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Example of classification map and probability of belonging to a class of decline

Data
In this study, Sentinel-2 images (10 bands at 10 and 20 m spatial resolution) acquired
during the growing season of 2016 have been processed. Due to insufficient data quality
related to atmospheric conditions, only 2 cloud-free images were analyzed (one in July
and one in September)

Context - Objectives
Health status diagnosis of chestnut forest stands
is a crucial concern for forest managers. These
stands are made vulnerable by numerous
diseases and sometimes unadapted forestry
practices. Moreover, since last years, they were
submitted to several droughts. In Dordogne
province (France), the economic stakes are
important. For example, about 2/3 of the
chestnut forest area are below the optimal
production level, and most of the forest stands
of this area show a high proportion of dry
branches. The actual extent of declining forest
remains unknown. Sentinel-2 images show an
interesting potential to map declining stands
over a wide area and to monitor their
evolutions. This study aim to propose a method
to discriminate healthy chestnut forest stands
from the declining ones with several levels of
withering intensity, over the whole Dordogne
province (9 000 km²).
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Method
The proposed method is the development of statistical models integrating in a parsimonious manner several vegetation indices and biophysical parameters.
The statistical approach is based on an ordered polytomous regression to which are applied various technics of models’ selection (Agresti, 2003).

The three processing steps are : 1 – Selection of the best remote sensing variables
2 – Models calculation and selection
3 – Mapping selected models and validation

Remote sensing variables : 36 vegetation indices were calculated from THEIA-MAJA

L2A products and 5 biophysical parameters were processed from ESA level 1C product (Poilvé,
2010). These last parameters have been obtained by inverting a canopy reflectance model
with the Overland software (developed by Airbus DS Geo-Intelligence). This software couples
the PROSPECT leaf model and the scattering by arbitrary inclined leaves (SAIL) canopy model
(Jacquemoud, 2009).

Field data for calibration and validation of the predictive models are based on health status

data. Plots have been surveyed by foresters. The chestnut trees health status has been described by using
two protocols (ARCHI and Expert knowledge) (Lambert,2013) : 50 for calibration, 102 for validation.

 10 spectral bands (resampled at 10m spatial resolution )

▪ B2, B3, B4, B5, B6, B7, B8, B8a, B11 et B12

 36 vegetation indices

▪ NDVI, EVI, NDII, NDVIRedEdge , MCARI, DVI, Clgreen, CRI2, NBR, PSRI ….

 5 Biophysical parameters

▪ BLCV : Cover  fraction of brown vegetation 
▪ GLCV : Cover fraction of green vegetation 
▪ fAPAR : Fraction of Absorbed Photosynthetically Active Radiation 
▪ GLAI : Green Leaf Area Index 
▪ WAT : Leaf Water Content

Results
❑ The best remote sensing variables according to AIC and cross validation :

- Vegetation Red Edge and NIR spectral bands : B8a, B8, B7, B6… 
- Vegetation indices : NDVIre2n, NDII, DVI, NBR, GNDVI, NDWI, MTCI, 

IRECI, S2REP…
- Biophysical parameters  : GLAI and GLCV.

❑ The selected models using for 2 to 5 variables, and using single date 
images (July and Sept) or both combined : 57 selected models according 
to AIC and CHI2, then 12 selected models according to quality indices 
(Kappa, Tau, Overall accuracy, RMSE) using validation observations.

❑ The Maps of the best models :
- Maps of probability of belonging to a class of decline,
- Expected classification maps.
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Examples of significant correlations between remote sensing variables and class of decline
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Selected models and quality assessment

Remote sensing 
variables 

Formula 

NDVIre2n (B8a-B6)/B8a+B6) 

NDII (B8-B11)/(B8+B11) 

DVI B8-B4 

NBR (B8-B12)/B8+B12) 

GNDVI (B7-B3)/(B7+B3) 

NDWI (B3-B8)/B3+B8) 

MTCI (B6-B5)/(B5-B4) 

IRECI ((B7−B4)*B6)/B5 

S2REP 705+35*(((B7+B4)/2)−B5)/(B6−B5)) 

GLAI Green Leaf Area Index 
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Conclusion

- The kappa index of the 57 models varies from
0.2 to 0.6 ; the kappa index of the 12 best
models varies from 0.49 to 0.65.

- The contribution of the image of September is
not significant.

- The biophysical parameter GLAI contributes to
two of the best models.
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Validation with Expert knowledge observations (n=87)  
Single date : July     

Model 
Kappa 
index 

Overall 
accuracy 

Tau 
index RMSE 

(-3.73*B8a) + (-1.47*NDII) 0.61 0.80 0.61 0.44 

(-3.66*B6) + (-2.67*NDVIre2n) 0.56 0.78 0.56 0.47 

(-3.84*B8a) + (-1.96*NDVIre2n) 0.54 0.77 0.54 0.48 

Validation with Expert knowledge observations (n=87)  
  Two dates : July (J) and Sept (S)    

Model 
Kappa 
index 

Overall 
accuracy 

Tau 
index RMSE 

(3.707*B8a(J)) + (-1.106*DVI(S)) 0.62 0.81 0.62 0.44 

(-0.536*NDII(S)) + (-3.611*B6(J)) + (-2.801*NDVIre2n(J)) 0.59 0.79 0.59 0.45 

(-9.289 *GLAI(J)) + (-0.379*B6(S)) 0.49 0.74 0.49 0.50 

Validation with ARCHI observations (n=77)   
Single date : July     

Model 
Kappa 
index 

Overall 
accuracy 

Tau 
index RMSE 

(-5.46*NBR) + (5.06*GNDVI) + (8.7*B8) + (-12.87*B8a)  0.65 0.84 0.68 0.40 

(1.41*GNDVI) + (-4.05*B8a) +  0.57 0.80 0.61 0.44 

(-1.36*NDWI) + (-3.98*B8a) 0.56 0.80 0.61 0.44 

Validation with ARCHI observations (n=77)   
Two dates : July (J) and Sept (S)    

Model 
Kappa 
index 

Overall 
accuracy 

Tau 
index RMSE 

(-1.20*MTCI(S)) + (-2.49*B6(J))  0.60 0.82 0.63 0.43 

(-2.11*B8a(J)) + (-1.22*IRECI(S)) 0.56 0.79 0.58 0.46 

(-2.624*GLAI(J)) + (-0.766*S2REP(S)) 0.54 0.79 0.58 0.46 
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