ANSYS-HFSS software assuming normal incidence and local 

periodicity. As Phoenix cells allow for smooth evolution of cell 

geometries over the RA panel, it is assumed that the phase 

responses obtained by simulation are valid for finite reflectarray 

configurations [2]. 

5.1. Cell 1: Slot – Patch Phoenix Cell 

 

Figure 4. Slot-Patch Phoenix Cell: Rebirth cycle 

 

Figure 5.  Slot-Patch Phoenix Cell: Phase response. 

The first cell, the Slot – Patch Phoenix cell was initially 

introduced in [8] and its performance was improved in [7]. The cell 

cycle is illustrated in Figure 4. The initial cell consists of a ground 

plane providing a 180° phase shift, whatever the frequency. The 

first mode of operation, or slot mode, is obtained by opening a 

crossed-shaped slot with variable length and width in the ground 

plane. For simplicity reasons, the length of the cross is fixed as 

twice its width. The slot mode ends when the slot arms reach the 

borders of the cell, thus defining square patches. The operating 

mode then switches to a patch mode. In this second mode, the 

length of the pre-opened slot is frozen and only the width of the 

slot w is decreased. The patch mode ends when the slot vanishes, 

taking back the cell to its initial geometry and opening the door for 

a new cycle.  

The obtained phase response is presented in Figure 5. At the 

central frequency, the slot mode provides phase shifts between 0° 

and 180° while the patch mode completes the remaining phase 

range between 0° and -180°. The use of complementary modes 

provides a phase response that is quasi-linear within a 24% 

bandwidth around 12.5GHz. The maximum dispersion is 53°/GHz. 

This phase response fits well with the ideal model used to derive 

(18), although the linearity is not perfect. 

5.2. Cell 2: Stub – Patch Phoenix Cell 

 
Figure 6. Patch-Stub Phoenix cell: Rebirth cycle (MαS: Mode α’s Start; MαI: 

Mode α’s Intermediate states; MαE: Mode α’s End). 

 

Figure 7. Patch-Stub Phoenix cell: Phase response. 

The second cell, the Stub-Patch Phoenix cell was introduced 

recently in [1]. It improves the bandwidth further due to the three 

possible operating modes it offers: a patch mode, a stub mode, and 

a combined patch-stub mode.  
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As illustrated in Figure 6, the cycle starts with a pure Duroïd 

substrate backed by a ground plane providing an initial phase shift 

close to 0° at f0. The first mode of operation, namely the patch 

mode, is obtained by inserting a square patch at the center of the 

cell (cf. Figure 6 – Mode 1). The phase shift produced by the cell 

is controlled by increasing the patch size until it reaches a 

maximum predefined value. 

In mode 2, namely the stub mode, the patch size is frozen to 
this maximum value and four open-circuited stubs are grown 
perpendicularly to the patch from the center of its edges (cf. Figure 
6 – Mode 2). A T-shape is used for the stubs when the total metal 
length approaches the limit allowable by the inter-element spacing.  
In this mode, the phase shift is thus controlled by the length of the 
stubs. 

The mode then switches to mode 3, namely the patch-stub 
mode, during which the stub-loaded patch shrinks gradually until 
both patch and stubs disappear completely allowing the cell to 
rebirth and to start a new cycle (cf. Figure 6 – Mode 3). In this 
mode, the phase shift is controlled by the shrinking ratio. 

The phase response of the suggested cell in all modes is 

summarized in Figure 7. Dashed curves represent the start/end of 

a mode (i.e. MαS/MαE) and continuous lines represent 

intermediate states (i.e. MαI). As can be noticed, a phase range of 

360˚ is achieved at f0. Within a frequency band ranging from 10 to 

15GHz (40%), the phase response is almost linear. The maximum 

phase dispersion is obtained at the transition from mode 2 to mode 

3 and is equal to 55˚/GHz. The minimum dispersion is obtained at 

the beginning of mode 1 and is equal to 21˚/GHz. Compared to cell 

1, cell 2 exhibits a better linearity of phase response.  On the other 

hand, its minimum dispersion is not zero as required by the 

previously-used ideal cell model.  However, this model still applies 

if we replace the maximum dispersion by the relative maximum 

dispersion, defined as the difference between the maximum and 

minimum dispersions. For cell 2, it is then equal to 34˚/GHz. 

5.3. Performance Evaluation and Comparison 

The previously-described Phoenix cells are now consecutively 

used as the radiating element in our test-case RA (F/D=0.8, 

variable D). The bandwidth is calculated by simulations as in [16] 

and compared to that given by (18). For this theoretical study, the 

maximum dispersion Dispmax in (18) is set to 53°/GHz for cell 1 

and 34°/GHz for cell 2.  

Figure 8 summarizes all theoretical and simulation results. The 

results show a remarkable agreement between simulation and 

theoretical curves for a given cell. The slight discrepancy is mainly 

due to the linearity assumption in the ideal model which is not fully 

respected by realistic Phoenix cells. It is less than 5% for cell 1 and 

3% for cell 2. As expected, a smaller error is obtained for cell 2 as 

it offers a better linearity of phase response. 

Formula (18) is hence a reliable bandwidth estimator, even for 

realistic phase-shifting cells, provided that they are characterized 

by a quasi-linear response. As a consequence, it can be 

advantageously used to define the maximum dispersion allowed 

for a Phoenix cell to comply with given bandwidth specifications 

or to predict a Phoenix cell’s performance in a RA configuration. 

 

Figure 8. A Realistic study: simulated versus theoretical bandwidth of realistic 

Phoenix cells (F/D=0.8) 

6. Conclusion 

Bandwidth limitation of RA results from both the effect of 
various path delays between cells and source on one side, and 
intrinsic narrow bandwidth of cells themselves on the other side. 
The first phenomenon had been significantly investigated in the 
literature. For the second one, the usual solution relies on the use 
of broadband cells providing linear and parallel phase states. As 
this ideal characteristic is never met perfectly, this paper has 
defined a new approach to assess the effect of imperfection in the 
phase response of broadband RA cells. 

We firstly proposed the standard deviation of phase errors over 
the array as an efficient criterion to predict RA’s bandwidth when 
accounting for both its limiting phenomena. This criterion has then 
been formulated and validated for an ideal cell model with linear 
but non-parallel phase states. Finally, it has been successfully 
applied to realistic and novel Phoenix-cells. The suggested 
approach has thus been demonstrated as a powerful tool to help the 
designer in the selection of appropriate cells before entering the 
complex RA optimization process. 
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