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Only few rheological models in the literature simultaneously capture the two main non-
Newtonian trends of non-colloidal suspensions, namely finite normal stress differences
and transient effects . We address this issue by extending a previously-proposed minimal
model accounting for microstructure anisotropy through a conformation tensor, which
was shown to correctly predict transient effects (Ozenda et al. 2018). A systematic
sensitivity study was performed to provide insights into the physical interpretation of
the different model terms. This new model is compared to a large experimental dataset
involving varying volume fractions, from dilute to concentrated cases. Both apparent
viscosity and normal stress differences in steady-state, are quantitatively reproduced in
the whole range of volume fraction, and qualitative agreement for transient evolution of
apparent viscosity during shear-reversal is obtained. Furthermore, the model is validated
against particle pressure measurements that were not used for parameter identification.
Even if the proposed constitutive equation for the Cauchy stress tensor is more difficult
to interpret than in the minimal model, this study opens way for the use of conformation
tensor rheological models in applications where the effect of normal stress differences is
prominent, like elongational flows or particle migration processes.

1. Introduction

Concentrated suspensions of non-colloidal rigid particles present two main non-
Newtonian rheological trends, namely finite normal stress differences under shear flow
and transient effects (see, e.g., the recent review by Guazzelli & Pouliquen 2018). (i) Since
the early work of Gadala-Maria (1979), normal stress differences have been investigated
in different flow geometries (Zarraga et al. 2000; Singh & Nott 2003; Couturier et al. 2011;
Boyer et al. 2011; Dai et al. 2013; Dbouk et al. 2013). These measurements consistently
show that the second normal stress difference N2 is negative, with an absolute value that
grows with volume fraction φ. The first normal stress difference N1 is generally found to
be much smaller, in absolute value, than |N2|. While most studies reported negative N1

values, few also reported positive values especially at high volume fractions. (ii) Using
shear-reversal experiments, Gadala-Maria & Acrivos (1980) showed that non-colloidal
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suspensions present transient rheological responses, characterized by a rate-independent

evolution of the shear viscosity over typical strains of a few units, before this quantity
eventually reaches its steady-state value. These shear-reversal experiments were later
revisited by Kolli et al. (2002) and Blanc et al. (2011). All these authors related the
transient effects to the development of microstructure anisotropy under shear flow, and
attempted to quantify this anisotropy using the pair distribution function.

Most non-Newtonian trends of concentrated suspensions can be captured by particle-

based numerical simulations, which offer additional insights into the physical processes
at play. Earliest approaches were based on Stokesian dynamics, in which hydrodynamic
interactions are split into far-field and near-field (lubrication) contributions (Brady &
Bossis 1985). Numerous studies showed that essential ingredients to obtain realistic
rheological behaviour in these simulations have to be added, in particular, the existence
of finite normal-stress differences, is to account for particle contacts through short-
range repulsive forces (Nott & Brady 1994; Sierou & Brady 2002). Numerical results
also demonstrated that frictional interactions should be taken into account to recover
correct orders of magnitude for these normal-stress differences, i.e. |N1| < |N2| (Sierou &
Brady 2002; Mari et al. 2014). Similar conclusions concerning the critical role of particle
friction were reached by Gallier et al. (2014), using a more accurate DNS method to
model hydrodynamic interactions. More recently Peters et al. (2016) and Chacko et al.

(2018) were also able to successfully simulate transient effects during shear-reversal
using DNS and simplified Stokesian dynamics approaches, respectively. These particle-
based simulations make it possible to continuously vary physical parameters and perform
numerical experiments, thereby providing datasets that are well complementary to “real”
experiments. However, due to the high demand in computing power, they are still limited
to small systems with a relatively low number of particles (a few thousands at most).

Unlike discrete particle-based models, continuous rheological models are suited to the
simulation of large systems. However, the elaboration of constitutive laws able to
reproduce both normal-stress differences and transient features has been proved a
challenging task (e.g., Denn & Morris 2014). General expressions for the bulk Cauchy
stress tensor of suspensions can be obtained in the frame of two-phase mixture models
(Jackson 2000; Nott et al. 2011; Baumgarten & Kamrin 2019), and involve contributions
from both the interstitial fluid and the particles. For practical applications, physical
closures need to be postulated for these different contributions. Nott & Brady (1994)
introduced the suspension balance model (later extended by Morris & Boulay 1999; Miller
& Morris 2006), which involves explicit empirical expressions for the particle-induced
normal stress components. This model provides relatively accurate predictions for steady-
state flows and, when coupled to an evolution equation for the volume fraction φ (that
arises from mass and momentum conservation of the particle phase), can also account
for particle migration processes. A similar type of approach based on explicit stress
closures was recently followed by Singh et al. (2018), who proposed a model describing
the transition to shear-thickening in highly-concentrated suspensions. By construction,
however, these models do not attempt to capture transient rheological effects.

Transient effects can be described by introducing a conformation tensor, denoted be in
this paper, which represents microstructure anisotropy. Note that conformation tensors
are also sometimes referred to as texture tensors (see e.g. Lehoucq et al. 2015). For non-
colloidal suspensions, the conformation tensor be needs to obey an evolution equation
that ensures rate-independence, i.e. this equation should have no characteristic time
(e.g., Goddard 1982). Hand (1962) formulated general properties for anisotropic fluids,
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and expressed the Cauchy stress tensor σ as a function of both be and the strain
rate tensor γ̇. Phan-Thien (1995) proposed a differential constitutive equation for the
conformation tensor that led, for the first time, to predictions qualitatively in agreement
with experimental observations during shear-reversal. Goddard (2006) revisited this
approach, and proposed a model involving twelve material parameters and two tensors
for describing the anisotropy. By a systematic fitting procedure on a limited dataset,
he obtained numerical results in quantitative agreement with experiments for transient
effects and normal stress differences. Stickel et al. (2006) proposed a simplified expression
for the Cauchy stress tensor, which is linear in terms of both the strain rate and the
conformation tensors (see also Stickel et al. 2007; Yapici et al. 2009). While this latter
model involves thirteen free parameters, it failed to provide quantitative comparisons
with shear-reversal experiments: an unexpected sharp spike in both apparent viscosity
and normal stress differences was obtained at the time of the reversal. Using a much
simpler model, involving only four free parameters and a linear evolution evolution for
the conformation tensor, Ozenda et al. (2018) recently obtained a good quantitative
agreement with the shear-reversal measurements of Blanc et al. (2011) for a wide range
of volume fraction φ. Furthermore, at the micro-structural scale, the model successfully
reproduced both the pair distribution function and the depletion angles measured by
Blanc et al. (2013). However, this simple model predicts unphysical normal stress
differences.

The objective of this paper is to propose a continuous rheological model that provides
quantitative predictions for both normal stress differences and transient effects, for dilute
to concentrated suspensions. For that purpose, we revisit and extend the model proposed
by Ozenda et al. (2018) based on the general expansion of Hand (1962). We limit
consideration to rate-independent constitutive responses, i.e. to suspensions dominated
by hydrodynamic (and possibly frictional) interactions. We also restrict attention to
concentration ranges sufficiently below jamming, such that granular plasticity effects
arising from sustained frictional contacts between particles (e.g. granular dilatancy,
Pailha & Pouliquen 2009; Baumgarten & Kamrin 2019) do not come into play. In
particular, our model does not include the shear-thinning and shear-thickening effects
observed in more complex systems and/or close to jamming transition (see, e.g., Royer
et al. 2016; Singh et al. 2018). When compared with previous tensorial approaches
(Phan-Thien 1995; Goddard 2006; Stickel et al. 2006), the present model involves only
seven adjustable parameters, and compares well with experiments. Section 2 presents
the rheological model. Section 3 is devoted to simple shear flows. The system of
time-dependent equations is expanded for this case, and the stationary solution is
explicitly exhibited. The dependence of the material parameters upon volume fraction
φ is investigated, based on asymptotic analyses in the dilute and highly concentrated
limits. In section 4, model predictions are compared with a large number of experimental
results regarding both transient effects and steady-state normal stresses. As the presented
model involves seven dimensionless constants, a systematic sensivity study is performed
in section 5. Finally, results are summarised and discussed in section 6.

2. Mathematical model

2.1. Problem statement

Following Ozenda et al. (2018), let us introduce the conformation tensor be = d−2

0
〈ℓ⊗ ℓ〉,

where ℓ is the branch vector joining the centres of two neighbouring particles and d0 is the
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average distance between neighbouring particle centers in an isotropic configuration at
rest. In the isotropic configuration at rest, we have be = I , where I is the identity matrix.
For convenience, we introduce the tensor γe = c0(be − I), where c0 is a dimensionless
constant that will be chosen later. The tensor γe interprets as the deformation of the
micro-structure with respect to rest configuration. As in Ozenda et al. (2018), we assume
a linear evolution for γe:

Daγe
Dt

+ δ1|γ̇|γe − γ̇ = 0, (2.1a)

γ̇ = ∇u+∇uT (2.1b)

where γ̇ is the strain rate tensor, u is the velocity field of the suspension, and δ1
is a positive dimensionless material parameter. The matrix norm |ξ| is defined as
|ξ|2 = (ξ :ξ)/2 for any matrix ξ, with (· : ·) denoting the double contracted matrix
product. We use in (2.1a) a general Gordon-Schowalter tensor derivative (Gordon &
Schowalter 1972; Saramito 2016):

Daγe
Dt

=
∂γe
∂t

+ (u.∇)γe −W (u)γe + γeW (u)−
a

2
(γ̇γe + γeγ̇)

where W (u) = (∇u−∇uT )/2, and a ∈ [−1, 1]. Note that Ozenda et al. (2018) used an
upper-convected derivative, corresponding to a = 1. Equation (2.1a) has no characteristic
time, such that its solutions are rate-independent : In simple shear, changing the amplitude
of the strain rate γ̇ leaves the evolution of γ̇e unchanged when expressed in terms of the
dimensionless time |γ̇|t (that interprets as a strain).

The Cauchy stress tensor σ of the suspension is assumed to express as an analytical
function of the two tensorial variables γ̇ and γe. Following Hand (1962), and by virtue
of Cayley-Hamilton theorem, only the zeroth, first and second powers of γ̇ and γe can
contribute to the expression. Furthermore, to preserve rate-independence, terms in γ̇2

should also be discarded. After extensive tests to assess the effects of the different possible
terms, we chose to consider the following expression for the Cauchy stress tensor:

σ = −pbI + ηγ̇ + ηe

{

δ1|γ̇|γe + β

(

γ2

eγ̇ + γ̇γ2

e

2
− |γ̇|γ2

e

)

+ δ2

(

γeγ̇ + γ̇γe
2

)}

(2.1c)

where pb is the bulk pressure of the suspension, η and ηe are characteristic viscosities,
and β and δ2 are additional dimensionless material parameters. Note that the terms
in factor of δ1 and δ2 are linear in γe, while the term in factor of β is quadratic in γe.
The present model represents an upgrade of that presented by Ozenda et al. (2018),

which involved only one linear and one non-linear terms. For the sake of simplicity and
of formulating a minimal model, the scalar coefficients η, ηeβ, ηeδ1 and ηeδ2 are assumed
to be independent of the invariants of γe, which is a restriction compared to the general
theory of Hand (1962).

Constitutive equations (2.1) are coupled with mass and momentum conservations to
obtain a closed problem for three unknowns, namely the suspension pressure pb, the
suspension velocity u, and the tensor describing the anisotropy of the micro-structure γe:



Tensorial rheological model for suspensions 5

Daγe
Dt

+ δ1|γ̇|γe − γ̇ = 0 (2.2a)

ρ

(

∂u

∂t
+ (u.∇)u

)

− divσ = 0 (2.2b)

divu = 0 (2.2c)

where the Cauchy stress tensor σ is expressed by (2.1c) and the strain rate tensor γ̇ is
expressed by (2.1b) . Note that pb in (2.1c) should be regarded as a Lagrange multiplier
associated to the incompressibility constraint (2.2c). This set of equations is closed by
appropriate boundary and initial conditions for u and γe.

From (2.2a), remark that the conformation tensor be = c−1

0
(c0I + γe) satisfies:

Dabe

Dt
− c0δ1|γ̇|I + c0δ1|γ̇|be = (1− ac0)γ̇

Hence, by choosing the dimensionless constant c0 = 1/a, the right-hand-side in the
previous relation is zero. In the following, we also assume a ∈ ]0, 1]. According to Hulsen
(1990), and since δ1 > 0, these choices guarantee that the conformation tensor be is
positive definite at any time, if this property is satisfied at initial time.

3. Simple shear and shear-reversal

3.1. The reduced problem

Let us consider a simple shear flow with uniform shear rate. The x axis is in the flow
direction and the y axis is in the direction of velocity gradient, such that u(t, x, y, z) =
(ux(t, y), 0, 0). Let us denote γ̇ = ∂yux the uniform scalar shear rate, such that |γ̇| = |γ̇|.
Evolution equation (2.2a) for γe(t) then reduces to the following system of ordinary
differential equations:

∂tγe,xx − (1+a)γ̇ γe,xy + δ1|γ̇| γe,xx = 0 (3.1a)

∂tγe,yy + (1−a)γ̇ γe,xy + δ1|γ̇| γe,yy = 0 (3.1b)

∂tγe,xy −
1+a

2
γ̇ γe,yy −

1−a

2
γ̇ γe,xx + δ1|γ̇| γe,xy = γ̇ (3.1c)

∂tγe,xz − (1+a)γ̇ γe,yz + δ1|γ̇| γe,xz = 0 (3.1d)

∂tγe,yz + (1−a)γ̇ γe,xz + δ1|γ̇| γe,yz = 0 (3.1e)

∂tγe,zz + δ1|γ̇| γe,zz = 0 (3.1f )
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We assume γe,xz = γe,yz = γe,zz = 0 at t = 0, such that these components remain zero
at any time. The constitutive equation (2.1c) for σ becomes:

σxx = −pb + ηe
{

δ1|γ̇|γe,xx + β
(

γ̇ (γe,xx + γe,yy) γe,xy − |γ̇|
(

γ2e,xx + γ2e,xy
))

+ δ2γ̇γe,xy
}

(3.2a)

σyy = −pb + ηe
{

δ1|γ̇|γe,yy + β
(

γ̇ (γe,xx + γe,yy) γe,xy − |γ̇|
(

γ2e,xy + γ2e,yy
))

+ δ2γ̇γe,xy
}

(3.2b)

σzz = −pb (3.2c)

σxy = ηγ̇ + ηe

{

δ1|γ̇|γe,xy + β

(

γ̇

2

(

γ2e,xx + γ2e,yy + 2γ2e,xy
)

− |γ̇| (γe,xx + γe,yy) γe,xy

)

+
δ2γ̇

2
(γe,xx + γe,yy)

}

(3.2d)

σxz = σyz = 0 (3.2e)

The system (3.1) is linear and admits explicit solutions when the shear rate γ̇ is given.
Explicit expressions of the stress components are then obtained from (3.2). In the
following, we will also consider situations in which the shear stress σxy is imposed. In this
case, numerical solutions of the coupled equations (3.1)-(3.2) are computed using lsode

ordinary differential equation solver (Radhakrishnan & Hindmarsh 1993) implemented
within the numpy-scipy environment (Jones et al. 2001–).

3.2. Explicit solution in steady-state

The steady-state solution of (3.1a)-(3.1c) writes:

γe,xx =
1 + a

1− a2 + δ2
1

(3.3a)

γe,yy =
−(1− a)

1− a2 + δ2
1

(3.3b)

γe,xy =
δ1 sgn(γ̇)

1− a2 + δ2
1

(3.3c)

The steady-state apparent viscosity ηapp = σxy/γ̇ and normal stress differences
N1 = σxx−σyy and N2 = σyy−σzz are then easily deduced from (3.2a)-(3.2d):

ηapp = η +
ηe

1− a2 + δ2
1

(

δ2
1
+ aδ2 +

((

1 + a2 + δ21
)

− 2aδ1
)

β

1− a2 + δ2
1

)

(3.4a)

N1 =
2ηe|γ̇|

1− a2 + δ2
1

(

δ1 −
2aβ

1− a2 + δ2
1

)

(3.4b)

N2 =
ηe|γ̇|

1− a2 + δ2
1

(

δ1(−1 + a+ δ2) +

(

2aδ1 −
(

(1−a)2 + δ21
))

β

1− a2 + δ2
1

)

(3.4c)

We also define the particle pressure pp = p− pb, where p = −tr(σ)/3 is the total pressure
of the suspension. In steady-state:

pp = −
2ηe|γ̇|

3(1− a2 + δ2
1
)

(

δ1(a+ δ2) +

(

2aδ1 −
(

1 + a2 + δ2
1

))

β

1− a2 + δ2
1

)

(3.4d)
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3.3. Dependence of material parameters upon volume fraction

The rheological model presented in section 2 involves six material parameters: two
viscosities η and ηe, and four dimensionless parameters a, δ1, δ2 and β. Preliminary tests
to fit experimental data for different volume fractions φ (see § 4), showed that all these
parameters, except a, have to vary with φ. Following these preliminary investigations,
we assumed a to be independent of φ, and the five remaining parameters to depend only
upon the reduced volume fraction ψ = φ/φm, with φm the maximal volume fraction of
the suspension. This latter assumption is required to obtain a model that can be applied
to different experimental datasets characterised by different values of φm. In practice,
φm can vary between 0.53 and 0.64, typically, depending on particle shape, particle
roughness, etc (e.g., Guazzelli & Pouliquen 2018).

As shown in appendix A, the parameter δ1 is directly related to the depletion angle θe,
i.e. the angle between the x axis and the direction of the eigenvector associated to the
largest eigenvalue of γe: δ1 = tan(2θe). Based on the experimental measurements of θe
provided by Blanc et al. (2013), the following dependence law is proposed for δ1 (see
figure 1):

δ1(ψ) = δ̄1
(

(1 − ψ)−1 − (1− bψ)
)

, (3.5a)

where δ̄1 and b are positive constants independent of ψ. Observe that δ1(0) = 0 and
δ1(1) = ∞, such that the model predicts θe(0) = 0 and θe(1) = π/4.

To be consistent with numerous existing results (Maron & Pierce 1956; Morris & Boulay
1999; Guazzelli & Pouliquen 2018), the apparent viscosity ηapp and the second normal
stress difference N2 should behave as (1− ψ)−2 in the ψ → 1 limit. In addition, we expect
ηe = 0 in the Newtonian limit ψ = 0. Accordingly, the following dependence laws are
postulated for the viscosities η and ηe:

η(ψ) = η0

(

1− ω + ψ

(

5

2
φm − 2ω

)

+ ω(1− ψ)−2

)

(3.5b)

ηe(ψ) = η0η̄eψ(1 − ψ)−2 (3.5c)

where η0 is the viscosity of the suspending fluid, and η̄e > 0 is a constant independent
of ψ. The constant ω ∈ ]0, 1[ is introduced in (3.5b) in order to recover Einstein (1906)’s
relation when ψ → 0 (see §3.4). Note that η expresses as a convex combination of Maron
& Pierce (1956) and Einstein (1906) laws.

Similar to ηe, the parameters δ2 and β should vanish when ψ = 0, i.e. when the suspension
reduces to a Newtonian fluid. For simplicity, we consider that δ2 is proportional to δ1.
We also assume that β behave as (1 − ψ)−2 when ψ → 1. Accordingly, the following
dependence laws are postulated:

δ2(ψ) = δ̄2
(

(1− ψ)−1 − (1 − bψ)
)

(3.5d)

β(ψ) = β̄
(

(1 − ψ)−1 − 1
)2

, i = 1, 2, 3 (3.5e)

where δ̄2 and β̄ are constants independent of ψ.

At this stage, the suspension model involves seven constants independent of ψ, namely
a, b, ω, η̄e, δ̄1, δ̄2, and β̄ that need to be determined from experimental data. Note
that with the dependence laws (3.5b)-(3.5c) for η and ηe, we obtain from (3.4) that the
normal stress ratios

α1 =
N1

ηapp |γ̇|
and α2 =

N2

ηapp |γ̇|
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are independent of suspending fluid viscosity η0, in agreement with experiments (Dbouk
et al. 2013; Guazzelli & Pouliquen 2018).

3.4. Dilute and concentrated limits

In the dilute limit ψ → 0, a second-order Taylor expansion of (3.4a) leads to the following
expression for apparent viscosity ηapp:

ηapp = η0

(

1 +
5

2
φmψ +

(

3ω

2
+
a(1 + b)δ̄2η̄e
(1− a2)

)

ψ2

)

+O
(

ψ3
)

(3.6a)

At first order in ψ, the model agrees with Einstein (1906)’s relation ηapp ≈ η0(1 + 5φ/2).
The different constants associated to micro-structure evolution, a, b, η̄e and δ̄2, appear
only at second order, consistently with the asymptotic expansion of Batchelor & Green
(1972).

In the concentrated limit ψ → 1, the expansion of ηapp writes:

ηapp = η0η̄1(1− ψ)−2 +O
(

(1 − ψ)−1
)

(3.6b)

with η̄1 =

(

ω +

(

1 +
β̄

δ̄2
1

)

η̄e

)

Hence, ηapp grows as (1− ψ)−2, as required (Maron & Pierce 1956).

Let us now turn to the asymptotic behaviour of normal stress ratios α1 and α2 and
particle pressure pp. In the dilute limit ψ → 0, from (3.4), we obtain:

α1 =
2η̄eδ̄1(1 + b)

1− a2
ψ2 +O

(

ψ3
)

α2 = −
(1− a)η̄eδ̄1(1 + b)

1− a2
ψ2 +O

(

ψ3
)

pp
ηapp |γ̇|

= −
2aη̄eδ̄1(1 + b)

3(1− a2)
ψ2 +O

(

ψ3
)

Observe that α1, α2 and pp all vanish for ψ = 0, as expected. Moreover, we obtain α1 > 0
and α2 6 0 when ψ → 0. The sign of α2 is consistent with experimental observations
(Couturier et al. 2011; Dbouk et al. 2013; Dai et al. 2013).

In the concentrated limit ψ → 1, the expansions of normal stress ratios and particle
pressure write:

α1 =
2η̄e

η̄1δ̄1
(1− ψ) +O

(

(1 − ψ)2
)

α2 = −
η̄e
η̄1

(

−δ̄1δ̄2 + β̄

δ̄2
1

)

+O (1− ψ)

pp
ηapp |γ̇|

=
2η̄e
3η̄1

(

−δ̄1δ̄2 + β̄

δ̄2
1

)

+ O (1− ψ)

Hence, the ratio α1 vanishes when ψ → 1. On the contrary, α2 tends to a constant for
ψ → 1, in agreement with experiments (Leighton & Acrivos 1987; Guazzelli & Pouliquen
2018). Furthermore, it is sufficient to assume δ̄2 < 0 and β̄ > 0 to obtain α2 6 0.
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a b ω η̄e δ̄1 δ̄2 β̄

0.51 1.5 0.52 0.089 0.47 −1.15 1.7

Table 1. Values of the seven dimensionless model constants identified from experimental
data.

4. Quantitative comparisons with experiments

4.1. Identification of model constants

As explained above, the rheological model proposed in this paper was built to
recover qualitative agreement with experimental observations in the dilute and
concentrated limits. More quantitatively, the seven model constants were identified
through an adjustment to different experimental datasets reporting detailed rheological
measurements on non-colloidal suspensions for different volume fractions φ (in the range
[0.2, 0.5]). The four following datasets were considered for the adjustment:

• Measurements of the depletion angle θe performed by Blanc et al. (2013). These
authors used a suspending fluid of viscosity η0 = 0.85 Pa.s and two sets of PMMA spheres
of radius rp = 80 and 90 µm. They reported a maximal volume fraction φm = 0.57.
• Measurements of transient apparent viscosity after a shear-reversal performed by

Blanc et al. (2011) for five different values of volume fraction φ. These authors used a
suspending fluid of viscosity η0 = 1.02 Pa.s, PMMA spheres of radius rp = 16 µm, and
reported a relatively low maximal volume fraction φm = 0.535 presumably due to the
presence of a residual cellulosic surfactant.
• Measurements of normal-stress differences in steady-state performed by Couturier

et al. (2011). These authors used a suspending fluid with viscosity η0 = 2.15 Pa.s,
polystyrene spheres of radius rp = 35 µm, and reported a maximal volume fraction
φm = 0.62.
• Measurements of normal-stress differences in steady-state performed by Dai et al.

(2013). These authors used a slightly shear-thinning suspending fluid with viscosity
1.17 6 η0 6 1.3 Pa.s for shear rates 0.01 6 γ̇ 6 100 s−1, polystyrene spheres of radius
rp = 20 µm, and reported a maximal volume fraction φm = 0.62.

For all these datasets, values of φ were rescaled in terms of reduced volume fraction
ψ = φ/φm by using the provided values of φm. As described in appendix B, the
set of seven model constants {a, ω, η̄e, δ̄2, β̄1, β̄2 β̄3} was globally identified from
the datasets. The obtained values are indicated in table 1. Note that first attempts
at trying to obtain a comparable quantitative agreement with both steady-state and
transient measurements, failed. As a consequence, we chose to assign a stronger weight
to the agreement with steady-state viscosity and normal-stress data. A lower weight
was assigned to the agreement with transient experiments, although sufficient to ensure
that model predictions present a correct qualitative behavior. More details on the
identification procedure, including expression of the minimised cost function, are provided
in appendix B.

Direct comparisons between model predictions with the constants given in table 1, and
the experimental data used for the identification, are shown in figures 1, 2 and 3.
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Figure 1. Evolution of depletion angle θe and steady-state apparent viscosity ηapp versus
reduced volume fraction ψ: comparison between model predictions and experimental data of
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Figure 2. Evolution of apparent viscosity ηapp versus shear strain γ after shear-reversal:
comparison between model prediction and experimental measurements of Blanc et al. (2011)
for two volume fractions φ.

Figure 1 shows that predicted steady-state depletion angle and apparent viscosity are
indeed in excellent quantitative agreement with the experimental data. Figure 2 presents
comparisons for the transient response, namely evolution of apparent viscosity ηapp(t)

versus strain γ(t) =
∫ t

0
|γ̇(s)|ds after a shear-reversal. Let us recall that the experiments

of Blanc et al. (2011) were performed at imposed shear stress, while γ̇(t) varies. Note that
both model predictions and experimental data are normalised by their respective steady
state-values ηapp(∞) in the figure. It is observed that, although the model generally
tends to underestimate the amplitude of the transient response, a satisfactory qualitative
behavior is nevertheless obtained for all values of φ. In particular, the successive phases
present in the measurements, namely the initial brutal drop in apparent viscosity, the
smooth evolution to a minimum, and the relaxation towards the steady-state, are all
reproduced. The typical duration of the transient phase is also correctly captured.

Figure 3 presents the evolution of steady-state normal stress ratios α1 and α2 as a
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Figure 3. Evolution of steady-state normal stress ratios α1 and α2 versus reduced volume
fraction ψ: comparison between model predictions and experimental measurements of Couturier
et al. (2011), Dai et al. (2013) and Dbouk et al. (2013).

function of reduced volume fraction ψ. The model appears to successfully capture the
main features of the normal stress measurements reported in the studies of Couturier
et al. (2011) and Dai et al. (2013), namely N2 < 0 and |N1| < |N2|. Predictions for
the second normal-stress ratio α2 show a strong monotonic decrease with ψ, and are
in excellent quantitative agreement with the data (figure 3-right). Regarding the first
normal-stress difference, the model predicts non-monotonic variations of the ratio α1

with ψ (figure 3-left). Values of α1 are positive but very small for ψ . 0.4, negative and
decreasing with ψ for 0.4 . ψ . 0.7, and then increasing again towards the concentrated
limit α1(1) = 0 (see § 3.4). Here also, these predictions appear to be in good quantitative
agreement with the measurements in terms of overall magnitude, albeit the existence
of non-monotonic variations cannot be confirmed from existing data due to the level of
experimental noise. For comparison, experimental measurements obtained by Dbouk
et al. (2013) (not used for the adjustment) are also shown in figure 3, using a value
φm = 0.58 for the volume fraction scaling. These measurements are fully consistent with
the two other datasets and the model for α2, but show positive values of α1, thereby
highlighting the need for additional characterisations of the first normal-stress difference
in these systems.

4.2. Comparison with independent particle pressure measurements

Model predictions were also assessed against steady-state particle pressure measurements
obtained by Deboeuf et al. (2009). These authors used a suspending fluid of viscosity
η0 = 3 Pa.s and differents sets of particles with radii ranging between 40 and 140 µm.
As they did not provide the value of maximum volume fraction φm in their systems, we
used φm = 0.58 to rescale their data. We insist that this new dataset was not used for
the identification of model constants. As shown in figure 4, model predictions obtained
with the values of constants given in table 1, show here also a good agreement with
the experimental measurements. This remarkable result validates the introduction of
reduced volume fraction ψ = φ/φm in the dependence laws for the material parameters
(see §3.3), and indicates that the model constants involved in these dependence laws
can be regarded, at least to a first approximation, as independent of the experimental
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Figure 4. Evolution of steady-state normalized particle pressure pp/(η0|γ̇|) versus reduced
volume fraction ψ: comparison between model predictions and experimental measurements of
Deboeuf et al. (2009). The consistent data obtained for three different values of particle radius
rp are shown.

conditions. In other words, the influence of experimental conditions is fully encoded in
the maximum volume fraction φm used to rescale the volume fraction values.

5. Sensitivity study

A systematic sensitivity study of model predictions with respect to the seven model
constants a, b, ω, η̄e, β̄, , δ̄1, δ̄2, was performed. Figure 5 shows the evolution of steady-
state normal stress ratios α1 and α2 and steady-state apparent viscosity ηapp versus ψ
(upper three plot lines), as well as the transient evolution of ηapp after a shear-reversal
(lower plot line), when model constants are varied in consistent [−50%,+100%] ranges
around their reference values obtained through identification (see §4).

It is observed that a variation of any of the model constant implies a significant
effect on at least one of the displayed quantities. Hence, none of the terms introduced
in the Cauchy stress equation (2.1c) can be omitted without significantly degrading
the match with experimental observations. We also note the existence of non-trivial
couplings between these different terms, which explains the difficulties encountered in
the identification procedure when trying to simultaneously reproduce steady-state and
transient experimental data (see §4). Note that unphysical predictions |α1| > |α2| are
obtained when values of δ̄1 are close to zero, values of β̄ are too high, or when a ≈ 1.

A closer look on the results provides insights into the physical interpretation of the
different model constants. In steady-state, the constant η̄e acts as a magnitude scaling
for all stress terms that are non-colinear to the strain rate γ̇ (see (3.4)). Accordingly,
this affects both normal stress ratios α1 and α2. Conversely, β̄ only acts on terms that
are quadratic in γ̇, and mostly affects the first normal stress ratio α1. Both η̄e and β̄
also play a role on the steady-state viscosity ηapp, but have essentially no influence on
the minimum observed during the transient evolution of ηapp.

The constant δ̄1 interprets as a characteristic strain controlling the length of the
transients. In particular, this constant sets the position of the minimum in ηapp. This
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constant also plays a strong role on the steady-state values of apparent viscosity and
normal-stress ratios. This ubiquitous role is consistent with the fact that δ1 is the only
parameter present in both the constitutive equation for σ (2.1c) and the evolution
equation for γe (2.2a).

The constants δ̄2, a and b do not have much influence on the apparent viscosity ηapp. The
constant δ̄2 essentially acts on the second normal stress ratio α2, while the constants a
and b have a more pronounced effect on α1. However, an unphysical change of sign of α2

is observed when a ≈ 1. These observations are consistent with equations (3.4).

Finally, the constant ω is responsible for an overall shift of the apparent viscosity ηapp in
both transient and steady-state regimes, but only weakly affects the normal stress ratios
α1 and α2.

6. Discussion and conclusions

An improved, rate-independent rheological model for non-colloidal suspensions of rigid
spheres, involving the evolution of a conformation tensor, was presented. The model
upgrades that of Ozenda et al. (2018) in several aspects. While the structure of the
linear evolution equation (2.1a) for the conformation tensor is unchanged, a more general
Gordon-Schowalter tensor derivative is used, with a material parameter a ∈ ]0, 1[. In
addition, the expression of the Cauchy stress tensor (2.1c) is modified by the inclusion
of additional linear and non-linear terms. While still keeping with the goal of a minimal
model involving as few adjustable parameters as possible, these amendments were
required to predict both the transient evolution of apparent viscosity after a shear-
reversal, and realistic values for the normal stress difference N1 and N2 in steady-state.
Although the contributions of the different terms to the overall rheological behavior of the
suspension appear to be strongly coupled, a systematic sensitivity study was performed to
provide insights into the physical interpretation of the different model parameters. Note
however that the sensitivity study was performed for limited ranges of the parameters,
and might thus not be representative of the model behavior when parameters are varied
in much larger ranges.

The model was compared to different experimental datasets involving various suspending
fluids and particle sizes. To that aim, the material parameters were all expressed in
terms of reduced volume fraction ψ = φ/φm, where the maximum volume fraction
φm varies among the experiments, and a of set of seven model constants. The good
agreement observed with steady-state data, in terms of apparent viscosity, normal
stress differences and particle pressure, suggests that the rheological model, together
with the constants given in table 1, can be applied to large range of non-colloidal
suspensions. Regarding the transient responses, only qualitative agreement was obtained
with experimental data. Further improvements of these transient predictions would
certainly require complementing our minimal model with additional terms, for instance
polynomial dependences of the material parameters upon the invariants of the texture
tensor (Hand 1962), or introduction of additional microstructural tensorial variables
(Goddard 2006). Along the same line, introduction of a plasticity term in the constitutive
law would open interesting perspectives to tackle highly-concentrated regimes close to,
or above, the jamming transition, in which the rheological behavior becomes dominated
by sustained granular contacts (Pailha & Pouliquen 2009; Baumgarten & Kamrin 2019).
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The capability of the presented model to predict accurate normal-stress differences in
steady-state potentially opens way to computations of elongational or more complex
flows. Such applications to a larger class of flows, together with a more systematic
parameter identification procedure, shall also make it possible to improve the physical
interpretation of the different terms introduced in the expression of the Cauchy stress
tensor. Here also, detailed comparisons with experiments (e.g. Dai & Tanner 2017)
will however be necessary to assess the validity of the model, and particularly of the
dependences of material parameters upon volume fraction introduced in §3.3, beyond
the simple shear configuration investigated in this study. A more in-depth analysis of
the mathematical and thermodynamical properties of the model would also need to be
undertaken. The new rheological model could also be coupled to an evolution equation
for the volume fraction in order to address particle migration processes (e.g., Miller
& Morris 2006; Haddadi et al. 2014), test the effect of normal-stress differences over
longer time scales, and allow for comparisons with other modelling approaches (e.g.,
Dbouk 2016). Finally, let us also note that, although the focus of the present paper
was mainly on trying to reproduce physical experiments, systematic comparisons with
discrete simulation results (e.g. Chacko et al. 2018; Singh et al. 2018) could constitute a
fruitful avenue for further validating and improving our rheological model. In particular,
comparisons regarding the evolution of normal stress differences during transients, for
which no experimental data are currently available, could provide useful additional
insights.
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Appendix A. Eigen directions of γ
e

We prove here that, in stationary simple shear flow, the depletion angle, i.e. the angle
between the x axis and the direction of the eigenvector associated to the largest eigenvalue
of γe, expresses as:

δ1 = tan(2θe) (A 1)

From (3.3a)-(3.3c), eigenvalues of γe, denoted as λmin 6 λmax, are both non-zero and
write:

λmin =
δ−1

1

1 + δ−2

1
(1− a2)

(

aδ−1

1
−
(

δ−2

1
+ 1
)1/2

)

λmax =
δ−1

1

1 + δ−2

1
(1− a2)

(

aδ−1

1
+
(

δ−2

1
+ 1
)1/2

)

The corresponding eigenvectors are:

vmin =

[

δ−1

1
−
(

δ−2

1
+ 1
)1/2

1

]

vmax =

[

1
(

δ−2

1
+ 1
)1/2

− δ−1

1

]

Accordingly, we obtain:

θe = atan
(

(

δ−2

1
+ 1
)1/2

− δ−1

1

)

=
atan(δ1)

2
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which is equivalent to (A 1). Observe that ∀ δ1 > 0, θe ∈ ]0, π/4[.

Remark that, while the eigenvalues of γe depend on the parameter a of the tensor
derivative, the eigenvectors are independent thereof. Hence, all the relations between
microstructure orientation and model parameters derived in Ozenda et al. (2018), notably
(A 1), remain unchanged in the present model.

Appendix B. Identification of model constants

The rheological model proposed in this paper involves seven constants to be identified:
a, b, ω, η̄e, β̄, , δ̄1, δ̄2. Global identification of these parameters with respect to
experimental data was achieved by minimising the following cost function:

J =
wa

ψ2 − ψ1

∫ ψ2

ψ1

|θe(ψ)− θobse (ψ)|2 dψ +
wv

ψ4 − ψ3

∫ ψ4

ψ3

|ηapp(ψ) − ηobsapp(ψ)|
2 dψ

+

2
∑

i=1

ws,i
ψm

∫ ψm

0

|αi(ψ)− αobsi (ψ)|2 dψ

+

5
∑

k=1

wt,k
γk

∫ γk

0

|ηapp(ψk, γ)− ηobsapp,k(γ)|
2 dγ

The function θobse (ψ) is a piecewise-constant interpolation of steady-state depletion angle
measurements reported by Blanc et al. (2013) for ψ ∈ [ψ1, ψ2], with ψ1 = 0.088 and
ψ2 = 0.98 the range of reduced volume fraction explored in the experiments. The
function ηobsapp(ψ) is a piecewise-constant interpolation of steady-state values of apparent
viscosity measured by Blanc et al. (2011) for ψ ∈ [ψ3, ψ4], with ψ3 = 0.56 and ψ4 = 0.93
in this case. The functions αobs1 (ψ) and αobs2 (ψ) are piecewise-constant interpolations
of steady-state values of normal stress ratios measured by (Couturier et al. 2011) and
(Dai et al. 2013) for ψ ∈ [0, ψm], with ψm = 0.81 the maximal reduced volume fraction
reached in the experiments. The functions ηobsapp,k(γ), k = 1 . . . 5, represent the transient
evolutions of apparent viscosity during the five shear-reversal experiments of Blanc et al.
(2011) characterised by reduced volume fractions ψk . Here, γk, k = 1 . . . 5, represent the
maximal strain reached in each experiment. Lastly, the function ηapp(ψ, γ) is associated
to the transient solution of the model, while the functions θe(ψ), ηapp(ψ), α1(ψ), and
α2(ψ) are associated to the steady-state solution. The factors wa, we, ws,i and wt,k are
the relative weights of the different terms of the cost function J .

The minimization problem of J was solved with a Levenberg-Marquardt method (More
et al. 1980), using the optimisation library lmfit (Newville et al. 2016). As explained
in §4, larger values had to be used for the weights wa, we, ws,i, with respect to wt,k, in
order to promote the agreement with steady-state measurements. In addition, after the
global identification step, a secondary, one-by-one, adjustment of each model constants
was performed in order to further improve the solution. Final values of identified model
constants are indicated in table 1.
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